1
|
Cui Z, Xu Q, Liu F, Wang J, Chen N. Comparative analysis of mitochondrial genomes of Chaetoceros species. JOURNAL OF PHYCOLOGY 2025. [PMID: 40249850 DOI: 10.1111/jpy.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/14/2025] [Accepted: 03/14/2025] [Indexed: 04/20/2025]
Abstract
Chaetoceros is one of the most diverse genera of marine planktonic diatoms. Chaetoceros species are common and may become dominant in coastal ecosystems. Many Chaetoceros species can develop harmful algal blooms with negative effects on the aquaculture industry. In this study, we constructed full-length mitochondrial genomes (mtDNAs) for 12 Chaetoceros species, including eight known species and four undescribed species. The sizes of these mtDNAs are generally similar, varying from 34,174 to 39,411 bp. Despite extensive synteny conservation, discrete regions showed high variations, and based on these regions, a specific primer chaetomt1 for Chaetoceros species was designed. The availability of mtDNAs from various Chaetoceros species is not only valuable as a super-barcode for phylogenetic analysis but also important for functional and evolutionary analysis of diatoms.
Collapse
Affiliation(s)
- Zongmei Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Qing Xu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Feng Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jing Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
2
|
He Z, Wang H, Chen Y, Chen N. Comparative genomic and phylogenetic analysis of mitochondrial genomes of the Pseudo-nitzschia HAB species. HARMFUL ALGAE 2025; 144:102829. [PMID: 40187791 DOI: 10.1016/j.hal.2025.102829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 04/07/2025]
Abstract
The genus Pseudo-nitzschia within Bacillariophyta (diatoms) is best known for its rich collection of toxigenic harmful algal bloom (HAB) species capable of producing the neurotoxin domoic acid (DA), which causes amnesic shellfish poisoning (ASP) in humans. Molecular markers such as 18S rDNA, ITS1, and ITS2 have been applied to facilitate Pseudo-nitzschia species identification because morphology-based methods often could not adequately distinguish different species due to their morphological similarities and plasticity. In this study, we constructed mitochondrial genomes (mtDNAs) for 11 Pseudo-nitzschia species and assessed their utility as "super-barcodes" for species identification and evolutionary analysis. These mtDNAs exhibited conserved genome structures despite variability in repeat regions. A potential tatA-tatC gene fusion event was observed in a single Pseudo-nitzschia species P. brasiliana. We also observed intron variability in cox1 genes. Phylogenetic analyses of mtDNAs, chloroplast genomes (cpDNAs), and nuclear ribosomal DNA (nrDNA) arrays revealed consistent results, supporting the closely related but distinct clustering of the genera Fragilariopsis and Pseudo-nitzschia. We further designed a high-resolution molecular marker tatA for species identification based on the comparative analysis of these mtDNAs, which could be used to track Pseudo-nitzschia diversity. These findings offer new genome resources and new insights into the genetic evolution and classification of Pseudo-nitzschia, underscoring the need for continued research in this field.
Collapse
Affiliation(s)
- Ziyan He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hui Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yang Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
3
|
Liu S, Ding X, Liu K, Chen N. Harmonized coexistence of intragenomic variations in diatom Skeletonema strains. ENVIRONMENTAL RESEARCH 2024; 262:119799. [PMID: 39147184 DOI: 10.1016/j.envres.2024.119799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Metabarcoding analysis has been demonstrated to be an effective technology for monitoring diversity and dynamics of phytoplankton including Skeletonema species. Although molecular diversity uncovered in metabarcoding projects has generally been interpreted as sum of interspecies diversity and intraspecies diversity, accumulating evidence suggests that it also harbors unprecedentedly high levels of intra-genomic variations (IGVs). As up to thousands of amplicon sequence variants (ASVs) identified in a typical metabarcoding project can be annotated to be Skeletonema species, we hypothesize that substantial portions of these ASVs are contributed by IGVs. Here, the nature of IGVs in Skeletonema species was quantitatively analyzed by carrying out single-strain metabarcoding analysis of 18S rDNA V4 in 49 strains belonging to seven Skeletonema species. Results showed that each Skeletonema strain harbored a high level of IGVs as expected. While many Skeletonema strains each contained one dominant ASV and a substantial number of ASVs displaying much lower relative abundance, other Skeletonema strains each contained multiple ASVs with comparable or nearly equally abundances. Thus the co-existence of multiple dominant ASVs in a single cell indicated a tug-of-war of these variants in evolution, which may eventually result in harmonized coexistence of multiple dominant ASVs. A total of nine dominant ASVs and 652 non-dominant ASVs were found in 49 strains of seven Skeletonema species, indicating rich interspecies and intraspecies variations, and complex evolution of IGVs in genus of Skeletonema. The results confirmed that the extensive degree of IGVs was the main contributor to the high molecular diversity revealed by metabarcoding analysis. This study highlights the importance of quantitative characterization of IGVs in Skeletonema species for accurate interpretation of species diversity in metabarcoding analysis.
