1
|
Xu X, Wu C, Fan L, Zhang F, Yao J, Liu Z, Yao Y. Separation and identification of nematicidal active compounds in culture filtrate of Streptomyces aquilus JXGZ01 based on metabolomic analysis. PEST MANAGEMENT SCIENCE 2025. [PMID: 40186508 DOI: 10.1002/ps.8816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/24/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Meloidogyne incognita is one of the pathogenic nematodes with the widest range and most serious damage, which can infest many food and cash crops. We screened a strain of Streptomyces aquilus JXGZ01, whose culture filtrate showed excellent nematicidal activity and egg hatching inhibition activity against M. incognita. In this study, we performed metabolomic analysis of the culture filtrate of this strain. RESULTS The data showed that of the total 304 differential metabolites, 244 were significantly up-regulated and 60 were significantly down-regulated. Seven compounds with large fold changes were selected from the up-regulated metabolites to test the nematicidal activity against M. incognita. The mortality of M. incognita in both 5 and 10 mg mL-1 of 4-acetylaminobutyric acid was more than 85%. The mortality of M. incognita in both 10 and 100 mg mL-1 of (R)-(-)-2-phenylglycinol was more than 70%. The mortality rate of M. incognita in 100 mg of N-acetyl-l-glutamic acid was 78.25%. In addition, the hatching inhibition rate of egg masses were more than 90% for both 5 and 10 mg mL-1 of 4-acetylaminobutyric acid. The hatching inhibition rate of egg masses were more than 80% for 100 mg and 10 mg (R)-(-)-2-phenylglycinol. The hatching inhibition rate of 100 mg N-acetyl-l-glutamic acid on eggs was 93.47%. CONCLUSION The results demonstrate that S. aquilus can be a candidate microorganism for the biological control of M. incognita, and its metabolites 4-acetylaminobutyric acid and (R)-(-)-2-phenylglycinol had great potential as nematicides. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xueliang Xu
- Jiangxi Provincial Key Laboratory of Agricultural Non-point Source Pollution Control and Waste Comprehensive Utilization, Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Caiyun Wu
- Jiangxi Provincial Key Laboratory of Agricultural Non-point Source Pollution Control and Waste Comprehensive Utilization, Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Linjuan Fan
- Jiangxi Provincial Key Laboratory of Agricultural Non-point Source Pollution Control and Waste Comprehensive Utilization, Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Fan Zhang
- Jiangxi Provincial Key Laboratory of Agricultural Non-point Source Pollution Control and Waste Comprehensive Utilization, Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Jian Yao
- Jiangxi Provincial Key Laboratory of Agricultural Non-point Source Pollution Control and Waste Comprehensive Utilization, Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Zirong Liu
- Jiangxi Provincial Key Laboratory of Agricultural Non-point Source Pollution Control and Waste Comprehensive Utilization, Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yingjuan Yao
- Jiangxi Provincial Key Laboratory of Agricultural Non-point Source Pollution Control and Waste Comprehensive Utilization, Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| |
Collapse
|
2
|
Li X, Liu X, Yang M, Wang B, Tan Y, Liao XP, Shi B. Enhanced undecylprodigiosin production using collagen hydrolysate: a cost-effective and high-efficiency synthesis strategy. J Mater Chem B 2025; 13:1653-1665. [PMID: 39749654 DOI: 10.1039/d4tb02171a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Undecylprodigiosin (UDP), a desirable pyrrole-based biomaterial, holds significant promise in pharmaceutical and medical applications due to its diverse biological activities. However, its application is usually hampered by low synthesis efficiency and high production costs. Here, we developed a high-efficiency and cost-effective strategy for UDP synthesis using collagen hydrolysate (COH) as a readily available and abundant precursor source in conjunction with Streptomyces sp. SLL-523. COH obviously accelerated the proliferation of Streptomyces sp. SLL-523. Replacing muscle hydrolysate with COH resulted in a 7-fold increase in UDP yield and a 10-fold reduction in fermentation time, indicating that COH significantly enhanced the synthesis efficiency of UDP. Besides, COH remarkably increased the intracellular levels of UDP precursor amino acids (AAs). Whole-genome analysis of Streptomyces sp. SLL-523 revealed the gene clusters responsible for UDP synthesis and COH utilization. COH markedly stimulated the expression of genes involved in the metabolism pathways of energy, transporters, peptides, and AAs, ultimately promoting the UDP synthesis. Significantly, COH efficiently triggered and boosted the expression of key genes in the UDP biosynthesis pathway, including redQ, redM, redN, and redL, leading to highly efficient UDP synthesis. Thus, this innovative approach provides a novel framework for the high-efficiency synthesis of natural pyrrole biomedical materials based on renewable nitrogen-contained biomass.
