1
|
Wang B, Luo C, Li X, Jimenez A, Cai J, Chen J, Li C, Zhang C, Ou L, Pu W, Peng Y, Zhang Z, Cai Y, Valls M, Wu D, Yu F. The FERONIA-RESPONSIVE TO DESICCATION 26 module regulates vascular immunity to Ralstonia solanacearum. THE PLANT CELL 2024; 37:koae302. [PMID: 39535787 DOI: 10.1093/plcell/koae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/19/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Some pathogens colonize plant leaves, but others invade the roots, including the vasculature, causing severe disease symptoms. Plant innate immunity has been extensively studied in leaf pathosystems; however, the precise regulation of immunity against vascular pathogens remains largely unexplored. We previously demonstrated that loss of function of the receptor kinase FERONIA (FER) increases plant resistance to the typical vascular bacterial pathogen Ralstonia solanacearum. Here, we show that upon infection with R. solanacearum, root xylem cell walls in Arabidopsis thaliana become highly lignified. FER is specifically upregulated in the root xylem in response to R. solanacearum infection, and inhibits lignin biosynthesis and resistance to this pathogen. We determined that FER interacts with and phosphorylates the transcription factor RESPONSIVE TO DESICCATION 26 (RD26), leading to its degradation. Overexpression and knockout of RD26 demonstrated that it positively regulates plant resistance to R. solanacearum by directly activating the expression of lignin-related genes. Tissue-specific expression of RD26 in the root xylem confirmed its role in vascular immunity. We confirmed that the FER-RD26 module regulates lignin biosynthesis and resistance against R. solanacearum in tomato (Solanum lycopersicum). Taken together, our findings unveil that the FER-RD26 cascade governs plant immunity against R. solanacearum in vascular tissues by regulating lignin deposition. This cascade may represent a key defense mechanism against vascular pathogens in plants.
Collapse
Affiliation(s)
- Bingqian Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Cailin Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Xiaoxu Li
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410021, China
| | - Alvaro Jimenez
- Department of Genetics, University of Barcelona, Barcelona, Catalonia 08007, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia 08193, Spain
| | - Jun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Jia Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Changsheng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Chunhui Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Lijun Ou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Wenxuan Pu
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410021, China
| | - Yu Peng
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410021, China
| | - Zhenchen Zhang
- Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou 510640, China
| | - Yong Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Marc Valls
- Department of Genetics, University of Barcelona, Barcelona, Catalonia 08007, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia 08193, Spain
| | - Dousheng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
2
|
Su GM, Chu LW, Chien CC, Liao PS, Chiu YC, Chang CH, Chu TH, Li CH, Wu CS, Wang JF, Cheng YS, Chang CH, Cheng CP. Tomato NADPH oxidase SlWfi1 interacts with the effector protein RipBJ of Ralstonia solanacearum to mediate host defence. PLANT, CELL & ENVIRONMENT 2024; 47:5007-5020. [PMID: 39132878 DOI: 10.1111/pce.15086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Reactive oxygen species (ROS) play a crucial role in regulating numerous functions in organisms. Among the key regulators of ROS production are NADPH oxidases, primarily referred to as respiratory burst oxidase homologues (RBOHs). However, our understanding of whether and how pathogens directly target RBOHs has been limited. In this study, we revealed that the effector protein RipBJ, originating from the phytopathogenic bacterium Ralstonia solanacearum, was present in low- to medium-virulence strains but absent in high-virulence strains. Functional genetic assays demonstrated that the expression of ripBJ led to a reduction in bacterial infection. In the plant, RipBJ expression triggered plant cell death and the accumulation of H2O2, while also enhancing host defence against R. solanacearum by modulating multiple defence signalling pathways. Through protein interaction and functional studies, we demonstrated that RipBJ was associated with the plant's plasma membrane and interacted with the tomato RBOH known as SlWfi1, which contributed positively to RipBJ's effects on plants. Importantly, SlWfi1 expression was induced during the early stages following R. solanacearum infection and played a key role in defence against this bacterium. This research uncovers the plant RBOH as an interacting target of a pathogen's effector, providing valuable insights into the mechanisms of plant defence.
Collapse
Affiliation(s)
- Guan-Ming Su
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Li-Wen Chu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chih-Cheng Chien
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Pei-Shan Liao
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Chuan Chiu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chi-Hsin Chang
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Tai-Hsiang Chu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chien-Hui Li
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chien-Sheng Wu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jaw-Fen Wang
- Bacteriology Unit, AVRDC-The World Vegetable Center, Tainan, Taiwan
| | - Yi-Sheng Cheng
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chuan-Hsin Chang
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chiu-Ping Cheng
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
- Global Agriculture Technology and Genomic Science Master Program, International College, National Taiwan University, Taipei, Taiwan
- Master Program for Plant Medicine, College of Bio-Resources & Agriculture, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Shilpha J, Lee J, Kwon JS, Lee HA, Nam JY, Jang H, Kang WH. An improved bacterial mRNA enrichment strategy in dual RNA sequencing to unveil the dynamics of plant-bacterial interactions. PLANT METHODS 2024; 20:99. [PMID: 38951818 PMCID: PMC11218159 DOI: 10.1186/s13007-024-01227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Dual RNA sequencing is a powerful tool that enables a comprehensive understanding of the molecular dynamics underlying plant-microbe interactions. RNA sequencing (RNA-seq) poses technical hurdles in the transcriptional analysis of plant-bacterial interactions, especially in bacterial transcriptomics, owing to the presence of abundant ribosomal RNA (rRNA), which potentially limits the coverage of essential transcripts. Therefore, to achieve cost-effective and comprehensive sequencing of the bacterial transcriptome, it is imperative to devise efficient methods for eliminating rRNA and enhancing the proportion of bacterial mRNA. In this study, we modified a strand-specific dual RNA-seq method with the goal of enriching the proportion of bacterial mRNA in the bacteria-infected plant samples. The enriched method involved the sequential separation of plant mRNA by poly A selection and rRNA removal for bacterial mRNA enrichment followed by strand specific RNA-seq library preparation steps. We assessed the efficiency of the enriched method in comparison to the conventional method by employing various plant-bacterial interactions, including both host and non-host resistance interactions with pathogenic bacteria, as well as an interaction with a beneficial rhizosphere associated bacteria using pepper and tomato plants respectively. RESULTS In all cases of plant-bacterial interactions examined, an increase in mapping efficiency was observed with the enriched method although it produced a lower read count. Especially in the compatible interaction with Xanthmonas campestris pv. Vesicatoria race 3 (Xcv3), the enriched method enhanced the mapping ratio of Xcv3-infected pepper samples to its own genome (15.09%; 1.45-fold increase) and the CDS (8.92%; 1.49-fold increase). The enriched method consistently displayed a greater number of differentially expressed genes (DEGs) than the conventional RNA-seq method at all fold change threshold levels investigated, notably during the early stages of Xcv3 infection in peppers. The Gene Ontology (GO) enrichment analysis revealed that the DEGs were predominantly enriched in proteolysis, kinase, serine type endopeptidase and heme binding activities. CONCLUSION The enriched method demonstrated in this study will serve as a suitable alternative to the existing RNA-seq method to enrich bacterial mRNA and provide novel insights into the intricate transcriptomic alterations within the plant-bacterial interplay.
