1
|
Han J, Rotenberg D. Multi-omics analysis reveals discordant proteome and transcriptome responses in larval guts of Frankliniella occidentalis infected with an orthotospovirus. INSECT MOLECULAR BIOLOGY 2025. [PMID: 40279100 DOI: 10.1111/imb.12992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025]
Abstract
The western flower thrips, Frankliniella occidentalis, is the principal thrips vector of Orthotospovirus tomatomaculae (order Bunyavirales, family Tospoviridae), a devastating plant-pathogenic virus commonly referred to as tomato spotted wilt virus (TSWV). The larval gut is the gateway for virus transmission by F. occidentalis adults to plants. In a previous report, gut expression at the transcriptome level was subtle but significant in response to TSWV in L1s. Since it has been well documented that the relationship between the expression of mRNA and associated protein products in eukaryotic cells is often discordant, we performed identical, replicated experiments to identify and quantify virus-responsive larval gut proteins to expand our understanding of insect host response to TSWV. While we documented statistically significant, positive correlations between the abundance of proteins (4189 identified) and their cognate mRNAs expressed in first and second instar guts, there was virtually no alignment of individual genes identified to be differentially modulated by virus infection at the transcriptome and proteome levels. Predicted protein-protein interaction networks associated with clusters of co-expressed proteins revealed wide variation in correlation strength between protein and cognate transcript abundance, which appeared to be associated with the type of cellular processes, cellular compartments and network connectivity represented by the proteins. In total, our findings indicate distinct and dynamic regulatory mechanisms of transcript and protein abundance (expression, modifications and/or turnover) in virus-infected gut tissues. This study provides molecular candidates for future functional analysis of thrips vector competence and underscores the necessity of examining complex virus-vector interactions at a systems level.
Collapse
Affiliation(s)
- Jinlong Han
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
2
|
LaBonte P, Packer R, McInnes H, Rotenberg D, Whitfield AE. Methods for Thrips Transmission and Maintenance of Tomato Spotted Wilt Virus (TSWV). Methods Mol Biol 2025; 2893:119-136. [PMID: 39671034 DOI: 10.1007/978-1-0716-4338-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Tomato spotted wilt virus (TSWV) is transmitted by insect pests from the Thripidae family, including Frankliniella occidentalis, commonly known as western flower thrips. For experimental purposes, researchers have developed methods for inoculating host plants with TSWV, allowing thrips to acquire TSWV, and verifying thrips acquisition. Plants can be inoculated with TSWV either mechanically or with thrips in the lab, but in nature, the virus is transmitted by thrips. For the study of tospovirus transmission biology and vector-virus interactions, efficient methods for mechanical and thrips transmission are essential. We have optimized these protocols for TSWV and western flower thrips, but they can also be adapted to other tospovirus-vector systems.
Collapse
Affiliation(s)
- Peyton LaBonte
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Ryan Packer
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Holly McInnes
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
3
|
Bonning BC. Pathogen Binding and Entry: Molecular Interactions with the Insect Gut. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:165-184. [PMID: 39874144 DOI: 10.1146/annurev-ento-030624-014608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The point of entry for the majority of arthropod pathogens and arthropod-vectored pathogens of plant, animal, and human health importance is the arthropod midgut. Pathogen interaction with the midgut therefore represents a primary target for intervention to prevent pathogen infection and transmission. Despite this key role in pathogen invasion, relatively little is known of the specific molecular interactions between pathogens and the surface of the arthropod gut epithelium, with few pathogen receptors having been definitively identified. This article provides an overview of pathogen molecular interactions in the arthropod midgut, with a focus on gut surface proteins that mediate pathogen entry, and highlights recent methodological advances that facilitate the identification of pathogen receptor proteins.