Collapse
Affiliation(s)
- Xia Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China.
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Xian Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ming Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Bo Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yin Tan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xue-Pin Liao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China.
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Bi Shi
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China.
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Zhu C, Li X, Gao Y, Yang X, Gao Y, Li K. Potential of Streptomyces rochei G-6 for Biocontrol of Cucumber Wilt Disease and Growth Enhancement. J Fungi (Basel) 2024; 10:885. [PMID: 39728381 DOI: 10.3390/jof10120885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Cucumber wilt disease, caused by Fusarium oxysporum f. sp. cucumerinum (FOC), is a major threat to cucumber production, especially in greenhouses. This study used a fermentation product derived from a new strain of Streptomyces rochei (G-6) to investigate the potential for biocontrol of cucumber wilt disease and the effect on promoting cucumber growth. In the first experiment, the inhibitory effect of S. rochei G-6 fermentation product (SGFP) on FOC growth was evaluated, then the effect of SGFP on wilt incidence and severity, as well as cucumber growth, antioxidant system, and soil nutrient conversion capacity were investigated. The results showed that SGFP inhibited FOC growth by 85.3% in the antimicrobial experiment. In the potting experiment, the incidence rate in the FOC group reached 88.7%, but it was only 56.0% in the SGFP1 group and 64.7% in the SGFP2 group, indicating the efficient inhibitory effect of SGFP on cucumber wilt, with the biocontrol effect of SGFP1 being higher than that of SGFP2. In addition, the disease index decreased significantly (p < 0.05) in both SGFP treatments, which was significantly (p < 0.05) lower in the SGFP1 group than in the SGFP2 group, indicating that pre-treatment was better than post-treatment in reducing the disease severity. In addition, SGFP promoted the growth of cucumber seedlings, as indicated by indicators related to the growth of aboveground and underground parts. Furthermore, the activities of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) in the cucumber seedlings increased after SGFP treatment and the malondialdehyde level was decreased, indicating a reduction in oxidative stress. SGFP also improved the soil nutrient conversion capacity by increasing the activities of urease, phosphatase, and sucrase, which may enhance nutrient uptake by cucumber seedling. The findings of this study suggest that SGFP is an effective biocontrol agent against cucumber wilt and also promotes cucumber growth by regulating the antioxidant system and soil environment, and its application is a promising solution to reduce wilt incidence in cucumber production.
Collapse
Affiliation(s)
- Chengyu Zhu
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Xin Li
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Yan Gao
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Xueying Yang
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Yuliang Gao
- Vegetable Research Institute of Yanbian Agricultural Sciences Academy, Longjing 133400, China
| | - Kuihua Li
- Agricultural College, Yanbian University, Yanji 133002, China
| |
Collapse
|
4
|
Li J, Wang K, Luo S, Tian Y, Li Y, Hu S, Tan H, Zhang J, Li J. Co-expression of a pair of interdependent regulators coding genes ovmZ and ovmW awakens the production of angucyclinones antibiotics in Streptomyces neyagawaensis. Microb Cell Fact 2024; 23:202. [PMID: 39026365 PMCID: PMC11264864 DOI: 10.1186/s12934-024-02478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Microbial genome sequencing and analysis revealed the presence of abundant silent secondary metabolites biosynthetic gene clusters (BGCs) in streptomycetes. Activating these BGCs has great significance for discovering new compounds and novel biosynthetic pathways. RESULTS In this study, we found that ovmZ and ovmW homologs, a pair of interdependent transcriptional regulators coding genes, are widespread in actinobacteria and closely associated with the biosynthesis of secondary metabolites. Through co-overexpression of native ovmZ and ovmW in Streptomyces neyagawaensis NRRL B-3092, a silent type II polyketide synthase (PKS) gene cluster was activated to produce gephyromycin A, tetrangomycin and fridamycin E with the yields of 22.3 ± 8.0 mg/L, 4.8 ± 0.5 mg/L and 20.3 ± 4.1 mg/L respectively in the recombinant strain of S.ne/pZnWn. However, expression of either ovmZ or ovmW failed to activate this gene cluster. Interestingly, overexpression of the heterologous ovmZ and ovmW pair from oviedomycin BGC of S. ansochromogenes 7100 also led to awakening of this silent angucyclinone BGC in S. neyagawaensis. CONCLUSION A silent angucyclinone BGC was activated by overexpressing both ovmZ and ovmW in S. neyagawaensis. Due to the wide distribution of ovmZ and ovmW in the BGCs of actinobacteria, co-overexpression of ovmZ and ovmW could be a strategy for activating silent BGCs, thus stimulating the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Junyue Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sainan Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqing Tian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yue Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jihui Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jine Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
5
|
Lu Y, Liu D, Jiang R, Li Z, Gao X. Prodigiosin: unveiling the crimson wonder - a comprehensive journey from diverse bioactivity to synthesis and yield enhancement. Front Microbiol 2024; 15:1412776. [PMID: 38903802 PMCID: PMC11188435 DOI: 10.3389/fmicb.2024.1412776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Prodigiosin (PG) is a red tripyrrole pigment from the prodiginine family that has attracted widespread attention due to its excellent biological activities, including anticancer, antibacterial and anti-algal activities. The synthesis and production of PG is of particular significance, as it has the potential to be utilized in a number of applications, including those pertaining to clinical drug development, food safety, and environmental management. This paper provides a systematic review of recent research on PG, covering aspects like chemical structure, bioactivity, biosynthesis, gene composition and regulation, and optimization of production conditions, with a particular focus on the biosynthesis and regulation of PG in Serratia marcescens. This provides a solid theoretical basis for the drug development and production of PG, and is expected to promote the further development of PG in medicine and other applications.