Collapse
Affiliation(s)
- Jayabalan Shilpha
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Junesung Lee
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ji-Su Kwon
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun-Ah Lee
- Division of Smart Horticulture, Yonam College, Cheonan, 31005, Republic of Korea
| | - Jae-Young Nam
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hakgi Jang
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Won-Hee Kang
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
4
|
Yadav M, Sathe J, Teronpi V, Kumar A. Navigating the signaling landscape of Ralstonia solanacearum: a study of bacterial two-component systems. World J Microbiol Biotechnol 2024; 40:153. [PMID: 38564115 DOI: 10.1007/s11274-024-03950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Ralstonia solanacearum, the bacterium that causes bacterial wilt, is a destructive phytopathogen that can infect over 450 different plant species. Several agriculturally significant crop plants, including eggplant, tomato, pepper, potato, and ginger, are highly susceptible to this plant disease, which has a global impact on crop quality and yield. There is currently no known preventive method that works well for bacterial wilt. Bacteria use two-component systems (TCSs) to sense their environment constantly and react appropriately. This is achieved by an extracellular sensor kinase (SK) capable of sensing a suitable signal and a cytoplasmic response regulator (RR) which gives a downstream response. Moreover, our investigation revealed that R. solanacearum GMI1000 possesses a substantial count of TCSs, specifically comprising 36 RRs and 27 SKs. While TCSs are known targets for various human pathogenic bacteria, such as Salmonella, the role of TCSs in R. solanacearum remains largely unexplored in this context. Notably, numerous inhibitors targeting TCSs have been identified, including GHL (Gyrase, Hsp, and MutL) compounds, Walk inhibitors, and anti-TCS medications like Radicicol. Consequently, the investigation into the involvement of TCSs in virulence and pathogenesis has gained traction; however, further research is imperative to ascertain whether TCSs could potentially supplant conventional anti-wilt therapies. This review delves into the prospective utilization of TCSs as an alternative anti-wilt therapy, focusing on the lethal phytopathogen R. solanacearum.
Collapse
Affiliation(s)
- Mohit Yadav
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Janhavi Sathe
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, Karnataka, 560065, India
| | - Valentina Teronpi
- Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Behali, Biswanath, Assam, 784184, India
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.
| |
Collapse
|
5
|
Bhatt S, Faridi N, Raj SMP, Agarwal A, Punetha M. Recent advances in immuno-based methods for the detection of Ralstonia solanacearum. J Microbiol Methods 2024; 217-218:106889. [PMID: 38211840 DOI: 10.1016/j.mimet.2024.106889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Ralstonia solanacearum (RS) is a widely recognized phytopathogenic bacterium which is responsible for causing devastating losses in a wide range of economically significant crops. Timely and accurate detection of this pathogen is pivotal to implementing effective disease management strategies and preventing crop losses. This review provides a comprehensive overview of recent advances in immuno-based detection methods for RS. The review begins by introducing RS, highlighting its destructive potential and the need for point-of-care detection techniques. Subsequently, it explores traditional detection methods and their limitations, emphasizing the need for innovative approaches. The main focus of this review is on immuno-based detection methods and it discusses recent advancements in serological detection techniques. Furthermore, the review sheds light on the challenges and prospects of immuno-based detection of RS. It emphasizes the importance of developing rapid, field-deployable assays that can be used by farmers and researchers alike. In conclusion, this review provides valuable insights into the recent advances in immuno-based detection methods for RS.
Collapse
Affiliation(s)
- Shalini Bhatt
- P P Savani University, Surat 394125, Gujarat, India; Defence Institute of Bio-Energy Research (DIBER), DRDO, Nainital, Haldwani 263139, Uttarakhand, India.
| | - Neha Faridi
- Defence Institute of Bio-Energy Research (DIBER), DRDO, Nainital, Haldwani 263139, Uttarakhand, India
| | - S Merwyn P Raj
- Defence Institute of Bio-Energy Research (DIBER), DRDO, Nainital, Haldwani 263139, Uttarakhand, India
| | - Ankur Agarwal
- Defence Institute of Bio-Energy Research (DIBER), DRDO, Nainital, Haldwani 263139, Uttarakhand, India
| | | |
Collapse
|
6
|
Huang J, Wang R, Zhang Q, Wang C, Liang T, Hikichi Y, Ohnishi K, Jiang G, Guo T, Zhang Y. Positive regulation of the PhcB neighbouring regulator PrhX on expression of the type III secretion system and pathogenesis in Ralstonia solanacearum. MOLECULAR PLANT PATHOLOGY 2024; 25:e13398. [PMID: 37877898 PMCID: PMC10788593 DOI: 10.1111/mpp.13398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023]
Abstract
Ralstonia solanacearum PhcB and PhcA control a quorum-sensing (QS) system that globally regulates expression of about one third of all genes, including pathogenesis genes. The PhcB-PhcA QS system positively regulates the production of exopolysaccharide (EPS) and negatively regulates hrp gene expression, which is crucial for the type III secretion system (T3SS). Both EPS and the T3SS are essential for pathogenicity. The gene rsc2734 is located upstream of a phcBSR operon and annotated as a response regulator of a two-component system. Here, we demonstrated that RSc2734, hereafter named PrhX, positively regulated hrp gene expression via a PrhA-PrhIR-PrhJ-HrpG signalling cascade. Moreover, PrhX was crucial for R. solanacearum to invade host roots and grow in planta naturally. prhX expression was independent of the PhcB-PhcA QS system. PrhX did not affect the expression of phcB and phcA and the QS-dependent phenotypes, such as EPS production and biofilm formation. Our results provide novel insights into the complex regulatory network of the T3SS and pathogenesis in R. solanacearum.