Collapse
Affiliation(s)
- Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
4
|
Han J, Rotenberg D. Microinjection-enabled gene silencing in first instar larvae of western flower thrips, Frankliniella occidentalis, reveals vital genes for larval survival. INSECT SCIENCE 2024. [PMID: 39614628 DOI: 10.1111/1744-7917.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/24/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
The western flower thrips (Frankliniella occidentalis) is a significant agricultural pest, causing severe global yield losses due to extensive feeding damage and the transmission of plant pathogenic viruses. Despite recent advancements in RNA interference (RNAi) in thrips species, its application has been mostly limited to the adult stage. Given the crucial role of first instar larval thrips in acquiring and transmitting orthotospoviruses, achieving gene silencing in these larvae is critical for studying virus entry and acquisition. While thoracic and abdominal injections have proven effective in adult thrips, the low post-injection survival rate hinders their use in larval thrips. This study addresses this challenge by presenting a microinjection methodology to deliver dsRNA into the hemolymph of first instar larval thrips through the coxa, the first proximal segment of the foreleg. This method significantly improved larval survival rate by preventing detrimental damage to the internal tissues. Significant knockdown of V-ATPase-B, cytochrome P450 (CYP3653A2), and apolipophorin-II/I (ApoLp-II/I) transcripts was confirmed after 48 and/or 72 h post injection (hpi), corresponding to the first and second instar larval stages, respectively. Silencing CYP3653A2 or ApoLp-II/I significantly increased larval mortality. These findings demonstrate proof-of-principle of gene silencing and associated silencing phenotype (mortality) for first instar larval thrips and highlight the essential role of CYP3653A2 and ApoLp-II/I in larval vitality. Our RNAi-based tool offers an opportunity to investigate the molecular mechanisms of thrips-orthotospovirus interactions, as the virus must be acquired by young larval thrips for successful transmission to plants, thus presenting potential targets for thrips pest management.
Collapse
Affiliation(s)
- Jinlong Han
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
5
|
Scieuzo C, Rinaldi R, Giglio F, Salvia R, Ali AlSaleh M, Jakše J, Pain A, Antony B, Falabella P. Identification of Multifunctional Putative Bioactive Peptides in the Insect Model Red Palm Weevil ( Rhynchophorus ferrugineus). Biomolecules 2024; 14:1332. [PMID: 39456265 PMCID: PMC11506011 DOI: 10.3390/biom14101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Innate immunity, the body's initial defense against bacteria, fungi, and viruses, heavily depends on antimicrobial peptides (AMPs), which are small molecules produced by all living organisms. Insects, with their vast biodiversity, are one of the most abundant and innovative sources of AMPs. In this study, AMPs from the red palm weevil (RPW) Rhynchophorus ferrugineus (Coleoptera: Curculionidae), a known invasive pest of palm species, were examined. The AMPs were identified in the transcriptomes from different body parts of male and female adults, under different experimental conditions, including specimens collected from the field and those reared in the laboratory. The RPW transcriptomes were examined to predict antimicrobial activity, and all sequences putatively encoding AMPs were analyzed using several machine learning algorithms available in the CAMPR3 database. Additionally, anticancer, antiviral, and antifungal activity of the peptides were predicted using iACP, AVPpred, and Antifp server tools, respectively. Physicochemical parameters were assessed using the Antimicrobial Peptide Database Calculator and Predictor. From these analyses, 198 putatively active peptides were identified, which can be tested in future studies to validate the in silico predictions. Genome-wide analysis revealed that several AMPs have predominantly emerged through gene duplication. Noticeably, we detect a newly originated defensin allele from an ancestral defensin via the deletion of two amino acids following gene duplication in RPW, which may confer an enhanced resilience to microbial infection. Our study shed light on AMP gene families and shows that high duplication and deletion rates are essential to achieve a diversity of antimicrobial mechanisms; hence, we propose the RPW AMPs as a model for exploring gene duplication and functional variations against microbial infection.
Collapse
Affiliation(s)
- Carmen Scieuzo
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (R.R.); (F.G.); (R.S.)
- Spinoff XFlies s.r.l, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Roberta Rinaldi
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (R.R.); (F.G.); (R.S.)
| | - Fabiana Giglio
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (R.R.); (F.G.); (R.S.)
| | - Rosanna Salvia
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (R.R.); (F.G.); (R.S.)
