1
|
Malinsky M, Talbi M, Zhou C, Maurer N, Sacco S, Shapiro B, Peichel CL, Seehausen O, Salzburger W, Weber JN, Bolnick DI, Green RE, Durbin R. Hi-reComb: constructing recombination maps from bulk gamete Hi-C sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641907. [PMID: 40161681 PMCID: PMC11952307 DOI: 10.1101/2025.03.06.641907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Recombination is central to genetics and to evolution of sexually reproducing organisms. However, obtaining accurate estimates of recombination rates, and of how they vary along chromosomes, continues to be challenging. To advance our ability to estimate recombination rates, we present Hi-reComb, a new method and software for estimation of recombination maps from bulk gamete chromosome conformation capture sequencing (Hi-C). Simulations show that Hi-reComb produces robust, accurate recombination landscapes. With empirical data from sperm of five fish species we show the advantages of this approach, including joint assessment of recombination maps and large structural variants, map comparisons using bootstrap, and workflows with trio phasing vs. Hi-C phasing. With off-the-shelf library construction and a straightforward rapid workflow, our approach will facilitate routine recombination landscape estimation for a broad range of studies and model organisms in genetics and evolutionary biology. Hi-reComb is open-source and freely available at https://github.com/millanek/Hi-reComb.
Collapse
Affiliation(s)
- Milan Malinsky
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland
| | - Marion Talbi
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland
| | - Chenxi Zhou
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Nicholas Maurer
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Samuel Sacco
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Beth Shapiro
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Ole Seehausen
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland
| | - Walter Salzburger
- Department of Environmental Sciences, Zoological Institute, University of Basel, 4051 Basel, Switzerland
| | - Jesse N. Weber
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Richard E. Green
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| |
Collapse
|
2
|
Friedrich J, Bailey RI, Talenti A, Chaudhry U, Ali Q, Obishakin EF, Ezeasor C, Powell J, Hanotte O, Tijjani A, Marshall K, Prendergast J, Wiener P. Mapping restricted introgression across the genomes of admixed indigenous African cattle breeds. Genet Sel Evol 2023; 55:91. [PMID: 38097935 PMCID: PMC10722721 DOI: 10.1186/s12711-023-00861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The genomes of indigenous African cattle are composed of components with Middle Eastern (taurine) and South Asian (indicine) origins, providing a valuable model to study hybridization and to identify genetic barriers to gene flow. In this study, we analysed indigenous African cattle breeds as models of hybrid zones, considering taurine and indicine samples as ancestors. In a genomic cline analysis of whole-genome sequence data, we considered over 8 million variants from 144 animals, which allows for fine-mapping of potential genomic incompatibilities at high resolution across the genome. RESULTS We identified several thousand variants that had significantly steep clines ('SCV') across the whole genome, indicating restricted introgression. Some of the SCV were clustered into extended regions, with the longest on chromosome 7, spanning 725 kb and including 27 genes. We found that variants with a high phenotypic impact (e.g. indels, intra-genic and missense variants) likely represent greater genetic barriers to gene flow. Furthermore, our findings provide evidence that a large proportion of breed differentiation in African cattle could be linked to genomic incompatibilities and reproductive isolation. Functional evaluation of genes with SCV suggest that mitonuclear incompatibilities and genes associated with fitness (e.g. resistance to paratuberculosis) could account for restricted gene flow in indigenous African cattle. CONCLUSIONS To our knowledge, this is the first time genomic cline analysis has been applied to identify restricted introgression in the genomes of indigenous African cattle and the results provide extended insights into mechanisms (e.g. genomic incompatibilities) contributing to hybrid differentiation. These results have important implications for our understanding of genetic incompatibilities and reproductive isolation and provide important insights into the impact of cross-breeding cattle with the aim of producing offspring that are both hardy and productive.
Collapse
Affiliation(s)
- Juliane Friedrich
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| | - Richard I Bailey
- Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland
| | - Andrea Talenti
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Umer Chaudhry
- School of Veterinary Medicine, St. George's University, St. George's, Caribbean, Grenada
| | - Qasim Ali
- Department of Parasitology, The University of Agriculture Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Emmanuel F Obishakin
- Biotechnology Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Chukwunonso Ezeasor
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Jessica Powell
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Midlothian, UK
| | | | - Karen Marshall
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, Nairobi, Kenya
| | - James Prendergast
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Pamela Wiener
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| |
Collapse
|
3
|
Predicting recombination frequency from map distance. Heredity (Edinb) 2023; 130:114-121. [PMID: 36566319 PMCID: PMC9981558 DOI: 10.1038/s41437-022-00585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
Map distance is one of the key measures in genetics and indicates the expected number of crossovers between two loci. Map distance is estimated from the observed recombination frequency using mapping functions, the most widely used of those, Haldane and Kosambi, being developed at the time when the number of markers was low and unobserved crossovers had a substantial effect on the recombination fractions. In contemporary high-density marker data, the probability of multiple crossovers between adjacent loci is negligible and different mapping functions yield the same result, that is, the recombination frequency between adjacent loci is equal to the map distance in Morgans. However, high-density linkage maps contain an interpretation problem: the map distance over a long interval is additive and its association with recombination frequency is not defined. Here, we demonstrate with high-density linkage maps from humans and stickleback fishes that the inverses of Haldane's and Kosambi's mapping functions systematically underpredict recombination frequencies from map distance. To remedy this, we formulate a piecewise function that yields more accurate predictions of recombination frequency from map distance. Our results demonstrate that the association between map distance and recombination frequency is context-dependent and without a universal solution.
Collapse
|