1
|
Sirangelo TM. Molecular Investigations to Improve Fusarium Head Blight Resistance in Wheat: An Update Focusing on Multi-Omics Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:2179. [PMID: 39204615 PMCID: PMC11359810 DOI: 10.3390/plants13162179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Fusarium head blight (FHB) is mainly caused by Fusarium graminearum (Fg) and is a very widespread disease throughout the world, leading to severe damage to wheat with losses in both grain yield and quality. FHB also leads to mycotoxin contamination in the infected grains, being toxic to humans and animals. In spite of the continuous advancements to elucidate more and more aspects of FHB host resistance, to date, our knowledge about the molecular mechanisms underlying wheat defense response to this pathogen is not comprehensive, most likely due to the complex wheat-Fg interaction. Recently, due to climate changes, such as high temperature and heavy rainfall, FHB has become more frequent and severe worldwide, making it even more urgent to completely understand wheat defense mechanisms. In this review, after a brief description of the first wheat immune response to Fg, we discuss, for each FHB resistance type, from Type I to Type V resistances, the main molecular mechanisms involved, the major quantitative trait loci (QTLs) and candidate genes found. The focus is on multi-omics research helping discover crucial molecular pathways for each resistance type. Finally, according to the emerging examined studies and results, a wheat response model to Fg attack, showing the major interactions in the different FHB resistance types, is proposed. The aim is to establish a useful reference point for the researchers in the field interested to adopt an interdisciplinary omics approach.
Collapse
Affiliation(s)
- Tiziana M Sirangelo
- Division Biotechnologies and Agroindustry, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123 Rome, Italy
| |
Collapse
|
2
|
Mesterhazy A. What Is Fusarium Head Blight (FHB) Resistance and What Are Its Food Safety Risks in Wheat? Problems and Solutions-A Review. Toxins (Basel) 2024; 16:31. [PMID: 38251247 PMCID: PMC10820574 DOI: 10.3390/toxins16010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
The term "Fusarium Head Blight" (FHB) resistance supposedly covers common resistances to different Fusarium spp. without any generally accepted evidence. For food safety, all should be considered with their toxins, except for deoxynivalenol (DON). Disease index (DI), scabby kernels (FDK), and DON steadily result from FHB, and even the genetic regulation of Fusarium spp. may differ; therefore, multitoxin contamination is common. The resistance types of FHB form a rather complex syndrome that has been the subject of debate for decades. It seems that resistance types are not independent variables but rather a series of components that follow disease and epidemic development; their genetic regulation may differ. Spraying inoculation (Type 1 resistance) includes the phase where spores land on palea and lemma and spread to the ovarium and also includes the spread-inhibiting resistance factor; therefore, it provides the overall resistance that is needed. A significant part of Type 1-resistant QTLs could, therefore, be Type 2, requiring the retesting of the QTLs; this is, at least, the case for the most effective ones. The updated resistance components are as follows: Component 1 is overall resistance, as discussed above; Component 2 includes spreading from the ovarium through the head, which is a part of Component 1; Component 3 includes factors from grain development to ripening (FDK); Component 4 includes factors influencing DON contamination, decrease, overproduction, and relative toxin resistance; and for Component 5, the tolerance has a low significance without new results. Independent QTLs with different functions can be identified for one or more traits. Resistance to different Fusarium spp. seems to be connected; it is species non-specific, but further research is necessary. Their toxin relations are unknown. DI, FDK, and DON should be checked as they serve as the basic data for the risk analysis of cultivars. A better understanding of the multitoxin risk is needed regarding resistance to the main Fusarium spp.; therefore, an updated testing methodology is suggested. This will provide more precise data for research, genetics, and variety registration. In winter and spring wheat, the existing resistance level is very high, close to Sumai 3, and provides much greater food safety combined with sophisticated fungicide preventive control and other practices in commercial production.
