1
|
Saunders PA, Muyle A. Sex Chromosome Evolution: Hallmarks and Question Marks. Mol Biol Evol 2024; 41:msae218. [PMID: 39417444 PMCID: PMC11542634 DOI: 10.1093/molbev/msae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024] Open
Abstract
Sex chromosomes are widespread in species with separate sexes. They have evolved many times independently and display a truly remarkable diversity. New sequencing technologies and methodological developments have allowed the field of molecular evolution to explore this diversity in a large number of model and nonmodel organisms, broadening our vision on the mechanisms involved in their evolution. Diverse studies have allowed us to better capture the common evolutionary routes that shape sex chromosomes; however, we still mostly fail to explain why sex chromosomes are so diverse. We review over half a century of theoretical and empirical work on sex chromosome evolution and highlight pending questions on their origins, turnovers, rearrangements, degeneration, dosage compensation, gene content, and rates of evolution. We also report recent theoretical progress on our understanding of the ultimate reasons for sex chromosomes' existence.
Collapse
Affiliation(s)
- Paul A Saunders
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Aline Muyle
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
2
|
Romero FG, Beaudry FEG, Hovmand Warner E, Nguyen TN, Fitzpatrick JW, Chen N. A new high-quality genome assembly and annotation for the threatened Florida Scrub-Jay (Aphelocoma coerulescens). G3 (BETHESDA, MD.) 2024; 14:jkae232. [PMID: 39328063 PMCID: PMC11631490 DOI: 10.1093/g3journal/jkae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/20/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024]
Abstract
The Florida Scrub-Jay (Aphelocoma coerulescens), a Federally Threatened, cooperatively-breeding bird, is an emerging model system in evolutionary biology and ecology. Extensive individual-based monitoring and genetic sampling for decades has yielded a wealth of data, allowing for the detailed study of social behavior, demography, and population genetics of this natural population. Here, we report a linkage map and a chromosome-level genome assembly and annotation for a female Florida Scrub-Jay made with long-read sequencing technology, chromatin conformation data, and the linkage map. We constructed a linkage map comprising 4,468 SNPs that had 34 linkage groups and a total sex-averaged autosomal genetic map length of 2446.78 cM. The new genome assembly is 1.33 Gb in length, consisting of 33 complete or near-complete autosomes and the sex chromosomes (ZW). This highly contiguous assembly has an NG50 of 68 Mb and a Benchmarking Universal Single-Copy Orthologs (BUSCO) completeness score of 97.1% with respect to the Aves database. The annotated gene set has a BUSCO transcriptome completeness score of 95.5% and 17,964 identified protein-coding genes, 92.5% of which have associated functional annotations. This new, high-quality genome assembly and linkage map of the Florida Scrub-Jay provides valuable tools for future research into the evolutionary dynamics of small, natural populations of conservation concern.
Collapse
Affiliation(s)
- Faye G Romero
- Department of Biology, University of Rochester, Rochester, NY 14620, USA
| | - Felix E G Beaudry
- Department of Biology, University of Rochester, Rochester, NY 14620, USA
- Clinical Translation, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | | | - Tram N Nguyen
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - John W Fitzpatrick
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Nancy Chen
- Department of Biology, University of Rochester, Rochester, NY 14620, USA
| |
Collapse
|
3
|
Hobza R, Bačovský V, Čegan R, Horáková L, Hubinský M, Janíček T, Janoušek B, Jedlička P, Kružlicová J, Kubát Z, Rodríguez Lorenzo JL, Novotná P, Hudzieczek V. Sexy ways: approaches to studying plant sex chromosomes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5204-5219. [PMID: 38652048 PMCID: PMC11389836 DOI: 10.1093/jxb/erae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Sex chromosomes have evolved in many plant species with separate sexes. Current plant research is shifting from examining the structure of sex chromosomes to exploring their functional aspects. New studies are progressively unveiling the specific genetic and epigenetic mechanisms responsible for shaping distinct sexes in plants. While the fundamental methods of molecular biology and genomics are generally employed for the analysis of sex chromosomes, it is often necessary to modify classical procedures not only to simplify and expedite analyses but sometimes to make them possible at all. In this review, we demonstrate how, at the level of structural and functional genetics, cytogenetics, and bioinformatics, it is essential to adapt established procedures for sex chromosome analysis.