- Spinoff XFlies s.r.l, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Mohammed Ali AlSaleh
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, Riyadh 11451, Saudi Arabia;
| | - Jernej Jakše
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, SI-1000 Ljubljana, Slovenia;
| | - Arnab Pain
- King Abdullah University of Science and Technology (KAUST), Bioscience Programme, BESE Division, Thuwal, Jeddah 23955-6900, Saudi Arabia;
| | - Binu Antony
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, Riyadh 11451, Saudi Arabia;
| | - Patrizia Falabella
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (R.R.); (F.G.); (R.S.)
| |
Collapse
|
6
|
Shahmohammadi N, Khan F, Jin G, Kwon M, Lee D, Kim Y. Tomato Spotted Wilt Virus Suppresses the Antiviral Response of the Insect Vector, Frankliniella occidentalis, by Elevating an Immunosuppressive C18 Oxylipin Level Using Its Virulent Factor, NSs. Cells 2024; 13:1377. [PMID: 39195265 PMCID: PMC11352781 DOI: 10.3390/cells13161377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Orthotospovirus tomatomaculae (tomato spotted wilt virus, TSWV) is transmitted by the western flower thrips, Frankliniella occidentalis. Epoxyoctadecamonoenoic acids (EpOMEs) function as immune-suppressive factors, particularly in insects infected by viral pathogens. These oxylipins are produced by cytochrome P450 monooxygenases (CYPs) and are degraded by soluble epoxide hydrolase (sEH). In this study, we tested the hypothesis that TSWV modulates the EpOME level in the thrips to suppress antiviral responses and enhance its replication. TSWV infection significantly elevated both 9,10-EpOME and 12,13-EpOME levels. Following TSWV infection, the larvae displayed apoptosis in the midgut along with the upregulated expression of four caspase genes. However, the addition of EpOME to the viral treatment notably reduced apoptosis and downregulated caspase gene expressions, which led to a marked increase in TSWV titers. The CYP and sEH genes of F. occidentalis were identified, and their expression manipulation using RNA interference (RNAi) treatments led to significant alternations in the insect's immune responses and TSWV viral titers. To ascertain which viral factor influences the host EpOME levels, specialized RNAi treatments targeting genes encoded by TSWV were administered to larvae infected with TSWV. These treatments demonstrated that NSS expression is pivotal in manipulating the genes involved in EpOME metabolism. These results indicate that NSs of TSWV are crucially linked with the elevation of host insect EpOME levels and play a key role in suppressing the antiviral responses of F. occidentalis.
Collapse
Affiliation(s)
- Niayesh Shahmohammadi
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (N.S.); (F.K.); (G.J.)
| | - Falguni Khan
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (N.S.); (F.K.); (G.J.)
| | - Gahyeon Jin
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (N.S.); (F.K.); (G.J.)
| | - Minji Kwon
- Industry Academy Cooperation Foundation, Andong National University, Andong 36729, Republic of Korea; (M.K.); (D.L.)
| | - Donghee Lee
- Industry Academy Cooperation Foundation, Andong National University, Andong 36729, Republic of Korea; (M.K.); (D.L.)
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (N.S.); (F.K.); (G.J.)
