1
|
Liu S, Gao Y, Long X, Li K, Gutang Q, Xie H, Wang J, Tian J, Liang B, Lin J, Liu W. A Possible More Precise Management Unit Delineation Based on Epigenomic Differentiation of a Long-Distance-Migratory Marine Fish Scomberomorus niphonius. Mol Ecol Resour 2025:e14103. [PMID: 40084530 DOI: 10.1111/1755-0998.14103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/22/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Understanding population structure and adaptive history is critical for designing appropriate management regulations for fisheries and conserving adaptive potential for the future. However, this is not easy for marine fish, especially those with long-distance migration abilities. In this study, we constructed a high-quality reference genome for Japanese Spanish mackerel (Scomberomorus niphonius) and explored its population structure using whole genomic and epigenomic data. Despite the high depth of the sequence data, we failed to identify geographical genetic differentiation of Japanese Spanish mackerel across Chinese coastal waters. However, whole-genome bisulphite sequencing can classify this species into the Bohai-Yellow Sea group and the East China Sea-South China Sea group. Genes involved in embryonic skeletal system development, limb morphogenesis functions, and adult locomotory behaviour were differentially methylated in the southern (Zhanjiang, ZJ) and northern (Western Dalian, WDL) populations and may play important roles as drivers of population structure in Japanese Spanish mackerel. Our study not only provides the first reference genome of the Japanese Spanish mackerel and sheds light on population differentiation at the epigenomic level, but also provides a methylome-based framework for population structure analyses of marine fish with long-distance migration ability. These findings are expected to facilitate the development of scientific programmes for the successful conservation of marine fishery resources.
Collapse
Affiliation(s)
- Sailan Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Yan Gao
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Xinrui Long
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Kunhuan Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Qilin Gutang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Huiying Xie
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Jingzhen Wang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou, China
| | - Jiashen Tian
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Bo Liang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Jianqing Lin
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| |
Collapse
|
2
|
Hrytsenko Y, Daniels NM, Schwartz RS. Determining population structure from k-mer frequencies. PeerJ 2025; 13:e18939. [PMID: 40061228 PMCID: PMC11890038 DOI: 10.7717/peerj.18939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/15/2025] [Indexed: 05/13/2025] Open
Abstract
Background Understanding population structure within species provides information on connections among different populations and how they evolve over time. This knowledge is important for studies ranging from evolutionary biology to large-scale variant-trait association studies. Current approaches to determining population structure include model-based approaches, statistical approaches, and distance-based ancestry inference approaches. Methods In this work, we identify population structure from DNA sequence data using an alignment-free approach. We use the frequencies of short DNA substrings from across the genome (k-mers) with principal component analysis (PCA). K-mer frequencies can be viewed as a summary statistic of a genome and have the advantage of being easily derived from a genome by counting the number of times a k-mer occurred in a sequence. In contrast, most population structure work employing PCA uses multi-locus genotype data (SNPs, microsatellites, or haplotypes). No genetic assumptions must be met to generate k-mers, whereas current population structure approaches often depend on several genetic assumptions and can require careful selection of ancestry informative markers to identify populations. We compare our k-mer based approach to population structure estimated using SNPs with both empirical and simulated data. Results In this work, we show that PCA is able to determine population structure just from the frequency of k-mers found in the genome. The application of PCA and a clustering algorithm to k-mer profiles of genomes provides an easy approach to detecting the number and composition of populations (clusters) present in the dataset. Using simulations, we show that results are at least comparable to population structure estimates using SNPs. When using human genomes from populations identified by the 1000 Genomes Project, the results are better than population structure estimates using SNPs from the same samples, and comparable to those found by a model-based approach using genetic markers from larger numbers of samples. Conclusions This study shows that PCA, together with the clustering algorithm, is able to detect population structure from k-mer frequencies and can separate samples of admixed and non-admixed origin. Using k-mer frequencies to determine population structure has the potential to avoid some challenges of existing methods and may even improve on estimates from small samples.