Collapse
Affiliation(s)
- Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Radim Čegan
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Lucie Horáková
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Marcel Hubinský
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Janíček
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Bohuslav Janoušek
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Pavel Jedlička
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Jana Kružlicová
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Zdeněk Kubát
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - José Luis Rodríguez Lorenzo
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Pavla Novotná
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Vojtěch Hudzieczek
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| |
Collapse
|
4
|
Saunders PA, Ferre-Ortega C, Hill PL, Simakov O, Ezaz T, Burridge CP, Wapstra E. Using a Handful of Transcriptomes to Detect Sex-Linked Markers and Develop Molecular Sexing Assays in a Species with Homomorphic Sex Chromosomes. Genome Biol Evol 2024; 16:evae060. [PMID: 38526014 PMCID: PMC11003529 DOI: 10.1093/gbe/evae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 03/26/2024] Open
Abstract
To understand the biology of a species, it is often crucial to be able to differentiate males and females. However, many species lack easily identifiable sexually dimorphic traits. In those that possess sex chromosomes, molecular sexing offers a good alternative, and molecular sexing assays can be developed through the comparison of male and female genomic sequences. However, in many nonmodel species, sex chromosomes are poorly differentiated, and identifying sex-linked sequences and developing sexing assays can be challenging. In this study, we highlight a simple transcriptome-based procedure for the detection of sex-linked markers suitable for the development of sexing assays that circumvents limitations of more commonly used approaches. We apply it to the spotted snow skink Carinascincus ocellatus, a viviparous lizard with homomorphic XY chromosomes that has environmentally induced sex reversal. With transcriptomes from three males and three females alone, we identify thousands of putative Y-linked sequences. We confirm linkage through alignment of assembled transcripts to a distantly related lizard genome and readily design multiple single locus polymerase chain reaction primers to sex C. ocellatus and related species. Our approach also facilitates valuable comparisons of sex determining systems on a broad taxonomic scale.
Collapse
Affiliation(s)
- Paul A Saunders
- Discipline of Biological Sciences, University of Tasmania, Sandy Bay, Tasmania 7000, Australia
| | - Carles Ferre-Ortega
- Discipline of Biological Sciences, University of Tasmania, Sandy Bay, Tasmania 7000, Australia
| | - Peta L Hill
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory 2601, Australia
| | - Oleg Simakov
- Department of Molecular Evolution and Development, University of Vienna, Vienna 1010, Austria
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory 2601, Australia
| | - Christopher P Burridge
- Discipline of Biological Sciences, University of Tasmania, Sandy Bay, Tasmania 7000, Australia
| | - Erik Wapstra
- Discipline of Biological Sciences, University of Tasmania, Sandy Bay, Tasmania 7000, Australia
| |
Collapse
|
5
|
Caduff M, Eckel R, Leuenberger C, Wegmann D. Accurate Bayesian inference of sex chromosome karyotypes and sex-linked scaffolds from low-depth sequencing data. Mol Ecol Resour 2024; 24:e13913. [PMID: 38173222 DOI: 10.1111/1755-0998.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
The identification of sex-linked scaffolds and the genetic sex of individuals, i.e. their sex karyotype, is a fundamental step in population genomic studies. If sex-linked scaffolds are known, single individuals may be sexed based on read counts of next-generation sequencing data. If both sex-linked scaffolds as well as sex karyotypes are unknown, as is often the case for non-model organisms, they have to be jointly inferred. For both cases, current methods rely on arbitrary thresholds, which limits their power for low-depth data. In addition, most current methods are limited to euploid sex karyotypes (XX and XY). Here we develop BeXY, a fully Bayesian method to jointly infer the posterior probabilities for each scaffold to be autosomal, X- or Y-linked and for each individual to be any of the sex karyotypes XX, XY, X0, XXX, XXY, XYY and XXYY. If the sex-linked scaffolds are known, it also identifies autosomal trisomies and estimates the sex karyotype posterior probabilities for single individuals. As we show with downsampling experiments, BeXY has higher power than all existing methods. It accurately infers the sex karyotype of ancient human samples with as few as 20,000 reads and accurately infers sex-linked scaffolds from data sets of just a handful of samples or with highly imbalanced sex ratios, also in the case of low-quality reference assemblies. We illustrate the power of BeXY by applying it to both whole-genome shotgun and target enrichment sequencing data of ancient and modern humans, as well as several non-model organisms.