| |
Collapse
|
7
|
Bailey ST, Kondragunta A, Choi HA, Han J, McInnes H, Rotenberg D, Ullman DE, Benoit JB. Dehydration and tomato spotted wilt virus infection combine to alter feeding and survival parameters for the western flower thrips, Frankliniella occidentalis. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100086. [PMID: 39193173 PMCID: PMC11345507 DOI: 10.1016/j.cris.2024.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 08/29/2024]
Abstract
Dehydration and tomato spotted wilt virus (TSWV) infection substantially impact the feeding of western flower thrips, Frankliniella occidentalis. Until now, the dynamics between these biotic and abiotic stresses have not been examined for thrips. Here, we report water balance characteristics and changes in other biological parameters during infection with TSWV for the western flower thrips. There were no apparent differences in water balance parameters during TSWV infection of male or female thrips. Our results show that, although water balance characteristics of western flower thrips are minimally impacted by TSWV infection, the increase in feeding and activity when dehydration and TSWV are combined suggests that virus transmission could be increased under periods of drought. Importantly, survival and progeny generation were impaired during TSWV infection and dehydration bouts. The negative impact on survival and reproduction suggests that the interactions between TSWV infection and dehydration will likely reduce thrips populations. The opposite effects of dehydration on feeding/activity and survival/reproduction for virus infected thrips suggest the impact of vectorial capacity will likely be minor for TSWV transmission. As water stress significantly impacts insect-plant-virus dynamics, these studies highlight that all interactions and effects need to be measured to understand thrips-TSWV interactions in their role as viral vector to plants.
Collapse
Affiliation(s)
- Samuel T. Bailey
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Alekhya Kondragunta
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Hyojin A. Choi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jinlong Han
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Holly McInnes
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Diane E. Ullman
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, USA
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
8
|
Song W, Cao LJ, Chen JC, Bao WX, Wei SJ. Chromosome-level genome assembly of the western flower thrips Frankliniella occidentalis. Sci Data 2024; 11:582. [PMID: 38834623 DOI: 10.1038/s41597-024-03438-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
The western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae) is a global invasive species that causes increasing damage by direct feeding on crops and transmission of plant viruses. Here, we assemble a previously published scaffold-level genome into a chromosomal level using Hi-C sequencing technology. The assembled genome has a size of 302.58 Mb, with a contig N50 of 1533 bp, scaffold N50 of 19.071 Mb, and BUSCO completeness of 97.8%. All contigs are anchored on 15 chromosomes. A total of 16,312 protein-coding genes are annotated in the genome with a BUSCO completeness of 95.2%. The genome contains 492 non-coding RNA, and 0.41% of interspersed repeats. In conclusion, this high-quality genome provides a convenient and high-quality resource for understanding the ecology, genetics, and evolution of thrips.
Collapse
Affiliation(s)
- Wei Song
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wen-Xue Bao
- College of Forestry, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
9
|
Kim CY, Ahmed S, Stanley D, Kim Y. HMG-like DSP1 is a damage signal to mediate the western flower thrips, Frankliniella occidentalis, immune responses to tomato spotted wilt virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104706. [PMID: 37019348 DOI: 10.1016/j.dci.2023.104706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 06/05/2023]
Abstract
Tomato spotted wilt virus (TSWV) causes a serious plant disease and is transmitted by specific thrips including the western flower thrips, Frankliniella occidentalis. The persistent and circulative virus transmission suggests an induction of immune defenses in the thrips. We investigated the immune responses of F. occidentalis to TSWV infection. Immunofluorescence assay demonstrated viral infection in the larval midguts at early stage and subsequent propagation to the salivary gland in adults. In the larval midgut, TSWV infection led to the release of DSP1, a damage-associated molecular pattern, from the gut epithelium into the hemolymph. DSP1 up-regulated PLA2 activity, which would lead to biosynthesis of eicosanoids that activate cellular and humoral immune responses. Phenoloxidase (PO) activity was enhanced following induction of PO and its activating protease gene expressions. Antimicrobial peptide genes and dual oxidase, which produces reactive oxygen species, were induced by the viral infection. Expression of four caspase genes increased and TUNEL assay confirmed apoptosis in the larval midgut after the virus infection. These immune responses to viral infection were significantly suppressed by the inhibition of DSP1 release. We infer that TSWV infection induces F. occidentalis immune responses, which are activated by the release of DSP1 from the infection foci within midguts.