Collapse
Affiliation(s)
- Yonglin Lu
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Derun Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Renhui Jiang
- Jinan Vocational College of Nursing, Jinan, China
| | - Ziyun Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xueyan Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
6
|
Feng NX, Li DW, Zhang F, Bin H, Huang YT, Xiang L, Liu BL, Cai QY, Li YW, Xu DL, Xie Y, Mo CH. Biodegradation of phthalate acid esters and whole-genome analysis of a novel Streptomyces sp. FZ201 isolated from natural habitats. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133972. [PMID: 38461665 DOI: 10.1016/j.jhazmat.2024.133972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Di-n-butyl phthalate (DBP) is one of the most extensively used phthalic acid esters (PAEs) and is considered to be an emerging, globally concerning pollutant. The genus Streptomyces holds promise as a degrader of various organic pollutants, but PAE biodegradation mechanisms by Streptomyces species remain unsolved. In this study, a novel PAE-degrading Streptomyces sp. FZ201 isolated from natural habitats efficiently degraded various PAEs. FZ201 had strong resilience against DBP and exhibited immediate degradation, with kinetics adhering to a first-order model. The comprehensive biodegradation of DBP involves de-esterification, β-oxidation, trans-esterification, and aromatic ring cleavage. FZ201 contains numerous catabolic genes that potentially facilitate PAE biodegradation. The DBP metabolic pathway was reconstructed by genome annotation and intermediate identification. Streptomyces species have an open pangenome with substantial genome expansion events during the evolutionary process, enabling extensive genetic diversity and highly plastic genomes within the Streptomyces genus. FZ201 had a diverse array of highly expressed genes associated with the degradation of PAEs, potentially contributing significantly to its adaptive advantage and efficiency of PAE degradation. Thus, FZ201 is a promising candidate for remediating highly PAE-contaminated environments. These findings enhance our preliminary understanding of the molecular mechanisms employed by Streptomyces for the removal of PAEs.
Collapse
Affiliation(s)
- Nai-Xian Feng
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fei Zhang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Bin
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi-Tong Huang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bai-Lin Liu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - De-Lin Xu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yunchang Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China.
| | - Ce-Hui Mo
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
7
|
Yi JS, Kim JM, Ban YH, Yoon YJ. Modular polyketide synthase-derived insecticidal agents: from biosynthesis and metabolic engineering to combinatorial biosynthesis for their production. Nat Prod Rep 2023; 40:972-987. [PMID: 36691749 DOI: 10.1039/d2np00078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Covering: up to 2022Polyketides derived from actinomycetes are a valuable source of eco-friendly biochemical insecticides. The development of new insecticides is urgently required, as the number of insects resistant to more than one drug is rapidly increasing. Moreover, significant enhancement of the production of such biochemical insecticides is required for economical production. There has been considerable improvement in polyketide insecticidal agent production and development of new insecticides. However, most commercially important biochemical insecticides are synthesized by modular type I polyketide synthases (PKSs), and their structural complexities make chemical modification challenging. A detailed understanding of the biosynthetic mechanisms of potent polyketide insecticides and the structure-activity relationships of their analogs will provide insight into the comprehensive design of new insecticides with improved efficacies. Further metabolic engineering and combinatorial biosynthesis efforts, reinvigorated by synthetic biology, can eventually produce designed analogs in large quantities. This highlight reviews the biosynthesis of representative insecticides produced by modular type I PKSs, such as avermectin, spinosyn, and spectinabilin, and their insecticidal properties. Metabolic engineering and combinatorial biosynthetic strategies for the development of high-yield strains and analogs with insecticidal activities are emphasized, proposing a way to develop a next-generation insecticide.
Collapse
Affiliation(s)
- Jeong Sang Yi
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jung Min Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Yeon Hee Ban
- College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Yeo Joon Yoon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|