Collapse
Affiliation(s)
- Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiangxiang Ding
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Kuiyan Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
4
|
Liu S, Chen N. Chromosome-level genome assembly of marine diatom Skeletonema tropicum. Sci Data 2024; 11:403. [PMID: 38643276 PMCID: PMC11032307 DOI: 10.1038/s41597-024-03238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
Skeletonema tropicum is a marine diatom of the genus Skeletonema that also includes many well-known species including S. marinoi. S. tropicum is a high temperature preferring species thriving in tropical ocean regions or temperate ocean regions during summer-autumn. However, mechanisms of ecological adaptation of S. tropicum remain poorly understood due partially to the lack of a high-quality whole genome assembly. Here, we report the first high-quality chromosome-scale genome assembly for S. tropicum, using cutting-edge technologies including PacBio single molecular sequencing and high-throughput chromatin conformation capture. The assembled genome has a size of 78.78 Mb with a scaffold N50 of 3.17 Mb, anchored to 23 pseudo-chromosomes. In total, 20,613 protein-coding genes were predicted, of which 17,757 (86.14%) genes were functionally annotated. Collinearity analysis of the genomes of S. tropicum and S. marinoi revealed that these two genomes were highly homologous. This chromosome-level genome assembly of S. tropicum provides a valuable genomic platform for comparative analysis of mechanisms of ecological adaption.
Collapse
Affiliation(s)
- Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266200, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
5
|
Liu S, Xu Q, Chen N. Expansion of photoreception-related gene families may drive ecological adaptation of the dominant diatom species Skeletonema marinoi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165384. [PMID: 37422237 DOI: 10.1016/j.scitotenv.2023.165384] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Diatom species of the genus Skeletonema are dominant in global coastal waters with important roles in marine primary production and global biogeochemical cycling. Many Skeletonema species have been extensively studied also because they can cause harmful algae blooms (HABs) with negative impacts on marine ecosystems and aquaculture. In this study, the first chromosome-level assembly of the genome of Skeletonema marinoi was constructed. The genome size was 64.99 Mb with a contig N50 of 1.95 Mb. Up to 97.12 % of contigs were successfully anchored on 24 chromosomes. Analysis of the annotated genes revealed 28 large syntenic blocks with 2397 collinear gene pairs in the genome of S. marinoi, suggesting large-scale segmental duplication events in evolution. Substantial expansion of light-harvesting genes encoding fucoxanthin-chlorophyll a/c binding proteins, as well as expansion of photoreceptor gene families encoding aureochromes and cyptochromes (CRY) in S. marinoi were found, which may have shaped ecological adaptation of S. marinoi. In conclusion, the construction of the first high-quality Skeletonema genome assembly offers valuable clues on the ecological and evolutionary characteristics of this dominant coastal diatom species.
Collapse
Affiliation(s)
- Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qing Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443000, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 niversity Drive, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
6
|
Complete Genome Sequence of a Cognatishimia activa Strain Assembled from the Phycosphere of the Marine Diatom Skeletonema tropicum. Microbiol Resour Announc 2023; 12:e0116422. [PMID: 36598233 PMCID: PMC9872673 DOI: 10.1128/mra.01164-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cognatishimia activa, previously known as Thalassobius activus, has been frequently isolated from marine environments. Here, we present the complete genome sequence of C. activa strain SOCE 004, assembled from the phycosphere of a long-term laboratory-maintained culture of the diatom Skeletonema tropicum. The complete genome is 3,211,994 bp long, with an average G+C content of 53.69%. The genome contains 3,195 genes, including 3,133 protein-coding genes, 50 tRNAs, and 3 copies each of 5S, 16S, and 23S rRNA genes.