Collapse
Affiliation(s)
- Jiajun Huang
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
| | - Rongsheng Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Qi Zhang
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Chunli Wang
- Chongqing Academy of Agricultural SciencesChongqingChina
| | - Tao Liang
- Chongqing Station of Agricultural Ecology and Resource ProtectionChongqingChina
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Gaofei Jiang
- National Engineering Research Center for Organic‐based FertilizersNanjing Agricultural UniversityNanjingChina
| | - Tao Guo
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
| | - Yong Zhang
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River BasinSouthwest UniversityChongqingChina
| |
Collapse
|
7
|
de Pedro-Jové R, Corral J, Rocafort M, Puigvert M, Azam FL, Vandecaveye A, Macho AP, Balsalobre C, Coll NS, Orellano E, Valls M. Gene expression changes throughout the life cycle allow a bacterial plant pathogen to persist in diverse environmental habitats. PLoS Pathog 2023; 19:e1011888. [PMID: 38113281 PMCID: PMC10763947 DOI: 10.1371/journal.ppat.1011888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/03/2024] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
Bacterial pathogens exhibit a remarkable ability to persist and thrive in diverse ecological niches. Understanding the mechanisms enabling their transition between habitats is crucial to control dissemination and potential disease outbreaks. Here, we use Ralstonia solanacearum, the causing agent of the bacterial wilt disease, as a model to investigate pathogen adaptation to water and soil, two environments that act as bacterial reservoirs, and compare this information with gene expression in planta. Gene expression in water resembled that observed during late xylem colonization, with an intriguing induction of the type 3 secretion system (T3SS). Alkaline pH and nutrient scarcity-conditions also encountered during late infection stages-were identified as the triggers for this T3SS induction. In the soil environment, R. solanacearum upregulated stress-responses and genes for the use of alternate carbon sources, such as phenylacetate catabolism and the glyoxylate cycle, and downregulated virulence-associated genes. We proved through gain- and loss-of-function experiments that genes associated with the oxidative stress response, such as the regulator OxyR and the catalase KatG, are key for bacterial survival in soil, as their deletion cause a decrease in culturability associated with a premature induction of the viable but non culturable state (VBNC). This work identifies essential factors necessary for R. solanacearum to complete its life cycle and is the first comprehensive gene expression analysis in all environments occupied by a bacterial plant pathogen, providing valuable insights into its biology and adaptation to unexplored habitats.
Collapse
Affiliation(s)
- Roger de Pedro-Jové
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Jordi Corral
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Mercedes Rocafort
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Marina Puigvert
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Fàtima Latif Azam
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Agustina Vandecaveye
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-UNR-CONICET), Rosario, Santa Fe, Argentina
| | - Alberto P. Macho
- Shanghai Centre for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Carlos Balsalobre
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
| | - Núria S. Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Elena Orellano
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-UNR-CONICET), Rosario, Santa Fe, Argentina
| | - Marc Valls
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| |
Collapse
|
8
|
Shi H, Li W, Zhou Y, Wang J, Shen S. Can we control potato fungal and bacterial diseases? - microbial regulation. Heliyon 2023; 9:e22390. [PMID: 38046151 PMCID: PMC10686857 DOI: 10.1016/j.heliyon.2023.e22390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
The potato plant is one of the main crops in the world. However, relatively little is known about key virulence factors of major fungal and bacterial diseases in potatoes, biocontrol measures to improve activity and stability, and the core driving forces in the control process. Here, we focus on analyzing the mechanisms by which genes, proteins, or (and) metabolites of potato pathogens as key virulence factors. Then, the single strain biocontrol agents, synthetic microbial communities, microbial microcapsule strategies were introduced, and the latter two strategies can improve stability and activity in biocontrol. Meanwhile, summarized the defense mechanisms of biocontrol and their specific issues in practical applications. Furthermore, explore how potato crop management, soil management, and climate effects, as crucial driving forces affect potato biocontrol in the system. Dynamic and systematic research, excavation of biocontrol strain resources, find the causes of regional disease resistance and exploration of biocontrol mechanism will provide promising solutions for biotic stress faced by potato in the future.
Collapse
Affiliation(s)
- Huiqin Shi
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| | - Wei Li
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| | - Yun Zhou
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| | - Jian Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| | - Shuo Shen
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| |
Collapse
|
9
|
Liu Q, Li C, Zhang X, Ding M, Liao X, Yan J, Hu M, Yang L, Wang X, Liao L, Li P, Zhou X. PhcX Is a LqsR-family response regulator that contributes to Ralstonia solanacearum virulence and regulates multiple virulence factors. mBio 2023; 14:e0202823. [PMID: 37787568 PMCID: PMC10653808 DOI: 10.1128/mbio.02028-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE The bacterial wilt caused by the soil-borne phytopathogen Ralstonia solanacearum is one of the most destructive crop diseases. To achieve a successful infection, R. solanacearum has evolved an intricate regulatory network to orchestrate the expression of an arsenal of virulence factors and fine-tune the allocation of energy. However, despite the wealth of knowledge gained in the past decades, many players and connections are still missing from the network. The importance of our study lies in the identification of PhcX, a novel conserved global regulator with critical roles in modulating the virulence and metabolism of R. solanacearum. PhcX affects many well-characterized regulators and exhibits contrasting modes of regulation from the central regulator PhcA on a variety of virulence-associated traits and genes. Our findings add a valuable piece to the puzzle of how the pathogen regulates its proliferation and infection, which is critical for understanding its pathogenesis and developing disease control strategies.
Collapse
Affiliation(s)
- Qingmei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Chuhao Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiaohan Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Mengfan Ding
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xinyue Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Jinli Yan
- School of Agricultural Science, Xichang University, Xichang, China
| | - Ming Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Leilei Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiaoqing Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lisheng Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Peng Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Provincial Key Laboratory for Tropical Plant and Animal Ecology, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Lee HJ, Lee SM, Choi M, Kwon JH, Lee SW. A Mutation of a Putative NDP-Sugar Epimerase Gene in Ralstonia pseudosolanacearum Attenuates Exopolysaccharide Production and Bacterial Virulence in Tomato Plant. THE PLANT PATHOLOGY JOURNAL 2023; 39:417-429. [PMID: 37817490 PMCID: PMC10580051 DOI: 10.5423/ppj.oa.06.2023.0090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 10/12/2023]
Abstract
Ralstonia solanacearum species complex (RSSC) is a soil borne plant pathogen causing bacterial wilt on various important crops, including Solanaceae plants. The bacterial pathogens within the RSSC produce exopolysaccharide (EPS), a highly complicated nitrogen-containing heteropolymeric polysaccharide, as a major virulence factor. However, the biosynthetic pathway of the EPS in the RSSC has not been fully characterized. To identify genes in EPS production beyond the EPS biosynthetic gene operon, we selected the EPS-defective mutants of R. pseudosolanacearum strain SL341 from Tn5-inserted mutant pool. Among several EPS-defective mutants, we identified a mutant, SL341P4, with a Tn5-insertion in a gene encoding a putative NDP-sugar epimerase, a putative membrane protein with sugar-modifying moiety, in a reverse orientation to EPS biosynthesis gene cluster. This protein showed similar to other NDP-sugar epimerases involved in EPS biosynthesis in many phytopathogens. Mutation of the NDP-sugar epimerase gene reduced EPS production and biofilm formation in R. pseudosolanacearum. Additionally, the SL341P4 mutant exhibited reduced disease severity and incidence of bacterial wilt in tomato plants compared to the wild-type SL341 without alteration of bacterial multiplication. These results indicate that the NDP-sugar epimerase gene is required for EPS production and bacterial virulence in R. pseudosolanacearum.