Collapse
Affiliation(s)
- Akos Mesterhazy
- Cereal Research Non-Profit Ltd., Alsokikotosor 9, 6726 Szeged, Hungary
| |
Collapse
|
3
|
Walker PL, Belmonte MF, McCallum BD, McCartney CA, Randhawa HS, Henriquez MA. Dual RNA-sequencing of Fusarium head blight resistance in winter wheat. FRONTIERS IN PLANT SCIENCE 2024; 14:1299461. [PMID: 38239218 PMCID: PMC10794533 DOI: 10.3389/fpls.2023.1299461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024]
Abstract
Fusarium head blight (FHB) is a devastating fungal disease responsible for significant yield losses in wheat and other cereal crops across the globe. FHB infection of wheat spikes results in grain contamination with mycotoxins, reducing both grain quality and yield. Breeding strategies have resulted in the production of FHB-resistant cultivars, however, the underlying molecular mechanisms of resistance in the majority of these cultivars are still poorly understood. To improve our understanding of FHB-resistance, we performed a transcriptomic analysis of FHB-resistant AC Emerson, FHB-moderately resistant AC Morley, and FHB-susceptible CDC Falcon in response to Fusarium graminearum. Wheat spikelets located directly below the point of inoculation were collected at 7-days post inoculation (dpi), where dual RNA-sequencing was performed to explore differential expression patterns between wheat cultivars in addition to the challenging pathogen. Differential expression analysis revealed distinct defense responses within FHB-resistant cultivars including the enrichment of physical defense through the lignin biosynthesis pathway, and DON detoxification through the activity of UDP-glycosyltransferases. Nucleotide sequence variants were also identified broadly between these cultivars with several variants being identified within differentially expressed putative defense genes. Further, F. graminearum demonstrated differential expression of mycotoxin biosynthesis pathways during infection, leading to the identification of putative pathogenicity factors.
Collapse
Affiliation(s)
- Philip L. Walker
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Mark F. Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Brent D. McCallum
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Curt A. McCartney
- Department of Plant Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Harpinder S. Randhawa
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Maria A. Henriquez
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
- Department of Plant Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
4
|
Hoheneder F, Steidele CE, Messerer M, Mayer KFX, Köhler N, Wurmser C, Heß M, Gigl M, Dawid C, Stam R, Hückelhoven R. Barley shows reduced Fusarium head blight under drought and modular expression of differentially expressed genes under combined stress. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6820-6835. [PMID: 37668551 DOI: 10.1093/jxb/erad348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Plants often face simultaneous abiotic and biotic stress conditions; however, physiological and transcriptional responses under such combined stress conditions are still not fully understood. Spring barley (Hordeum vulgare) is susceptible to Fusarium head blight (FHB), which is strongly affected by weather conditions. We therefore studied the potential influence of drought on FHB severity and plant responses in three varieties of different susceptibility. We found strongly reduced FHB severity in susceptible varieties under drought. The number of differentially expressed genes (DEGs) and strength of transcriptomic regulation reflected the concentrations of physiological stress markers such as abscisic acid or fungal DNA contents. Infection-related gene expression was associated with susceptibility rather than resistance. Weighted gene co-expression network analysis revealed 18 modules of co-expressed genes that reflected the pathogen- or drought-response in the three varieties. A generally infection-related module contained co-expressed genes for defence, programmed cell death, and mycotoxin detoxification, indicating that the diverse genotypes used a similar defence strategy towards FHB, albeit with different degrees of success. Further, DEGs showed co-expression in drought- or genotype-associated modules that correlated with measured phytohormones or the osmolyte proline. The combination of drought stress with infection led to the highest numbers of DEGs and resulted in a modular composition of the single-stress responses rather than a specific transcriptional output.