Collapse
Affiliation(s)
- Chul-Young Kim
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea
| | - Shabbir Ahmed
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea
| | - David Stanley
- Biological Control of Insects Research Laboratory, USDA/ARS, 1503 S Providence Road, Columbia, MO, 65203, USA
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea.
| |
Collapse
|
10
|
He MJ, Zuo DP, Zhang ZY, Wang Y, Han CG. Transcriptomic and Proteomic Analyses of Myzus persicae Carrying Brassica Yellows Virus. BIOLOGY 2023; 12:908. [PMID: 37508340 PMCID: PMC10376434 DOI: 10.3390/biology12070908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
Viruses in the genus Polerovirus infect a wide range of crop plants and cause severe economic crop losses. BrYV belongs to the genus Polerovirus and is transmitted by Myzus persicae. However, the changes in transcriptome and proteome profiles of M. persicae during viral infection are unclear. Here, RNA-Seq and TMT-based quantitative proteomic analysis were performed to compare the differences between viruliferous and nonviruliferous aphids. In total, 1266 DEGs were identified at the level of transcription with 980 DEGs being upregulated and 286 downregulated in viruliferous aphids. At the protein level, among the 18 DEPs identified, the number of upregulated proteins in viruliferous aphids was twice that of the downregulated DEPs. Enrichment analysis indicated that these DEGs and DEPs were mainly involved in epidermal protein synthesis, phosphorylation, and various metabolic processes. Interestingly, the expressions of a number of cuticle proteins and tubulins were upregulated in viruliferous aphids. Taken together, our study revealed the complex regulatory network between BrYV and its vector M. persicae from the perspective of omics. These findings should be of great benefit to screening key factors involved in the process of virus circulation in aphids and provide new insights for BrYV prevention via vector control in the field.
Collapse
Affiliation(s)
- Meng-Jun He
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Deng-Pan Zuo
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zong-Ying Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Cheng-Gui Han
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Catto MA, Labadie PE, Jacobson AL, Kennedy GG, Srinivasan R, Hunt BG. Pest status, molecular evolution, and epigenetic factors derived from the genome assembly of Frankliniella fusca, a thysanopteran phytovirus vector. BMC Genomics 2023; 24:343. [PMID: 37344773 DOI: 10.1186/s12864-023-09375-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/13/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND The tobacco thrips (Frankliniella fusca Hinds; family Thripidae; order Thysanoptera) is an important pest that can transmit viruses such as the tomato spotted wilt orthotospovirus to numerous economically important agricultural row crops and vegetables. The structural and functional genomics within the order Thysanoptera has only begun to be explored. Within the > 7000 known thysanopteran species, the melon thrips (Thrips palmi Karny) and the western flower thrips (Frankliniella occidentalis Pergrande) are the only two thysanopteran species with assembled genomes. RESULTS A genome of F. fusca was assembled by long-read sequencing of DNA from an inbred line. The final assembly size was 370 Mb with a single copy ortholog completeness of ~ 99% with respect to Insecta. The annotated genome of F. fusca was compared with the genome of its congener, F. occidentalis. Results revealed many instances of lineage-specific differences in gene content. Analyses of sequence divergence between the two Frankliniella species' genomes revealed substitution patterns consistent with positive selection in ~ 5% of the protein-coding genes with 1:1 orthologs. Further, gene content related to its pest status, such as xenobiotic detoxification and response to an ambisense-tripartite RNA virus (orthotospovirus) infection was compared with F. occidentalis. Several F. fusca genes related to virus infection possessed signatures of positive selection. Estimation of CpG depletion, a mutational consequence of DNA methylation, revealed that F. fusca genes that were downregulated and alternatively spliced in response to virus infection were preferentially targeted by DNA methylation. As in many other insects, DNA methylation was enriched in exons in Frankliniella, but gene copies with homology to DNA methyltransferase 3 were numerous and fragmented. This phenomenon seems to be relatively unique to thrips among other insect groups. CONCLUSIONS The F. fusca genome assembly provides an important resource for comparative genomic analyses of thysanopterans. This genomic foundation allows for insights into molecular evolution, gene regulation, and loci important to agricultural pest status.