Collapse
Affiliation(s)
- Hyoung Ju Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Sang-Moo Lee
- Institute of Agricultural Life Sciences, Dong-A University, Busan 49315, Korea
| | - Minseo Choi
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Joo Hwan Kwon
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Seon-Woo Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
- Institute of Agricultural Life Sciences, Dong-A University, Busan 49315, Korea
| |
Collapse
|
11
|
Abstract
Ralstonia solanacearum species complex (RSSC) strains are devastating plant pathogens distributed worldwide. The primary cell density-dependent gene expression system in RSSC strains is phc quorum sensing (QS). It regulates the expression of about 30% of all genes, including those related to cellular activity, primary and secondary metabolism, pathogenicity, and more. The phc regulatory elements encoded by the phcBSRQ operon and phcA gene play vital roles. RSSC strains use methyl 3-hydroxymyristate (3-OH MAME) or methyl 3-hydroxypalmitate (3-OH PAME) as the QS signal. Each type of RSSC strain has specificity in generating and receiving its QS signal, but their signaling pathways might not differ significantly. In this review, I describe the genetic and biochemical factors involved in QS signal input and the regulatory network and summarize control of the phc QS system, new cell-cell communications, and QS-dependent interactions with soil fungi.
Collapse
Affiliation(s)
- Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka, Japan;
| |
Collapse
|
12
|
Demirjian C, Razavi N, Yu G, Mayjonade B, Zhang L, Lonjon F, Chardon F, Carrere S, Gouzy J, Genin S, Macho AP, Roux F, Berthomé R, Vailleau F. An atypical NLR gene confers bacterial wilt susceptibility in Arabidopsis. PLANT COMMUNICATIONS 2023; 4:100607. [PMID: 37098653 PMCID: PMC10504594 DOI: 10.1016/j.xplc.2023.100607] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/19/2023] [Accepted: 04/20/2023] [Indexed: 06/12/2023]
Abstract
Quantitative disease resistance (QDR) remains the most prevalent form of plant resistance in crop fields and wild habitats. Genome-wide association studies (GWAS) have proved to be successful in deciphering the quantitative genetic basis of complex traits such as QDR. To unravel the genetics of QDR to the devastating worldwide bacterial pathogen Ralstonia solanacearum, we performed a GWAS by challenging a highly polymorphic local mapping population of Arabidopsis thaliana with four R. solanacearum type III effector (T3E) mutants, identified as key pathogenicity determinants after a first screen on an A. thaliana core collection of 25 accessions. Although most quantitative trait loci (QTLs) were highly specific to the identity of the T3E mutant (ripAC, ripAG, ripAQ, and ripU), we finely mapped a common QTL located on a cluster of nucleotide-binding domain and leucine-rich repeat (NLR) genes that exhibited structural variation. We functionally validated one of these NLRs as a susceptibility factor in response to R. solanacearum, named it Bacterial Wilt Susceptibility 1 (BWS1), and cloned two alleles that conferred contrasting levels of QDR. Further characterization indicated that expression of BWS1 leads to suppression of immunity triggered by different R. solanacearum effectors. In addition, we showed a direct interaction between BWS1 and RipAC T3E, and BWS1 and SUPPRESSOR OF G2 ALLELE OF skp1 (SGT1b), the latter interaction being suppressed by RipAC. Together, our results highlight a putative role for BWS1 as a quantitative susceptibility factor directly targeted by the T3E RipAC, mediating negative regulation of the SGT1-dependent immune response.
Collapse
Affiliation(s)
- Choghag Demirjian
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Narjes Razavi
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Lu Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fabien Lonjon
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Sébastien Carrere
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Jérome Gouzy
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Stéphane Genin
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fabrice Roux
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Richard Berthomé
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Fabienne Vailleau
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.
| |
Collapse
|
13
|
Vailleau F, Genin S. Ralstonia solanacearum: An Arsenal of Virulence Strategies and Prospects for Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:25-47. [PMID: 37506349 DOI: 10.1146/annurev-phyto-021622-104551] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The group of strains constituting the Ralstonia solanacearum species complex (RSSC) is a prominent model for the study of plant-pathogenic bacteria because of its impact on agriculture, owing to its wide host range, worldwide distribution, and long persistence in the environment. RSSC strains have led to numerous studies aimed at deciphering the molecular bases of virulence, and many biological functions and mechanisms have been described to contribute to host infection and pathogenesis. In this review, we put into perspective recent advances in our understanding of virulence in RSSC strains, both in terms of the inventory of functions that participate in this process and their evolutionary dynamics. We also present the different strategies that have been developed to combat these pathogenic strains through biological control, antimicrobial agents, plant genetics, or microbiota engineering.
Collapse
Affiliation(s)
- Fabienne Vailleau
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France; ,
| | - Stéphane Genin
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France; ,
| |
Collapse
|
14
|
Wang K, Yu W, Yu G, Zhang L, Xian L, Wei Y, Perez‐Sancho J, Xue H, Rufian JS, Zhuang H, Kwon C, Macho AP. A bacterial type III effector targets plant vesicle-associated membrane proteins. MOLECULAR PLANT PATHOLOGY 2023; 24:1154-1167. [PMID: 37278116 PMCID: PMC10423332 DOI: 10.1111/mpp.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/17/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023]
Abstract
The soilborne bacterial pathogen Ralstonia solanacearum is one of the most destructive plant pathogens worldwide, and its infection process involves the manipulation of numerous plant cellular functions. In this work, we found that the R. solanacearum effector protein RipD partially suppressed different levels of plant immunity triggered by R. solanacearum elicitors, including specific responses triggered by pathogen-associated molecular patterns and secreted effectors. RipD localized in different subcellular compartments in plant cells, including vesicles, and its vesicular localization was enriched in cells undergoing R. solanacearum infection, suggesting that this specific localization may be particularly relevant during infection. Among RipD-interacting proteins, we identified plant vesicle-associated membrane proteins (VAMPs). We also found that overexpression of Arabidopsis thaliana VAMP721 and VAMP722 in Nicotiana benthamiana leaves promoted resistance to R. solanacearum, and this was abolished by the simultaneous expression of RipD, suggesting that RipD targets VAMPs to contribute to R. solanacearum virulence. Among proteins secreted in VAMP721/722-containing vesicles, CCOAOMT1 is an enzyme required for lignin biosynthesis, and mutation of CCOAOMT1 enhanced plant susceptibility to R. solanacearum. Altogether our results reveal the contribution of VAMPs to plant resistance against R. solanacearum and their targeting by a bacterial effector as a pathogen virulence strategy.