Collapse
Affiliation(s)
- Felix Hoheneder
- Chair of Phytopathology, TUM School of Life Sciences, HEF World Agricultural Systems Center, Technical University of Munich, Emil-Ramann Str. 2, 85354 Freising-Weihenstephan, Germany
| | - Christina E Steidele
- Chair of Phytopathology, TUM School of Life Sciences, HEF World Agricultural Systems Center, Technical University of Munich, Emil-Ramann Str. 2, 85354 Freising-Weihenstephan, Germany
| | - Maxim Messerer
- Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Nikolai Köhler
- Chair of Phytopathology, TUM School of Life Sciences, HEF World Agricultural Systems Center, Technical University of Munich, Emil-Ramann Str. 2, 85354 Freising-Weihenstephan, Germany
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 3, 85354 Freising-Weihenstephan, Germany
| | - Christine Wurmser
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3/I, 85354 Freising-Weihenstephan, Germany
| | - Michael Heß
- Chair of Phytopathology, TUM School of Life Sciences, HEF World Agricultural Systems Center, Technical University of Munich, Emil-Ramann Str. 2, 85354 Freising-Weihenstephan, Germany
| | - Michael Gigl
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising-Weihenstephan, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising-Weihenstephan, Germany
| | - Remco Stam
- Chair of Phytopathology, TUM School of Life Sciences, HEF World Agricultural Systems Center, Technical University of Munich, Emil-Ramann Str. 2, 85354 Freising-Weihenstephan, Germany
- Institute of Phytopathology, Christian Albrecht University of Kiel, Hermann-Rodewald-Straße 9, 24118 Kiel, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences, HEF World Agricultural Systems Center, Technical University of Munich, Emil-Ramann Str. 2, 85354 Freising-Weihenstephan, Germany
| |
Collapse
|
5
|
Million CR, Wijeratne S, Karhoff S, Cassone BJ, McHale LK, Dorrance AE. Molecular mechanisms underpinning quantitative resistance to Phytophthora sojae in Glycine max using a systems genomics approach. FRONTIERS IN PLANT SCIENCE 2023; 14:1277585. [PMID: 38023885 PMCID: PMC10662313 DOI: 10.3389/fpls.2023.1277585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Expression of quantitative disease resistance in many host-pathogen systems is controlled by genes at multiple loci, each contributing a small effect to the overall response. We used a systems genomics approach to study the molecular underpinnings of quantitative disease resistance in the soybean-Phytophthora sojae pathosystem, incorporating expression quantitative trait loci (eQTL) mapping and gene co-expression network analysis to identify the genes putatively regulating transcriptional changes in response to inoculation. These findings were compared to previously mapped phenotypic (phQTL) to identify the molecular mechanisms contributing to the expression of this resistance. A subset of 93 recombinant inbred lines (RILs) from a Conrad × Sloan population were inoculated with P. sojae isolate 1.S.1.1 using the tray-test method; RNA was extracted, sequenced, and the normalized read counts were genetically mapped from tissue collected at the inoculation site 24 h after inoculation from both mock and inoculated samples. In total, more than 100,000 eQTLs were mapped. There was a switch from predominantly cis-eQTLs in the mock treatment to an almost entirely nonoverlapping set of predominantly trans-eQTLs in the inoculated treatment, where greater than 100-fold more eQTLs were mapped relative to mock, indicating vast transcriptional reprogramming due to P. sojae infection occurred. The eQTLs were organized into 36 hotspots, with the four largest hotspots from the inoculated treatment corresponding to more than 70% of the eQTLs, each enriched for genes within plant-pathogen interaction pathways. Genetic regulation of trans-eQTLs in response to the pathogen was predicted to occur through transcription factors and signaling molecules involved in plant-pathogen interactions, plant hormone signal transduction, and MAPK pathways. Network analysis identified three co-expression modules that were correlated with susceptibility to P. sojae and associated with three eQTL hotspots. Among the eQTLs co-localized with phQTLs, two cis-eQTLs with putative functions in the regulation of root architecture or jasmonic acid, as well as the putative master regulators of an eQTL hotspot nearby a phQTL, represent candidates potentially underpinning the molecular control of these phQTLs for resistance.