Collapse
Affiliation(s)
- Michael A Catto
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA
| | - Paul E Labadie
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alana L Jacobson
- Department of Entomology and Plant Pathology, Auburn University College of Agriculture, Auburn, AL, 36849, USA
| | - George G Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | | | - Brendan G Hunt
- Department of Entomology, University of Georgia, Griffin, GA, 30223, USA.
| |
Collapse
|
12
|
Maurastoni M, Han J, Whitfield AE, Rotenberg D. A call to arms: novel strategies for thrips and tospovirus control. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101033. [PMID: 37030512 DOI: 10.1016/j.cois.2023.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/08/2023]
Abstract
Thrips and the tospoviruses they transmit are some of the most significant threats to food and ornamental crop production globally. Control of the insect and virus is challenging and new strategies are needed. Characterizing the thrips-virus interactome provides new targets for disrupting the transmission cycle. Viral and insect determinants of vector competence are being defined, including the viral attachment protein and its structure as well as thrips proteins that interact with and respond to tospovirus infection. Additional thrips control strategies such as RNA interference need further refinement and field-applicable delivery systems, but they show promise for the knockdown of essential genes for thrips survival and virus transmission. The identification of a toxin that acts to deter thrips oviposition on cotton also presents new opportunities for control of this important pest.
Collapse
Affiliation(s)
- Marlonni Maurastoni
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Jinlong Han
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
13
|
Khan F, Stanley D, Kim Y. Two Alimentary Canal Proteins, Fo-G N and Fo-Cyp1, Act in Western Flower Thrips, Frankliniella occidentalis TSWV Infection. INSECTS 2023; 14:insects14020154. [PMID: 36835723 PMCID: PMC9965231 DOI: 10.3390/insects14020154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 05/15/2023]
Abstract
Tomato spotted wilt virus (TSWV) is a plant virus that causes massive economic damage to high-valued crops. This virus is transmitted by specific thrips, including the western flower thrips, Frankliniella occidentalis. TSWV is acquired by the young larvae during feeding on infected host plants. TSWV infects the gut epithelium through hypothetical receptor(s) and multiplies within the cells for subsequent horizontal transmission to other plant hosts via the salivary glands during feeding. Two alimentary canal proteins, glycoprotein (Fo-GN) and cyclophilin (Fo-Cyp1), are thought to be associated with the TSWV entry into the gut epithelium of F. occidentalis. Fo-GN possesses a chitin-binding domain, and its transcript was localized on the larval gut epithelium by fluorescence in situ hybridization (FISH) analysis. Phylogenetic analysis indicated that F. occidentalis encodes six cyclophilins, in which Fo-Cyp1 is closely related to a human cyclophilin A, an immune modulator. The Fo-Cyp1 transcript was also detected in the larval gut epithelium. Expression of these two genes was suppressed by feeding their cognate RNA interference (RNAi) to young larvae. The RNAi efficiencies were confirmed by the disappearance of the target gene transcripts from the gut epithelium by FISH analyses. The RNAi treatments directed to Fo-GN or Fo-Cyp1 prevented the typical TSWV titer increase after the virus feeding, compared to control RNAi treatment. Our immunofluorescence assay using a specific antibody to TSWV documented the reduction of TSWV in the larval gut and adult salivary gland after the RNAi treatments. These results support our hypothesis that the candidate proteins Fo-GN and Fo-Cyp1 act in TSWV entry and multiplication in F. occidentalis.