Collapse
Affiliation(s)
- Yana Hrytsenko
- Department of Computer Science and Statistics, University of Rhode Island, Kingston, RI, United States of America
| | - Noah M. Daniels
- Department of Computer Science and Statistics, University of Rhode Island, Kingston, RI, United States of America
| | - Rachel S. Schwartz
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States of America
| |
Collapse
|
3
|
Liu K, Tao Y, Huang W, Wang B, Liu S, Cong B, Zhou M, Zhao L. Assessment of future habitat suitability and ecological vulnerability of Collichthys at population and species level. BMC Ecol Evol 2025; 25:1. [PMID: 39743516 DOI: 10.1186/s12862-024-02339-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/14/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Global warming and extreme weather events driven by greenhouse gas emissions are significantly impacting fish survival and reproduction, leading to dramatic consequences for marine biodiversity and ecosystem stability. Comparative analysis of closely related species from a phylogenetic perspective provides valuable insights for biodiversity conservation efforts. The study investigates the effects of climate change on the suitability of habitat and ecological vulnerability of two important sibling fishes, Collichthys lucidus and Collichthys niveatus, in the western Pacific. RESULTS This study found that the main driver of ecological niche differences between the two species is the niche contraction of C. niveatus. Predictions from species distribution models indicate that C. lucidus has a wider distribution and greater adaptability under future climate scenarios. Both species will experience significant habitat loss and heightened ecological vulnerability in the southern Yellow Sea. Additionally, the two populations of C. lucidus in the Yangtze River estuary display different levels of ecological vulnerability. These two species also exhibit distinct responses to environmental factors such as temperature and chlorophyll concentration. CONCLUSION The study's findings indicate that climate change will accelerate the population differentiation of C. lucidus and the habitat loss of C. niveatus. These results underscore the importance of prioritizing the southern Yellow Sea in future research and emphasize the necessity of developing adaptive conservation strategies for both species.
Collapse
Affiliation(s)
- Kaiyu Liu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
- Marine Ecoloy Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Yijun Tao
- National Marine Data and Information Service, Ministry of Natural Resources, Tianjin, China
| | - Wenhao Huang
- Marine Ecoloy Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Bei Wang
- Marine Ecoloy Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Shenghao Liu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| | - Bailin Cong
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| | - Min Zhou
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
- Marine Ecoloy Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Linlin Zhao
- Marine Ecoloy Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.
| |
Collapse
|
4
|
Zhou L, Liu F, Chen J, Yang R, Li J, Wang Z, Cai M. Comparative transcriptome analysis reveals sex bias in expression patterns of genes related to sex steroids and immunity in the skin of spinyhead croaker Collichthys lucidus. JOURNAL OF FISH BIOLOGY 2023. [PMID: 37054975 DOI: 10.1111/jfb.15405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Fish skin is the first barrier against external invasion, and also an important interface for communication between males and females during reproduction. Nonetheless, sexual dimorphism in the physiology of fish skins is still poorly understood. Herein, transcriptomes of skin were comparatively analysed between males and females in spinyhead croaker, Collichthys lucidus. Totally, 170 differentially expressed genes (DEG) were detected, including 79 female-biased genes and 91 male-biased genes. Gene ontology (GO) annotation items of the DEGs were mainly enriched in biological process items (86.2%), including regulation of biological processes, responses to chemical and biological stimuli, transport and secretion, movement, immune response, tissue development, etc. In KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis, the male-biased genes were enriched in pathways including those related to immunity such as the TNF signalling pathway and IL-17 signalling pathway, whereas the female-biased genes were enriched in pathways including those related to female steroids such as ovarian steroidogenesis and oestrogen signalling pathway. In addition, odf3 was found to be a male-specific expression gene, being a candidate marker for phenotypic sex. Thus, the sexual difference in gene expression in fish skin in spawning season was uncovered by transcriptome analysis for the first time, providing new insights into sexual dimorphism in the physiology and functions of fish skin.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Fujiang Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Junnan Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Ran Yang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Jinshou Li
- College of life science, Ningde Normal University, Ningde, China
| | - Zhiyong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Mingyi Cai
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
5
|
Song W, Gan W, Xie Z, Chen J, Wang L. Small RNA sequencing reveals sex-related miRNAs in Collichthys lucidus. Front Genet 2022; 13:955645. [PMID: 36092867 PMCID: PMC9458855 DOI: 10.3389/fgene.2022.955645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Collichthys lucidus (C. lucidus) is an economically important fish species, exhibiting sexual dimorphism in its growth rate. However, there is a lack of research on its underlying sex-related mechanisms. Therefore, small RNA sequencing was performed to better comprehend these sex-related molecular mechanisms. In total, 171 differentially expressed miRNAs (DE-miRNAs) were identified between the ovaries and testes. Functional enrichment analysis revealed that the target genes of DE-miRNAs were considerably enriched in the p53 signaling, PI3K–Akt signaling, and TGF-beta signaling pathways. In addition, sex-related miRNAs were identified, and the expression of miR-430c-3p and miR-430f-3p was specifically observed in the gonads compared with other organs and their expression was markedly upregulated in the testes relative to the ovaries. Bmp15 was a target of miR-430c-3p and was greatly expressed in the ovaries compared with the testes. Importantly, miR-430c-3p and bmp15 co-expressed in the ovaries and testes. This research provides the first detailed miRNA profiles for C. lucidus concerning sex, likely laying the basis for further studies on sex differentiation in C. lucidus.
Collapse
Affiliation(s)
- Wei Song
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Wu Gan
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Zhengli Xie
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Jia Chen
- State Key Laboratory of Large Yellow Croaker Breeding, Fuding Seagull Fishing Food Co. Ltd., Ningde, China
| | - Lumin Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- *Correspondence: Lumin Wang,
| |
Collapse
|