Collapse
Affiliation(s)
- Cassidy R. Million
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| | - Saranga Wijeratne
- Molecular and Cellular Imaging Center, The Ohio State University, Wooster, OH, United States
| | - Stephanie Karhoff
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Translational Plant Sciences Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Bryan J. Cassone
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Department of Biology, Brandon University, Brandon, Manitoba, MB, Canada
| | - Leah K. McHale
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| | - Anne E. Dorrance
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
6
|
Chen C, Guo Q, He Q, Tian Z, Hao W, Shan X, Lu J, Barkla BJ, Ma C, Si H. Comparative transcriptomic analysis of wheat cultivars differing in their resistance to Fusarium head blight infection during grain-filling stages reveals unique defense mechanisms at play. BMC PLANT BIOLOGY 2023; 23:433. [PMID: 37715120 PMCID: PMC10504723 DOI: 10.1186/s12870-023-04451-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Fusarium head blight (FHB) is a devastating fungal disease that poses a significant threat to wheat production, causing substantial yield losses. Understanding the molecular mechanisms of wheat resistance to FHB is crucial for developing effective disease management strategies. This study aimed to investigate the mechanisms of FHB resistance and the patterns of toxin accumulation in three wheat cultivars, Annong8455, Annong1589, and Sumai3, with different levels of resistance, ranging from low to high respectively, under natural field conditions. Samples were taken at three different grain-filling stages (5, 10, and 15 DPA) for gene expression analysis and phenotypic observation. Results found that toxin concentration was inversely correlated with varietal resistance but not correlated with disease phenotypes, indicating that toxin analysis is a more accurate measure of disease status in wheat ears and grains. Transcriptomic data showed that Sumai3 exhibited a stronger immune response during all stages of grain filling by upregulating genes involved in the active destruction of pathogens and removal of toxins. In contrast, Annong1589 showed a passive prevention of the spread of toxins into cells by the upregulation of genes involved in tyramine biosynthesis at the early stage (5 DPA), which may be involved in cell wall strengthening. Our study demonstrates the complexity of FHB resistance in wheat, with cultivars exhibiting unique and overlapping defense mechanisms, and highlights the importance of considering the temporal and spatial dynamics of gene expression in breeding programs for developing more resistant wheat cultivars.
Collapse
Affiliation(s)
- Can Chen
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Qi Guo
- Faculty of Science and Engineering, Southern Cross University, Lismore, 2480 NSW, Australia
| | - Qifang He
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Zhuangbo Tian
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Weihao Hao
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Xinyu Shan
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Jie Lu
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Bronwyn J Barkla
- Faculty of Science and Engineering, Southern Cross University, Lismore, 2480 NSW, Australia
| | - Chuanxi Ma
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Hongqi Si
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
7
|
Vranić M, Perochon A, Doohan FM. Transcriptional Profiling Reveals the Wheat Defences against Fusarium Head Blight Disease Regulated by a NAC Transcription Factor. PLANTS (BASEL, SWITZERLAND) 2023; 12:2708. [PMID: 37514322 PMCID: PMC10383764 DOI: 10.3390/plants12142708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
The wheat NAC transcription factor TaNACL-D1 enhances resistance to the economically devastating Fusarium head blight (FHB) disease. The objective of this study was to decipher the alterations in gene expression, pathways and biological processes that led to enhanced resistance as a result of the constitutive expression of TaNACL-D1 in wheat. Transcriptomic analysis was used to determine the genes and processes enhanced in wheat due to TaNACL-D1 overexpression, both in the presence and absence of the causal agent of FHB, Fusarium graminearum (0- and 1-day post-treatment). The overexpression of TaNACL-D1 resulted in more pronounced transcriptional reprogramming as a response to fungal infection, leading to the enhanced expression of genes involved in detoxification, immune responses, secondary metabolism, hormone biosynthesis, and signalling. The regulation and response to JA and ABA were differentially regulated between the OE and the WT. Furthermore, the results suggest that the OE may more efficiently: (i) regulate the oxidative burst; (ii) modulate cell death; and (iii) induce both the phenylpropanoid pathway and lignin synthesis. Thus, this study provides insights into the mode of action and downstream target pathways for this novel NAC transcription factor, further validating its potential as a gene to enhance FHB resistance in wheat.