Collapse
Affiliation(s)
- Falguni Khan
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | - David Stanley
- Biological Control of Insects Research Laboratory, USDA/ARS, 1503 S Providence Road, Columbia, MO 65203, USA
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
- Correspondence: ; Tel.: +82-54-820-5638
| |
Collapse
|
14
|
Shi J, Zhou J, Jiang F, Li Z, Zhu S. The effects of the E3 ubiquitin-protein ligase UBR7 of Frankliniella occidentalis on the ability of insects to acquire and transmit TSWV. PeerJ 2023; 11:e15385. [PMID: 37187513 PMCID: PMC10178284 DOI: 10.7717/peerj.15385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
The interactions between plant viruses and insect vectors are very complex. In recent years, RNA sequencing data have been used to elucidate critical genes of Tomato spotted wilt ortho-tospovirus (TSWV) and Frankliniella occidentalis (F. occidentalis). However, very little is known about the essential genes involved in thrips acquisition and transmission of TSWV. Based on transcriptome data of F. occidentalis infected with TSWV, we verified the complete sequence of the E3 ubiquitin-protein ligase UBR7 gene (UBR7), which is closely related to virus transmission. Additionally, we found that UBR7 belongs to the E3 ubiquitin-protein ligase family that is highly expressed in adulthood in F. occidentalis. UBR7 could interfere with virus replication and thus affect the transmission efficiency of F. occidentalis. With low URB7 expression, TSWV transmission efficiency decreased, while TSWV acquisition efficiency was unaffected. Moreover, the direct interaction between UBR7 and the nucleocapsid (N) protein of TSWV was investigated through surface plasmon resonance and GST pull-down. In conclusion, we found that UBR7 is a crucial protein for TSWV transmission by F. occidentalis, as it directly interacts with TSWV N. This study provides a new direction for developing green pesticides targeting E3 ubiquitin to control TSWV and F. occidentalis.
Collapse
Affiliation(s)
- Junxia Shi
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Junxian Zhou
- Agricultural Technology Service Center of Yunyang County, Chongqing, China
| | - Fan Jiang
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Zhihong Li
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuifang Zhu
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
15
|
Mugerwa H, Gautam S, Catto MA, Dutta B, Brown JK, Adkins S, Srinivasan R. Differential Transcriptional Responses in Two Old World Bemisia tabaci Cryptic Species Post Acquisition of Old and New World Begomoviruses. Cells 2022; 11:cells11132060. [PMID: 35805143 PMCID: PMC9265393 DOI: 10.3390/cells11132060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
Begomoviruses are transmitted by several cryptic species of the sweetpotato whitefly, Bemisia tabaci (Gennadius), in a persistent and circulative manner. Upon virus acquisition and circulative translocation within the whitefly, a multitude of molecular interactions occur. This study investigated the differentially expressed transcript profiles associated with the acquisition of the Old World monopartite begomovirus, tomato yellow leaf curl virus (TYLCV), and two New World bipartite begomoviruses, sida golden mosaic virus (SiGMV) and cucurbit leaf crumple virus (CuLCrV), in two invasive B. tabaci cryptic species, Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED). A total of 881 and 559 genes were differentially expressed in viruliferous MEAM1 and MED whiteflies, respectively, compared with their non-viruliferous counterparts, of which 146 genes were common between the two cryptic species. For both cryptic species, the number of differentially expressed genes (DEGs) associated with TYLCV and SiGMV acquisition were higher compared with DEGs associated with CuLCrV acquisition. Pathway analysis indicated that the acquisition of begomoviruses induced differential changes in pathways associated with metabolism and organismal systems. Contrasting expression patterns of major genes associated with virus infection and immune systems were observed. These genes were generally overexpressed and underexpressed in B. tabaci MEAM1 and MED adults, respectively. Further, no specific expression pattern was observed among genes associated with fitness (egg production, spermatogenesis, and aging) in viruliferous whiteflies. The weighted gene correlation network analysis of viruliferous B. tabaci MEAM1 and MED adults identified different hub genes potentially implicated in the vector competence and circulative tropism of viruses. Taken together, the results indicate that both vector cryptic species and the acquired virus species could differentially affect gene expression.
Collapse
Affiliation(s)
- Habibu Mugerwa
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; (H.M.); (S.G.); (M.A.C.)
| | - Saurabh Gautam
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; (H.M.); (S.G.); (M.A.C.)
| | - Michael A. Catto
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; (H.M.); (S.G.); (M.A.C.)
| | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, 3250 Rainwater Road, Tifton, GA 31793, USA;
| | - Judith K. Brown
- School of Plant Sciences, University of Arizona, Tuscon, AZ 85721, USA;
| | - Scott Adkins
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945, USA;
| | - Rajagopalbabu Srinivasan
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; (H.M.); (S.G.); (M.A.C.)