Collapse
Affiliation(s)
- Keke Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Wenjia Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Lu Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Liu Xian
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Yali Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Jessica Perez‐Sancho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Hao Xue
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Jose S. Rufian
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Haiyan Zhuang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Chian Kwon
- Department of Molecular BiologyDankook UniversityCheonanSouth Korea
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
15
|
O'Banion BS, Jones P, Demetros AA, Kelley BR, Knoor LH, Wagner AS, Chen JG, Muchero W, Reynolds TB, Jacobson D, Lebeis SL. Plant myo-inositol transport influences bacterial colonization phenotypes. Curr Biol 2023; 33:3111-3124.e5. [PMID: 37419115 DOI: 10.1016/j.cub.2023.06.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/14/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023]
Abstract
Plant microbiomes are assembled and modified through a complex milieu of biotic and abiotic factors. Despite dynamic and fluctuating contributing variables, specific host metabolites are consistently identified as important mediators of microbial interactions. We combine information from a large-scale metatranscriptomic dataset from natural poplar trees and experimental genetic manipulation assays in seedlings of the model plant Arabidopsis thaliana to converge on a conserved role for transport of the plant metabolite myo-inositol in mediating host-microbe interactions. While microbial catabolism of this compound has been linked to increased host colonization, we identify bacterial phenotypes that occur in both catabolism-dependent and -independent manners, suggesting that myo-inositol may additionally serve as a eukaryotic-derived signaling molecule to modulate microbial activities. Our data suggest host control of this compound and resulting microbial behavior are important mechanisms at play surrounding the host metabolite myo-inositol.
Collapse
Affiliation(s)
- Bridget S O'Banion
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Piet Jones
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - Alexander A Demetros
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Brittni R Kelley
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Leah H Knoor
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Andrew S Wagner
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Todd B Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Daniel Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Sarah L Lebeis
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 38824, USA.
| |
Collapse
|
16
|
Ariute JC, Felice AG, Soares S, da Gama MAS, de Souza EB, Azevedo V, Brenig B, Aburjaile F, Benko-Iseppon AM. Characterization and Association of Rips Repertoire to Host Range of Novel Ralstonia solanacearum Strains by In Silico Approaches. Microorganisms 2023; 11:microorganisms11040954. [PMID: 37110377 PMCID: PMC10144018 DOI: 10.3390/microorganisms11040954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/24/2022] [Accepted: 01/28/2023] [Indexed: 04/29/2023] Open
Abstract
Ralstonia solanacearum species complex (RSSC) cause several phytobacteriosis in many economically important crops around the globe, especially in the tropics. In Brazil, phylotypes I and II cause bacterial wilt (BW) and are indistinguishable by classical microbiological and phytopathological methods, while Moko disease is caused only by phylotype II strains. Type III effectors of RSSC (Rips) are key molecular actors regarding pathogenesis and are associated with specificity to some hosts. In this study, we sequenced and characterized 14 newly RSSC isolates from Brazil's Northern and Northeastern regions, including BW and Moko ecotypes. Virulence and resistance sequences were annotated, and the Rips repertoire was predicted. Confirming previous studies, RSSC pangenome is open as α≅0.77. Genomic information regarding these isolates matches those for R. solanacearum in NCBI. All of them fit in phylotype II with a similarity above 96%, with five isolates in phylotype IIB and nine in phylotype IIA. Almost all R. solanacearum genomes in NCBI are actually from other species in RSSC. Rips repertoire of Moko IIB was more homogeneous, except for isolate B4, which presented ten non-shared Rips. Rips repertoire of phylotype IIA was more diverse in both Moko and BW, with 43 common shared Rips among all 14 isolates. New BW isolates shared more Rips with Moko IIA and Moko IIB than with other public BW genome isolates from Brazil. Rips not shared with other isolates might contribute to individual virulence, but commonly shared Rips are good avirulence candidates. The high number of Rips shared by new Moko and BW isolates suggests they are actually Moko isolates infecting solanaceous hosts. Finally, infection assays and Rips expression on different hosts are needed to better elucidate the association between Rips repertoire and host specificities.
Collapse
Affiliation(s)
- Juan Carlos Ariute
- Preventive Veterinary Medicine Departament, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
- Genetics Department, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil
| | - Andrei Giachetto Felice
- Institute of Biological and Natural Sciences, Universidade Federal do Triângulo Mineiro, Uberaba 38025-180, Minas Gerais, Brazil
| | - Siomar Soares
- Institute of Biological and Natural Sciences, Universidade Federal do Triângulo Mineiro, Uberaba 38025-180, Minas Gerais, Brazil
| | | | - Elineide Barbosa de Souza
- Department of Agronomy, Universidade Federal Rural de Pernambuco, Recife 52171-900, Pernambuco, Brazil
| | - Vasco Azevedo
- Genetics, Ecology and Evolution Department, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, University Göttingen, 37077 Göttingen, Germany
| | - Flávia Aburjaile
- Preventive Veterinary Medicine Departament, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Ana Maria Benko-Iseppon
- Genetics Department, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil
| |
Collapse
|
17
|
Wei X, Moreno-Hagelsieb G, Glick BR, Doxey AC. Comparative analysis of adenylate isopentenyl transferase genes in plant growth-promoting bacteria and plant pathogenic bacteria. Heliyon 2023; 9:e13955. [PMID: 36938451 PMCID: PMC10018469 DOI: 10.1016/j.heliyon.2023.e13955] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 03/09/2023] Open
Abstract
Cytokinin is a major phytohormone that has been used in agriculture as a plant-growth stimulating compound since its initial discovery in the 1960s. Isopentenyl transferase (IPT) is a rate-limiting enzyme for cytokinin biosynthesis, which is produced by plants as well as bacteria including both plant pathogenic species and plant growth-promoting bacteria (PGPB). It has been hypothesized that there may be differences in IPT function between plant pathogens and PGPB. However, a comprehensive comparison of IPT genes between plant pathogenic and PGPB species has not been performed. Here, we performed a global comparison of IPT genes across bacteria, analyzing their DNA sequences, codon usage, phyletic distribution, promoter structure and genomic context. We found that adenylate type IPT genes are highly specific to plant-associated bacteria and subdivide into two major clades: clade A, largely composed of proteobacterial plant pathogens; and clade B, largely composed of actinomycete PGPB species. Besides these phylogenetic differences, we identified several genomic features that suggest differences in IPT regulation between pathogens and PGPB. Pathogen-associated IPTs tended to occur in predicted virulence loci, whereas PGPB-associated IPTs tended to co-occur with other genes involved in cytokinin metabolism and degradation. Pathogen-associated IPTs also showed elevated gene copy numbers, significant deviation in codon usage patterns, and extended promoters, suggesting differences in regulation and activity levels. Our results are consistent with the hypothesis that differences in IPT regulation and activity exist between plant pathogens and PGPB, which determine their effect on plant host phenotypes through the control of cytokinin levels.