Collapse
Affiliation(s)
- Monika Vranić
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Alexandre Perochon
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Fiona M Doohan
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
8
|
Fanelli G, Kuzmanović L, Giovenali G, Tundo S, Mandalà G, Rinalducci S, Ceoloni C. Untargeted Metabolomics Reveals a Multi-Faceted Resistance Response to Fusarium Head Blight Mediated by the Thinopyrum elongatum Fhb7E Locus Transferred via Chromosome Engineering into Wheat. Cells 2023; 12:1113. [PMID: 37190021 PMCID: PMC10136595 DOI: 10.3390/cells12081113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
The Thinopyrum elongatum Fhb7E locus has been proven to confer outstanding resistance to Fusarium Head Blight (FHB) when transferred into wheat, minimizing yield loss and mycotoxin accumulation in grains. Despite their biological relevance and breeding implications, the molecular mechanisms underlying the resistant phenotype associated with Fhb7E have not been fully uncovered. To gain a broader understanding of processes involved in this complex plant-pathogen interaction, we analysed via untargeted metabolomics durum wheat (DW) rachises and grains upon spike inoculation with Fusarium graminearum (Fg) and water. The employment of DW near-isogenic recombinant lines carrying or lacking the Th. elongatum chromosome 7E region including Fhb7E on their 7AL arm, allowed clear-cut distinction between differentially accumulated disease-related metabolites. Besides confirming the rachis as key site of the main metabolic shift in plant response to FHB, and the upregulation of defence pathways (aromatic amino acid, phenylpropanoid, terpenoid) leading to antioxidants and lignin accumulation, novel insights were revealed. Fhb7E conferred constitutive and early-induced defence response, in which specific importance of polyamine biosynthesis, glutathione and vitamin B6 metabolisms, along with presence of multiple routes for deoxynivalenol detoxification, was highlighted. The results suggested Fhb7E to correspond to a compound locus, triggering a multi-faceted plant response to Fg, effectively limiting Fg growth and mycotoxin production.
Collapse
Affiliation(s)
- Giuseppina Fanelli
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (G.F.)
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (L.K.); (G.G.); (G.M.)
| | - Ljiljana Kuzmanović
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (L.K.); (G.G.); (G.M.)
| | - Gloria Giovenali
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (L.K.); (G.G.); (G.M.)
| | - Silvio Tundo
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy; (S.T.)
| | - Giulia Mandalà
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (L.K.); (G.G.); (G.M.)
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (G.F.)
| | - Carla Ceoloni
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (L.K.); (G.G.); (G.M.)
| |
Collapse
|
9
|
Kirana RP, Gaurav K, Arora S, Wiesenberger G, Doppler M, Michel S, Zimmerl S, Matic M, Eze CE, Kumar M, Topuz A, Lemmens M, Schuhmacher R, Adam G, Wulff BBH, Buerstmayr H, Steiner B. Identification of a UDP-glucosyltransferase conferring deoxynivalenol resistance in Aegilops tauschii and wheat. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:109-121. [PMID: 36121345 PMCID: PMC9829400 DOI: 10.1111/pbi.13928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/08/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Aegilops tauschii is the diploid progenitor of the wheat D subgenome and a valuable resource for wheat breeding, yet, genetic analysis of resistance against Fusarium head blight (FHB) and the major Fusarium mycotoxin deoxynivalenol (DON) is lacking. We treated a panel of 147 Ae. tauschii accessions with either Fusarium graminearum spores or DON solution and recorded the associated disease spread or toxin-induced bleaching. A k-mer-based association mapping pipeline dissected the genetic basis of resistance and identified candidate genes. After DON infiltration nine accessions revealed severe bleaching symptoms concomitant with lower conversion rates of DON into the non-toxic DON-3-O-glucoside. We identified the gene AET5Gv20385300 on chromosome 5D encoding a uridine diphosphate (UDP)-glucosyltransferase (UGT) as the causal variant and the mutant allele resulting in a truncated protein was only found in the nine susceptible accessions. This UGT is also polymorphic in hexaploid wheat and when expressed in Saccharomyces cerevisiae only the full-length gene conferred resistance against DON. Analysing the D subgenome helped to elucidate the genetic control of FHB resistance and identified a UGT involved in DON detoxification in Ae. tauschii and hexaploid wheat. This resistance mechanism is highly conserved since the UGT is orthologous to the barley UGT HvUGT13248 indicating descent from a common ancestor of wheat and barley.