- Correspondence: ; Tel.: +1-770-229-3099
| |
Collapse
|
16
|
Mahanta DK, Jangra S, Priti, Ghosh A, Sharma PK, Iquebal MA, Jaiswal S, Baranwal VK, Kalia VK, Chander S. Groundnut Bud Necrosis Virus Modulates the Expression of Innate Immune, Endocytosis, and Cuticle Development-Associated Genes to Circulate and Propagate in Its Vector, Thrips palmi. Front Microbiol 2022; 13:773238. [PMID: 35369489 PMCID: PMC8969747 DOI: 10.3389/fmicb.2022.773238] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Thrips palmi (Thysanoptera: Thripidae) is the predominant tospovirus vector in Asia-Pacific region. It transmits economically damaging groundnut bud necrosis virus (GBNV, family Tospoviridae) in a persistent propagative manner. Thrips serve as the alternate host, and virus reservoirs making tospovirus management very challenging. Insecticides and host plant resistance remain ineffective in managing thrips–tospoviruses. Recent genomic approaches have led to understanding the molecular interactions of thrips–tospoviruses and identifying novel genetic targets. However, most of the studies are limited to Frankliniella species and tomato spotted wilt virus (TSWV). Amidst the limited information available on T. palmi–tospovirus relationships, the present study is the first report of the transcriptome-wide response of T. palmi associated with GBNV infection. The differential expression analyses of the triplicate transcriptome of viruliferous vs. nonviruliferous adult T. palmi identified a total of 2,363 (1,383 upregulated and 980 downregulated) significant transcripts. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed the abundance of differentially expressed genes (DEGs) involved in innate immune response, endocytosis, cuticle development, and receptor binding and signaling that mediate the virus invasion and multiplication in the vector system. Also, the gene regulatory network (GRN) of most significant DEGs showed the genes like ABC transporter, cytochrome P450, endocuticle structural glycoprotein, gamma-aminobutyric acid (GABA) receptor, heat shock protein 70, larval and pupal cuticle proteins, nephrin, proline-rich protein, sperm-associated antigen, UHRF1-binding protein, serpin, tyrosine–protein kinase receptor, etc., were enriched with higher degrees of interactions. Further, the expression of the candidate genes in response to GBNV infection was validated in reverse transcriptase-quantitative real-time PCR (RT-qPCR). This study leads to an understanding of molecular interactions between T. palmi and GBNV and suggests potential genetic targets for generic pest control.
Collapse
|
17
|
A Review on Transcriptional Responses of Interactions between Insect Vectors and Plant Viruses. Cells 2022; 11:cells11040693. [PMID: 35203347 PMCID: PMC8870222 DOI: 10.3390/cells11040693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
This review provides a synopsis of transcriptional responses pertaining to interactions between plant viruses and the insect vectors that transmit them in diverse modes. In the process, it attempts to catalog differential gene expression pertinent to virus–vector interactions in vectors such as virus reception, virus cell entry, virus tissue tropism, virus multiplication, and vector immune responses. Whiteflies, leafhoppers, planthoppers, and thrips are the main insect groups reviewed, along with aphids and leaf beetles. Much of the focus on gene expression pertinent to vector–virus interactions has centered around whole-body RNA extraction, whereas data on virus-induced tissue-specific gene expression in vectors is limited. This review compares transcriptional responses in different insect groups following the acquisition of non-persistent, semi-persistent, and persistent (non-propagative and propagative) plant viruses and identifies parallels and divergences in gene expression patterns. Understanding virus-induced changes in vectors at a transcriptional level can aid in the identification of candidate genes for targeting with RNAi and/or CRISPR editing in insect vectors for management approaches.
Collapse
|