Collapse
|
7
|
El-Hadary MH, Elsaied HE, Khalil NM, Mikhail SK. Molecular taxonomical identification and phylogenetic relationships of some marine dominant algal species during red tide and harmful algal blooms along Egyptian coasts in the Alexandria region. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53403-53419. [PMID: 35287194 PMCID: PMC9343293 DOI: 10.1007/s11356-022-19217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Harmful algal blooms (HABs) threaten the aquatic ecosystems due to either poisonous effects on living organisms or oxygen-consuming. So HABs' accurate identification, including red tide, is crucial. This study aimed to molecular identification of dominant species during tide period in nine stations along Alexandria region at Egyptian costs during one year. Samples were collected weekly before water discoloration but daily during red tide intensive growth from both 50 cm below the surface and 3 m depth over the bottom from the water surface. The red tide detection was highly from early August to half of September, since its highest peak with a maximum frequency inside the Eastern Harbor. The examined cultures samples isolated during red tide had four dominant species. Peroxidase profile showed an expression pattern of three loci (Px1, Px2, and Px3) in most species. The Px2 was the only heterozygous locus among the three loci in all species. Protein profiling showed that 17 bands out of 65 were specific to the species. The phylogenetic relationships derived from profiles of protein and 18S rRNA gene operon sequences for the four isolated species were mostly similar. We identified the four dominant HABs species as Aplanochytrium sp., Chlamydomonas sp., Cryptophyceae sp., and Psammodictyon sp. based on their 18S rRNA sequences and deposited them at DDBJ/EMBL/GenBank database. Aplanochytrium sp. is recorded as a red tide causative species for the first time in the screened region despite belonging to the defunct fungi.
Collapse
Affiliation(s)
- Mona H El-Hadary
- Department of Botany and Microbiology, Faculty of Science, Damanhour University, Damanhour, Al Beheria Governorate, Egypt.
| | - Hosam E Elsaied
- National Institutes of Oceanography and Fisheries (NIOF), Al kanater Elkhiria, Al Qalyubiyah, Egypt
| | - Nehma M Khalil
- National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Samia K Mikhail
- National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| |
Collapse
|
8
|
Liu S, Xu Q, Liu K, Zhao Y, Chen N. Chloroplast Genomes for Five Skeletonema Species: Comparative and Phylogenetic Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:774617. [PMID: 34966403 PMCID: PMC8710728 DOI: 10.3389/fpls.2021.774617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Skeletonema species are cosmopolitan coastal diatoms that exhibit important roles in ecological system. The chloroplast genomes (cpDNAs) have been proven to be important in the study of molecular evolution and genetic diversity. However, cpDNA of only a single Skeletonema species (S. pseudocostatum) has been constructed, hindering in-depth investigation on Skeletonema species. In this study, complete cpDNAs of five Skeletonema species were constructed with cpDNAs of four species S. marinoi, S. tropicum, S. costatum, and S. grevillea constructed for the first time. These cpDNAs had similar sizes and same numbers of genes. These cpDNAs were highly syntenic with no substantial expansions, contractions, or inversions. Interestingly, two copies of petF, which encodes ferredoxin with critical role in iron dependency, were found in all five Skeletonema species, with one copy in the cpDNA and another copy in the nuclear genome of each species. Selection analysis revealed that all PCGs of cpDNAs were undergoing purifying selection. Despite the high conservation of these cpDNAs, nine genomic regions with high sequence divergence were identified, which illustrated substantial variations that could be used as markers for phylogenetic inference and for tracking Skeletonema species in the field. Additionally, the numbers of simple sequence repeats varied among different cpDNAs, which were useful for detecting genetic polymorphisms. The divergence times estimated using PCGs of cpDNAs revealed that most of these species were established within ∼33 Mya, consistent with that estimated using mtDNAs. Overall, the current study deepened our understanding about the molecular evolution of Skeletonema cpDNAs.
Collapse
Affiliation(s)
- Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Qing Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kuiyan Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yongfang Zhao
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|