Collapse
Affiliation(s)
- Rizky Pasthika Kirana
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
- Laboratory of Plant BreedingDepartment of Agronomy, Faculty of Agriculture, Universitas Gadjah MadaYogyakartaIndonesia
| | | | - Sanu Arora
- John Innes CentreNorwich Research ParkNorwichUK
| | - Gerlinde Wiesenberger
- Department of Applied Genetics and Cell Biology, Institute of Microbial GeneticsUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Maria Doppler
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Bioanalytics and Agro‐MetabolomicsUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
- Core Facility Bioactive Molecules: Screening and AnalysisUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Sebastian Michel
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Simone Zimmerl
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Magdalena Matic
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
- Faculty of Agrobiotechnical Sciences OsijekJosip Juraj Strossmayer University of OsijekOsijekCroatia
| | - Chinedu E. Eze
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
- Department of AgronomyMichael Okpara University of Agriculture UmudikeUmudikeNigeria
| | - Mukesh Kumar
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
- Department of Genetics & Plant BreedingCCS Haryana Agricultural UniversityHisar (Haryana)India
| | - Ajla Topuz
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Marc Lemmens
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Bioanalytics and Agro‐MetabolomicsUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, Institute of Microbial GeneticsUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Brande B. H. Wulff
- John Innes CentreNorwich Research ParkNorwichUK
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Hermann Buerstmayr
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Barbara Steiner
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| |
Collapse
|
10
|
Akohoue F, Koch S, Plieske J, Miedaner T. Separation of the effects of two reduced height (Rht) genes and genomic background to select for less Fusarium head blight of short-strawed winter wheat (Triticum aestivum L.) varieties. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4303-4326. [PMID: 36152062 PMCID: PMC9734223 DOI: 10.1007/s00122-022-04219-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
FHB resistance shared pleiotropic loci with plant height and anther retention. Genomic prediction allows to select for genomic background reducing FHB susceptibility in the presence of the dwarfing allele Rht-D1b. With the high interest for semi-dwarf cultivars in wheat, finding locally adapted resistance sources against Fusarium head blight (FHB) and FHB-neutral reduced height (Rht) genes is of utmost relevance. In this study, 401 genotypes of European origin without/with dwarfing alleles of Rht-D1 and/or Rht24 were analysed across five environments on FHB severity and the morphological traits such as plant height (PH), anther retention (AR), number of spikelets per ear, ear length and ear density. Data were analysed by combined correlation and path analyses, association mapping and coupling single- and multi-trait genome-wide association studies (ST-GWAS and MT-GWAS, respectively) and genomic prediction (GP). All FHB data were corrected for flowering date or heading stage. High genotypic correlation (rg = 0.74) and direct path effect (0.57) were detected between FHB severity and anther retention (AR). Moderate correlation (rg = - 0.55) was found between FHB severity and plant height (PH) with a high indirect path via AR (- 0.31). Indirect selection for FHB resistance should concentrate on AR and PH. ST-GWAS identified 25 quantitative trait loci (QTL) for FHB severity, PH and AR, while MT-GWAS detected six QTL across chromosomes 2A, 4D, 5A, 6B and 7B conveying pleiotropic effects on the traits. Rht-D1b was associated with high AR and FHB susceptibility. Our study identified a promising positively acting pleiotropic QTL on chromosome 7B which can be utilized to improve FHB resistance while reducing PH and AR. Rht-D1b genotypes having a high resistance genomic background exhibited lower FHB severity and AR. The use of GP for estimating the genomic background was more effective than selection of GWAS-detected markers. We demonstrated that GP has a great potential and should be exploited by selecting for semi-dwarf winter wheat genotypes with higher FHB resistance due to their genomic background.