Collapse
Affiliation(s)
- Xin Wei
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Andrew C. Doxey
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Corresponding author.
| |
Collapse
|
18
|
Wang Z, Luo W, Cheng S, Zhang H, Zong J, Zhang Z. Ralstonia solanacearum - A soil borne hidden enemy of plants: Research development in management strategies, their action mechanism and challenges. FRONTIERS IN PLANT SCIENCE 2023; 14:1141902. [PMID: 36909396 PMCID: PMC9998985 DOI: 10.3389/fpls.2023.1141902] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Plant pathogens present in soil cause severe losses to plants every year. Among them, Ralstonia solanacearum, because of its destructive nature, is the world's second most damaging bacterial phytopathogen. Over 310 species of plants belonging to 42 plant families are infected by this deadly pathogen. Around the world, the bacterial wilt (BW) disease causes yield losses that range from 20 to 100%. Control measures for managing this pathogen comprises several diverse approaches. Regardless of whether several control methods are developed to manage the BW disease, efficient management strategies with eco-friendly effects and the desired level of effective control is still awaited and there is need to developed effective management methods to eliminate this fetal disease in several crops under field conditions. An analysis of development in the management strategies will provide an effective way to search and develop control methods with desirable level of effectiveness. In this review, we discussed and analyzed the information reported on the development of various management strategies for the management of R. solanacearum along with the comprehensive presentation on action mechanism of these management strategies. We have also made an effort to summarize the challenges that make hurdle in the effective management of this deadly pathogen. The analysis of the information in this review article will assist in future implications of management strategies and help in developing effective control measures with more efficacy.
Collapse
Affiliation(s)
- Zhaojun Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Changchun, China
- School of Environment, Northeast Normal University, Changchun, China
| | - Wenbo Luo
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Changchun, China
- School of Environment, Northeast Normal University, Changchun, China
| | - Shujia Cheng
- Economy College of Changchun University, Changchun, China
| | - Hongjie Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Changchun, China
- School of Environment, Northeast Normal University, Changchun, China
| | - Jing Zong
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Changchun, China
- School of Environment, Northeast Normal University, Changchun, China
| | - Zhe Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Changchun, China
- School of Environment, Northeast Normal University, Changchun, China
| |
Collapse
|
19
|
De Ryck J, Van Damme P, Goormachtig S. From prediction to function: Current practices and challenges towards the functional characterization of type III effectors. Front Microbiol 2023; 14:1113442. [PMID: 36846751 PMCID: PMC9945535 DOI: 10.3389/fmicb.2023.1113442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
The type III secretion system (T3SS) is a well-studied pathogenicity determinant of many bacteria through which effectors (T3Es) are translocated into the host cell, where they exercise a wide range of functions to deceive the host cell's immunity and to establish a niche. Here we look at the different approaches that are used to functionally characterize a T3E. Such approaches include host localization studies, virulence screenings, biochemical activity assays, and large-scale omics, such as transcriptomics, interactomics, and metabolomics, among others. By means of the phytopathogenic Ralstonia solanacearum species complex (RSSC) as a case study, the current advances of these methods will be explored, alongside the progress made in understanding effector biology. Data obtained by such complementary methods provide crucial information to comprehend the entire function of the effectome and will eventually lead to a better understanding of the phytopathogen, opening opportunities to tackle it.
Collapse
Affiliation(s)
- Joren De Ryck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
20
|
Zhang Q, Wu B, Han L, Yu D, Liang T, Wang Y, Guo T. Functional characterization of two 3-dehydroquinases of AroQ1 and AroQ2 in the shikimate pathway and expression of genes for the type III secretion system in Ralstonia solanacearum. Front Microbiol 2023; 14:1186688. [PMID: 37180250 PMCID: PMC10171560 DOI: 10.3389/fmicb.2023.1186688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 05/16/2023] Open
Abstract
The shikimate pathway is a general route for the biosynthesis of aromatic amino acids (AAAs) in many microorganisms. A 3-dehydroquinase, AroQ, controls the third step of the shikimate pathway that catalyzes the formation of 3-dehydroquinate from 3-dehydroshikimate via a trans-dehydration reaction. Ralstonia solanacearum harbors two 3-dehydroquinases, AroQ1 and AroQ2, sharing 52% similarity in amino acids. Here, we demonstrated that two 3-dehydroquinases, AroQ1 and AroQ2, are essential for the shikimate pathway in R. solanacearum. The growth of R. solanacearum was completely diminished in a nutriment-limited medium with the deletion of both aroQ1 and aroQ2, while substantially impaired in planta. The aroQ1/2 double mutant was able to replicate in planta but grew slowly, which was ~4 orders of magnitude less than the parent strain to proliferate to the maximum cell densities in tomato xylem vessels. Moreover, the aroQ1/2 double mutant failed to cause disease in tomato and tobacco plants, whereas the deletion of either aroQ1 or aroQ2 did not alter the growth of R. solanacearum or pathogenicity on host plants. Supplementary shikimic acid (SA), an important intermediate of the shikimate pathway, substantially restored the diminished or impaired growth of aroQ1/2 double mutant in a limited medium or inside host plants. The necessity of AroQ1 and AroQ2 on the pathogenicity of solanacearum toward host plants was partially due to insufficient SA inside host plants. Moreover, the deletion of both aroQ1 and aroQ2 significantly impaired the expression of genes for the type III secretion system (T3SS) both in vitro and in planta. Its involvement in the T3SS was mediated through the well-characterized PrhA signaling cascade and was independent of growth deficiency under nutrient-limited conditions. Taken together, R. solanacearum 3-dehydroquinases play important roles in bacterial growth, the expression of the T3SS, and pathogenicity in host plants. These results could extend our insights into the understanding of the biological function of AroQ and the sophisticated regulation of the T3SS in R. solanacearum.
Collapse
Affiliation(s)
- Qingshan Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Bofan Wu
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Liangliang Han
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Duan Yu
- Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Tao Liang
- Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Yan Wang
- Chongqing Academy of Agricultural Sciences, Chongqing, China
- *Correspondence: Yan Wang
| | - Tao Guo
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
21
|
Rivera-Zuluaga K, Hiles R, Barua P, Caldwell D, Iyer-Pascuzzi AS. Getting to the root of Ralstonia invasion. Semin Cell Dev Biol 2022; 148-149:3-12. [PMID: 36526528 DOI: 10.1016/j.semcdb.2022.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/16/2022]
Abstract
Plant diseases caused by soilborne pathogens are a major limiting factor in crop production. Bacterial wilt disease, caused by soilborne bacteria in the Ralstonia solanacearum Species Complex (Ralstonia), results in significant crop loss throughout the world. Ralstonia invades root systems and colonizes plant xylem, changing plant physiology and ultimately causing plant wilting in susceptible varieties. Elucidating how Ralstonia invades and colonizes plants is central to developing strategies for crop protection. Here we review Ralstonia pathogenesis from root detection and attachment, early root colonization, xylem invasion and subsequent wilting. We focus primarily on studies in tomato from the last 5-10 years. Recent work has identified elegant mechanisms Ralstonia uses to adapt to the plant xylem, and has discovered new genes that function in Ralstonia fitness in planta. A picture is emerging of an amazingly versatile pathogen that uses multiple strategies to make its surrounding environment more hospitable and can adapt to new environments.