Collapse
Affiliation(s)
- Madleina Caduff
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Raphael Eckel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Christoph Leuenberger
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Daniel Wegmann
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
| |
Collapse
|
6
|
Darolti I, Fong LJM, Sandkam BA, Metzger DCH, Mank JE. Sex chromosome heteromorphism and the Fast-X effect in poeciliids. Mol Ecol 2023; 32:4599-4609. [PMID: 37309716 DOI: 10.1111/mec.17048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
Fast-X evolution has been observed in a range of heteromorphic sex chromosomes. However, it remains unclear how early in the process of sex chromosome differentiation the Fast-X effect becomes detectible. Recently, we uncovered an extreme variation in sex chromosome heteromorphism across poeciliid fish species. The common guppy, Poecilia reticulata, Endler's guppy, P. wingei, swamp guppy, P. picta and para guppy, P. parae, appear to share the same XY system and exhibit a remarkable range of heteromorphism. Species outside this group lack this sex chromosome system. We combined analyses of sequence divergence and polymorphism data across poeciliids to investigate X chromosome evolution as a function of hemizygosity and reveal the causes for Fast-X effects. Consistent with the extent of Y degeneration in each species, we detect higher rates of divergence on the X relative to autosomes, a signal of Fast-X evolution, in P. picta and P. parae, species with high levels of X hemizygosity in males. In P. reticulata, which exhibits largely homomorphic sex chromosomes and little evidence of hemizygosity, we observe no change in the rate of evolution of X-linked relative to autosomal genes. In P. wingei, the species with intermediate sex chromosome differentiation, we see an increase in the rate of nonsynonymous substitutions on the older stratum of divergence only. We also use our comparative approach to test for the time of origin of the sex chromosomes in this clade. Taken together, our study reveals an important role of hemizygosity in Fast-X evolution.
Collapse
Affiliation(s)
- Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Lydia J M Fong
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Benjamin A Sandkam
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - David C H Metzger
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Fong LJM, Darolti I, Metzger DCH, Morris J, Lin Y, Sandkam BA, Mank JE. Evolutionary History of the Poecilia picta Sex Chromosomes. Genome Biol Evol 2023; 15:evad030. [PMID: 36802329 PMCID: PMC10003743 DOI: 10.1093/gbe/evad030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/23/2023] Open
Abstract
The degree of divergence between the sex chromosomes is not always proportional to their age. In poeciliids, four closely related species all exhibit a male heterogametic sex chromosome system on the same linkage group, yet show a remarkable diversity in X and Y divergence. In Poecilia reticulata and P. wingei, the sex chromosomes remain homomorphic, yet P. picta and P. parae have a highly degraded Y chromosome. To test alternative theories about the origin of their sex chromosomes, we used a combination of pedigrees and RNA-seq data from P. picta families in conjunction with DNA-seq data collected from P. reticulata, P. wingei, P. parae, and P. picta. Phylogenetic clustering analysis of X and Y orthologs, identified through segregation patterns, and their orthologous sequences in closely related species demonstrates a similar time of origin for both the P. picta and P. reticulata sex chromosomes. We next used k-mer analysis to identify shared ancestral Y sequence across all four species, suggesting a single origin to the sex chromosome system in this group. Together, our results provide key insights into the origin and evolution of the poeciliid Y chromosome and illustrate that the rate of sex chromosome divergence is often highly heterogenous, even over relatively short evolutionary time frames.