Collapse
Affiliation(s)
- Félicien Akohoue
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany
| | - Silvia Koch
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany
| | - Jörg Plieske
- SGS INSTITUT FRESENIUS GmbH, TraitGenetics Section, Am Schwabeplan 1b, 06466, Seeland OT Gatersleben, Germany
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
11
|
Evaluation of Fusarium Head Blight Resistance Effects by Haplotype-Based Genome-Wide Association Study in Winter Wheat Lines Derived by Marker Backcrossing Approach. Int J Mol Sci 2022; 23:ijms232214233. [PMID: 36430711 PMCID: PMC9695032 DOI: 10.3390/ijms232214233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Fusarium head blight (FHB) of wheat caused by Fusarium species is a destructive disease, causing grain yield and quality losses. Developing FHB-resistant cultivars is crucial to minimize the extent of the disease. The first objective of this study was incorporation of Fhb1 from a resistant donor into five Polish wheat breeding lines with good agronomical traits and different origins. We also performed a haplotype-based GWAS to identify chromosome regions in derived wheat families associated with Fusarium head blight resistance. As a result of marker-assisted backcrossing (MABC), five wheat combinations were obtained. Fungal inoculation and disease assessment were conducted for two years, 2019 and 2020. In 2019 the average phenotypic response of type II resistance was 2.2, whereas in 2020 it was 2.1. A haploblock-based GWAS performed on 10 phenotypic traits (related to type of resistance, year of experiment and FHB index) revealed nine marker-trait associations (MTA), among which six belong to chromosome 2D, two to 3B and one to 7D. Phenotypic variation (R2) explained by the identified haplotypes in haploblocks ranged from 6% to 49%. Additionally, an association weight matrix (AWM) was created, giving the partial correlation-information theory (PCIT) pipeline of 171 edges and 19 nodes. The resultant data and high level of explained phenotypic variance of MTA create the opportunity for data utilization in MAS.
Collapse
|
12
|
Haidoulis JF, Nicholson P. Tissue-specific transcriptome responses to Fusarium head blight and Fusarium root rot. FRONTIERS IN PLANT SCIENCE 2022; 13:1025161. [PMID: 36352885 PMCID: PMC9637937 DOI: 10.3389/fpls.2022.1025161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Fusarium head blight (FHB) and Fusarium root rot (FRR) are important diseases of small-grain cereals caused by Fusarium species. While host response to FHB has been subject to extensive study, very little is known about response to FRR and the transcriptome responses of FHB and FRR have not been thoroughly compared. Brachypodium distachyon (Bd) is an effective model for investigating host responses to both FHB and FRR. In this study the transcriptome response of Bd to F. graminearum (Fg) infection of heads and roots was investigated. An RNA-seq analysis was performed on both Bd FHB and FRR during the early infection. Additionally, an RNA-seq analysis was performed on in vitro samples of Fg for comparison with Fg gene expression in planta. Differential gene expression and gene-list enrichment analyses were used to compare FHB and FRR transcriptome responses in both Bd and Fg. Differential expression of selected genes was confirmed using RT-qPCR. Most genes associated with receptor signalling, cell-wall modification, oxidative stress metabolism, and cytokinin and auxin biosynthesis and signalling genes were generally upregulated in FHB or were downregulated in FRR. In contrast, Bd genes involved in jasmonic acid and ethylene biosynthesis and signalling, and antimicrobial production were similarly differentially expressed in both tissues in response to infection. A transcriptome analysis of predicted Fg effectors with the same infected material revealed elevated expression of core tissue-independent genes including cell-wall degradation enzymes and the gene cluster for DON production but also several tissue-dependent genes including those for aurofusarin production and cutin degradation. This evidence suggests that Fg modulates its transcriptome to different tissues of the same host.