Collapse
|
22
|
Metabolomic and transcriptomic analysis of roots of tobacco varieties resistant and susceptible to bacterial wilt. Genomics 2022; 114:110471. [DOI: 10.1016/j.ygeno.2022.110471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/10/2022] [Accepted: 08/27/2022] [Indexed: 12/21/2022]
|
23
|
Guan Y, Wang R, Chen N, Zhu Y, Han L, Chen X, Li J, Zhang Y. Functional characterization of a gamma-glutamyl phosphate reductase ProA in proline biosynthesis and promoting expression of type three secretion system in Ralstonia solanacearum. Front Microbiol 2022; 13:945831. [PMID: 36106083 PMCID: PMC9465252 DOI: 10.3389/fmicb.2022.945831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
Ralstonia solanacearum RSc2741 has been predicted as a gamma-glutamyl phosphate reductase ProA catalyzing the second reaction of proline formation from glutamate. Here, we experimentally demonstrated that proA mutants were proline auxotrophs that failed to grow in a minimal medium, and supplementary proline, but not glutamate, fully restored the diminished growth, confirming that ProA is responsible for the biosynthesis of proline from glutamate in R. solanacearum. ProA was previously identified as one of the candidates regulating the expression of genes for type three secretion system (T3SS), one of the essential pathogenicity determinants of R. solanacearum. Supplementary proline significantly enhanced the T3SS expression both in vitro and in planta, indicating that proline is a novel inducer of the T3SS expression. Deletion of proA substantially impaired the T3SS expression both in vitro and in planta even under proline-supplemented conditions, indicating that ProA plays additional roles apart from proline biosynthesis in promoting the expression of the T3SS genes. It was further revealed that the involvement of ProA in the T3SS expression was mediated through the pathway of PrhG-HrpB. Both the proA mutants and the wild-type strain grew in the intercellular spaces of tobacco leaves, while their ability to invade and colonize tobacco xylem vessels was substantially impaired, which was about a 1-day delay for proA mutants to successfully invade xylem vessels and was about one order of magnitude less than the wild-type strain to proliferate to the maximum densities in xylem vessels. It thus resulted in substantially impaired virulence of proA mutants toward host tobacco plants. The impaired abilities of proA mutants to invade and colonize xylem vessels were not due to possible proline insufficiency in the rhizosphere soil or inside the plants. All taken together, these results extend novel insights into the understanding of the biological function of ProA and sophisticated regulation of the T3SS and pathogenicity in R. solanacearum.
Collapse
Affiliation(s)
- Yue Guan
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Rongsheng Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Nan Chen
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Yalan Zhu
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Liangliang Han
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Xinping Chen
- College of Resources and Environment, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Jing Li
- The Ninth People’s Hospital of Chongqing, Chongqing, China
- *Correspondence: Jing Li,
| | - Yong Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| |
Collapse
|
24
|
Genome Sequence of Ralstonia pseudosolanacearum SL1931, a Causal Phytopathogen of Bacterial Wilt Disease in Capsicum annuum and Nicotiana benthamiana. Microbiol Resour Announc 2022; 11:e0027822. [PMID: 35670579 PMCID: PMC9302119 DOI: 10.1128/mra.00278-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the genome sequence of Ralstonia pseudosolanacearum (R. solanacearum phylotype I) strain SL1931 (KACC10711), isolated from pepper (Capsicum annuum L.) stems; R. solanacearum is the causal pathogen of bacterial wilt. Strain SL1931 had a different type III effector profile than that of the reference genome strain GMI1000.
Collapse
|
25
|
Sanguankiattichai N, Buscaill P, Preston GM. How bacteria overcome flagellin pattern recognition in plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102224. [PMID: 35533494 DOI: 10.1016/j.pbi.2022.102224] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Efficient plant immune responses depend on the ability to recognise an invading microbe. The 22-amino acids in the N-terminal domain and the 28-amino acids in the central region of the bacterial flagellin, called flg22 and flgII-28, respectively, are important elicitors of plant immunity. Plant immunity is activated after flg22 or flgII-28 recognition by the plant transmembrane receptors FLS2 or FLS3, respectively. There is strong selective pressure on many plant pathogenic and endophytic bacteria to overcome flagellin-triggered immunity. Here we provide an overview of recent developments in our understanding of the evasion and suppression of flagellin pattern recognition by plant-associated bacteria.
Collapse
Affiliation(s)
| | - Pierre Buscaill
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
26
|
Truchon AN, Hendrich CG, Bigott AF, Dalsing BL, Allen C. NorA, HmpX, and NorB Cooperate to Reduce NO Toxicity during Denitrification and Plant Pathogenesis in Ralstonia solanacearum. Microbiol Spectr 2022; 10:e0026422. [PMID: 35377234 PMCID: PMC9045102 DOI: 10.1128/spectrum.00264-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
Ralstonia solanacearum, which causes bacterial wilt disease of many crops, requires denitrifying respiration to survive in its plant host. In the hypoxic environment of plant xylem vessels, this pathogen confronts toxic oxidative radicals like nitric oxide (NO), which is generated by both bacterial denitrification and host defenses. R. solanacearum has multiple distinct mechanisms that could mitigate this stress, including putative NO-binding protein (NorA), nitric oxide reductase (NorB), and flavohaemoglobin (HmpX). During denitrification and tomato pathogenesis and in response to exogenous NO, R. solanacearum upregulated norA, norB, and hmpX. Single mutants lacking ΔnorB, ΔnorA, or ΔhmpX increased expression of many iron and sulfur metabolism genes, suggesting that the loss of even one NO detoxification system demands metabolic compensation. Single mutants suffered only moderate fitness reductions in host plants, possibly because they upregulated their remaining protective genes. However, ΔnorA/norB, ΔnorB/hmpX, and ΔnorA/hmpX double mutants grew poorly in denitrifying culture and in planta. It is likely that the loss of norA, norB, and hmpX is lethal, since the methods used to construct the double mutants could not generate a triple mutant. Functional aconitase activity assays showed that NorA, HmpX, and especially NorB are important for maintaining iron-sulfur cluster proteins. Additionally, plant defense genes were upregulated in tomatoes infected with the NO-overproducing ΔnorB mutant, suggesting that bacterial detoxification of NO reduces the ability of the plant host to perceive the presence of the pathogen. Thus, R. solanacearum's three NO detoxification systems each contribute to and are collectively essential for overcoming metabolic nitrosative stress during denitrification, for virulence and growth in the tomato, and for evading host plant defenses. IMPORTANCE The soilborne plant pathogen Ralstonia solanacearum (Rs) causes bacterial wilt, a serious and widespread threat to global food security. Rs is metabolically adapted to low-oxygen conditions, using denitrifying respiration to survive in the host and cause disease. However, bacterial denitrification and host defenses generate nitric oxide (NO), which is toxic and also alters signaling pathways in both the pathogen and its plant hosts. Rs mitigates NO with a trio of mechanistically distinct proteins: NO-reductase (NorB), predicted iron-binding (NorA), and oxidoreductase (HmpX). This redundancy, together with analysis of mutants and in-planta dual transcriptomes, indicates that maintaining low NO levels is integral to Rs fitness in tomatoes (because NO damages iron-cluster proteins) and to evading host recognition (because bacterially produced NO can trigger plant defenses).