Collapse
Affiliation(s)
- Lydia J M Fong
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Canada
| | - Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Canada
| | - David C H Metzger
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Canada
| | - Jake Morris
- Department of Zoology, University of Cambridge, United Kingdom
| | - Yuying Lin
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Canada
| | | | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Canada
| |
Collapse
|
8
|
von Seth J, van der Valk T, Lord E, Sigeman H, Olsen RA, Knapp M, Kardailsky O, Robertson F, Hale M, Houston D, Kennedy E, Dalén L, Norén K, Massaro M, Robertson BC, Dussex N. Genomic trajectories of a near-extinction event in the Chatham Island black robin. BMC Genomics 2022; 23:747. [PMID: 36357860 PMCID: PMC9647977 DOI: 10.1186/s12864-022-08963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Understanding the micro--evolutionary response of populations to demographic declines is a major goal in evolutionary and conservation biology. In small populations, genetic drift can lead to an accumulation of deleterious mutations, which will increase the risk of extinction. However, demographic recovery can still occur after extreme declines, suggesting that natural selection may purge deleterious mutations, even in extremely small populations. The Chatham Island black robin (Petroica traversi) is arguably the most inbred bird species in the world. It avoided imminent extinction in the early 1980s and after a remarkable recovery from a single pair, a second population was established and the two extant populations have evolved in complete isolation since then. Here, we analysed 52 modern and historical genomes to examine the genomic consequences of this extreme bottleneck and the subsequent translocation. RESULTS We found evidence for two-fold decline in heterozygosity and three- to four-fold increase in inbreeding in modern genomes. Moreover, there was partial support for temporal reduction in total load for detrimental variation. In contrast, compared to historical genomes, modern genomes showed a significantly higher realised load, reflecting the temporal increase in inbreeding. Furthermore, the translocation induced only small changes in the frequency of deleterious alleles, with the majority of detrimental variation being shared between the two populations. CONCLUSION Our results highlight the dynamics of mutational load in a species that recovered from the brink of extinction, and show rather limited temporal changes in mutational load. We hypothesise that ancestral purging may have been facilitated by population fragmentation and isolation on several islands for thousands of generations and may have already reduced much of the highly deleterious load well before human arrival and introduction of pests to the archipelago. The majority of fixed deleterious variation was shared between the modern populations, but translocation of individuals with low mutational load could possibly mitigate further fixation of high-frequency deleterious variation.
Collapse
Affiliation(s)
- Johanna von Seth
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden.
| | - Tom van der Valk
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Edana Lord
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Hanna Sigeman
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden
- Ecology and Genetics Research Unit, University of Oulu, 90014, Oulu, Finland
| | - Remi-André Olsen
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 17121, Solna, Sweden
| | - Michael Knapp
- Department of Anatomy, University of Otago, Dunedin, 9054, New Zealand
- Coastal People Southern Skies Centre of Research Excellence, University of Otago, PO Box 56, Dunedin, 9054, Aotearoa, New Zealand
| | - Olga Kardailsky
- Department of Anatomy, University of Otago, Dunedin, 9054, New Zealand
| | - Fiona Robertson
- Department of Zoology, University of Otago, Dunedin, 9054, New Zealand
| | - Marie Hale
- School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Dave Houston
- Department of Conservation, Biodiversity Group, Auckland, New Zealand
| | - Euan Kennedy
- Department of Conservation, Science and Capability, Christchurch, New Zealand
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Karin Norén
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Melanie Massaro
- School of Agricultural, Environmental and Veterinary Sciences and Gulbali Institute, Charles Sturt University, PO Box 789, Albury, NSW, Australia
| | - Bruce C Robertson
- Department of Zoology, University of Otago, Dunedin, 9054, New Zealand
| | - Nicolas Dussex
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|