Collapse
Affiliation(s)
| | - Paul Nicholson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, England
| |
Collapse
|
13
|
Buerstmayr M, Buerstmayr H. The effect of the Rht1 haplotype on Fusarium head blight resistance in relation to type and level of background resistance and in combination with Fhb1 and Qfhs.ifa-5A. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1985-1996. [PMID: 35396946 PMCID: PMC9205817 DOI: 10.1007/s00122-022-04088-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The effect of the Rht1-genes on FHB resistance depends on anther extrusion and level of background resistance. Qfhs.ifa-5A increases resistance and anther extrusion as efficiently as semi-dwarfing alleles decrease it. The semi-dwarfing reduced height alleles Rht-D1b and Rht-B1b have been deployed in modern wheat cultivars throughout the world, but they increase susceptibility to Fusarium head blight (FHB). Here, we investigated the impact of the Rht1 genes on anther retention (AR) in relation to FHB resistance using four different sets of near-isogenic lines (NILs) with contrasting levels and types of background FHB resistance. NILs were evaluated for FHB severity, plant height and AR in three greenhouse and three field trials using artificial spray inoculation. Rht-B1b and Rht-D1b alleles increased AR and FHB susceptibility in all genetic backgrounds. The magnitude of the effects differed between NIL groups. Increased FHB susceptibility largely followed increased AR. Differences in FHB susceptibility between tall and dwarf haplotypes were largest in the NIL group with the highest changes in AR. In the most resistant NIL group, dwarfed lines had only slightly higher AR than tall lines and maintained good resistance, while both tall and dwarf lines had high levels of retained anthers in the most susceptible NIL group. We further investigated the effect of the major Fusarium resistance QTL Fhb1 and Qfhs.ifa-5A in combination with the Rht1 genes. Qfhs.ifa-5A enhanced anther extrusion in tall as well as semi-dwarf haplotypes, whereas Fhb1 did not affect AR. Qfhs.ifa-5A supported FHB resistance more efficiently than Fhb1 in lines that were more responsive to AR, while both Fhb1 and Qfhs.ifa-5A were equally efficient in NILs that had high background resistance and low response to AR.
Collapse
Affiliation(s)
- Maria Buerstmayr
- Department of Agrobiotechnology, Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, 3430, Tulln, Austria.
| | - Hermann Buerstmayr
- Department of Agrobiotechnology, Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, 3430, Tulln, Austria
| |
Collapse
|
14
|
Wu F, Zhou Y, Shen Y, Sun Z, Li L, Li T. Linking Multi-Omics to Wheat Resistance Types to Fusarium Head Blight to Reveal the Underlying Mechanisms. Int J Mol Sci 2022; 23:ijms23042280. [PMID: 35216395 PMCID: PMC8880642 DOI: 10.3390/ijms23042280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023] Open
Abstract
Fusarium head blight (FHB) caused by Fusarium graminearum is a worldwide disease which has destructive effects on wheat production, resulting in severe yield reduction and quality deterioration, while FHB-infected wheat grains are toxic to people and animals due to accumulation of fungal toxins. Although impressive progress towards understanding host resistance has been achieved, our knowledge of the mechanism underlying host resistance is still quite limited due to the complexity of wheat-pathogen interactions. In recent years, disease epidemics, the resistance germplasms and components, the genetic mechanism of FHB, and disease management and control, etc., have been well reviewed. However, the resistance mechanism of FHB is quite complex with Type I, II to V resistances. In this review, we focus on the potential resistance mechanisms by linking different resistance types to multi-omics and emphasize the pathways or genes that may play significant roles in the different types of resistance. Deciphering the complicated mechanism of FHB resistance types in wheat at the integral levels based on multi-omics may help discover the genes or pathways that are critical for different FHB resistance, which could then be utilized and manipulated to improve FHB resistance in wheat breeding programs by using transgenic approaches, gene editing, or marker assisted selection strategies.
Collapse
|