Collapse
Affiliation(s)
- Alicia N. Truchon
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Connor G. Hendrich
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adam F. Bigott
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Beth L. Dalsing
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
27
|
Du H, Yang J, Chen B, Zhang X, Xu X, Wen C, Geng S. Dual RNA-seq Reveals the Global Transcriptome Dynamics of Ralstonia solanacearum and Pepper ( Capsicum annuum) Hypocotyls During Bacterial Wilt Pathogenesis. PHYTOPATHOLOGY 2022; 112:630-642. [PMID: 34346759 DOI: 10.1094/phyto-01-21-0032-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bacterial wilt, caused by Ralstonia solanacearum, is a serious disease in pepper. However, the interaction between the pathogen and pepper remains largely unknown. This study aimed to gain insights into determinants of pepper susceptibility and R. solanacearum pathogenesis. We assembled the complete genome of R. solanacearum strain Rs-SY1 and identified 5,106 predicted genes, including 84 type III effectors (T3E). RNA-seq was used to identify differentially expressed genes (DEGs) in susceptible pepper CM334 at 1 and 5 days postinoculation (dpi) with R. solanacearum. Dual RNA-seq was used to simultaneously capture transcriptome changes in the host and pathogen at 3 and 7 dpi. A total of 1,400, 3,335, 2,878, and 4,484 DEGs of pepper (PDEGs) were identified in the CM334 hypocotyls at 1, 3, 5, and 7 dpi, respectively. Functional enrichment of the PDEGs suggests that inducing ethylene production, suppression of photosynthesis, downregulation of polysaccharide metabolism, and weakening of cell wall defenses may contribute to successful infection by R. solanacearum. When comparing in planta and nutrient agar growth of the R. solanacearum, 218 and 1,042 DEGs of R. solanacearum (RDEGs) were detected at 3 and 7 dpi, respectively. Additional analysis of the RDEGs suggested that enhanced starch and sucrose metabolism, and upregulation of virulence factors may promote R. solanacearum colonization. Strikingly, 26 R. solanacearum genes were found to have similar DEG patterns during a variety of host-R. solanacearum interactions. This study provides a foundation for a better understanding of the transcriptional changes during pepper-R. solanacearum interactions and will aid in the discovery of potential susceptibility and virulence factors.
Collapse
Affiliation(s)
- Heshan Du
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Jingjing Yang
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Bin Chen
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Xiaofen Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Xiulan Xu
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Changlong Wen
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Sansheng Geng
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| |
Collapse
|
28
|
A Breach in Plant Defences: Pseudomonas syringae pv. actinidiae Targets Ethylene Signalling to Overcome Actinidia chinensis Pathogen Responses. Int J Mol Sci 2021; 22:ijms22094375. [PMID: 33922148 PMCID: PMC8122719 DOI: 10.3390/ijms22094375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 01/12/2023] Open
Abstract
Ethylene interacts with other plant hormones to modulate many aspects of plant metabolism, including defence and stomata regulation. Therefore, its manipulation may allow plant pathogens to overcome the host’s immune responses. This work investigates the role of ethylene as a virulence factor for Pseudomonas syringae pv. actinidiae (Psa), the aetiological agent of the bacterial canker of kiwifruit. The pandemic, highly virulent biovar of this pathogen produces ethylene, whereas the biovars isolated in Japan and Korea do not. Ethylene production is modulated in planta by light/dark cycle. Exogenous ethylene application stimulates bacterial virulence, and restricts or increases host colonisation if performed before or after inoculation, respectively. The deletion of a gene, unrelated to known bacterial biosynthetic pathways and putatively encoding for an oxidoreductase, abolishes ethylene production and reduces the pathogen growth rate in planta. Ethylene production by Psa may be a recently and independently evolved virulence trait in the arms race against the host. Plant- and pathogen-derived ethylene may concur in the activation/suppression of immune responses, in the chemotaxis toward a suitable entry point, or in the endophytic colonisation.
Collapse
|
29
|
Yang L, Wei Z, Valls M, Ding W. Metabolic Profiling of Resistant and Susceptible Tobaccos Response Incited by Ralstonia pseudosolanacearum Causing Bacterial Wilt. FRONTIERS IN PLANT SCIENCE 2021; 12:780429. [PMID: 35069638 PMCID: PMC8780990 DOI: 10.3389/fpls.2021.780429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/24/2021] [Indexed: 05/16/2023]
Abstract
The causal agent of bacterial wilt, Ralstonia pseudosolanacearum, can cause significant economic losses during tobacco production. Metabolic analyses are a useful tool for the comprehensive identification of plant defense response metabolites. In this study, a gas chromatography-mass spectrometry (GC-MS) approach was used to identify metabolites differences in tobacco xylem sap in response to R. pseudosolanacearum CQPS-1 in two tobacco cultivars: Yunyan87 (susceptible to R. pseudosolanacearum) and K326 (quantitatively resistant). Metabolite profiling 7 days post inoculation with R. pseudosolanacearum identified 88 known compounds, 42 of them enriched and 6 depleted in the susceptible cultivar Yunyan87, while almost no changes occurred in quantitatively resistant cultivar K326. Putrescine was the most enriched compound (12-fold) in infected susceptible tobacco xylem, followed by methyl-alpha-d-glucopyranoside (9-fold) and arabinitol (6-fold). Other sugars, amino acids, and organic acids were also enriched upon infection. Collectively, these metabolites can promote R. pseudosolanacearum growth, as shown by the increased growth of bacterial cultures supplemented with xylem sap from infected tobacco plants. Comparison with previous metabolic data showed that beta-alanine, phenylalanine, and leucine were enriched during bacterial wilt in both tobacco and tomato xylem.
Collapse
Affiliation(s)
- Liang Yang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Zhouling Wei
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
- Genetics Section, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Wei Ding
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
- *Correspondence: Wei Ding,
| |
Collapse
|