1
|
He XC, Shao JX, Zou W, Zhang SX, Zhu L, Ji MC, Gu CH, Yang LY. Genome-wide identification and expression analysis of PP2C gene families in two Chimonanthus species. Genetica 2025; 153:17. [PMID: 40317425 DOI: 10.1007/s10709-025-00233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
The protein phosphatase 2 C (PP2C) plays a crucial role in the growth and development of plants. However, limited information on the PP2C genes in Chimonanthus spp. is available. Therefore, the comprehensive genome-wide identification and analysis of the PP2Cs gene family is necessary in Chimonanthus spp. to provide basic information for further study. In this work, 93 members of the CsPP2C gene family and 85 members of the CpPP2C gene family were identified. Based on the phylogenetic analysis, 93 CsPP2Cs and 85 CpPP2Cs genes were classified into 13 subgroups. Based on RNA-Seq data, specific expression patterns of CsPP2Cs in different tissues were identified. CsPP2C28, CsPP2C55, and CsPP2C17 showed high expression during leaf senescence, and combined with cis-element analysis, it is speculated that they may participate in regulating plant senescence. CsPP2C47, CsPP2C27, CsPP2C42, and CsPP2C41 may play an important role in responding to abscisic acid during seed dormancy and germination. These results contribute to a deeper understanding of the functions of the CsPP2C gene family and CpPP2C gene family, and providing candidate genes for genetic engineering and breeding to enhance important traits such as stress resistance and growth development in C. salicifolius and C. praecox.
Collapse
Affiliation(s)
- Xin-Chen He
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Jie-Xin Shao
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Wei Zou
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Shu-Xiao Zhang
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Li Zhu
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
| | - Meng-Cheng Ji
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China.
| | - Cui-Hua Gu
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China.
| | - Li-Yuan Yang
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China.
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
2
|
Yang J, Chen R, Liu W, Fan C. Genome-wide identification, phylogenetic investigation and abiotic stress responses analysis of the PP2C gene family in litchi ( Litchi chinensis Sonn.). FRONTIERS IN PLANT SCIENCE 2025; 16:1547526. [PMID: 40353233 PMCID: PMC12063536 DOI: 10.3389/fpls.2025.1547526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/25/2025] [Indexed: 05/14/2025]
Abstract
As an important regulatory protein phosphatase in the abscisic acid (ABA) signal transduction pathway and mitogen-activated protein kinases (MAPK) cascade, type-2C protein phosphatase (PP2C) plays crucial roles in plant responses to abiotic stresses. However, the PP2C gene family's responses to abiotic stress in litchi (Litchi chinensis Sonn.) have not been systematically studied. In this study, we predicted the 68 PP2C (designated LcPP2C) genes randomly distributed across fourteen chromosomes in the litchi genome. Phylogenetic tree analysis among litchi, Arabidopsis (Arabidopsis thaliana), and rice (Oryza sativa) revealed that the phylogenetic tree was divided into thirteen groups (A, B, C, D, E, F1, F2, G, H, I, J, K, and L). Closely linked LcPP2C genes within the same group exhibited various similarities in gene structures and motif compositions. Collinearity analysis demonstrated that segmental duplication (SD) events were the main dramatically increasing numbers in the LcPP2C gene family members. Cis-acting element analysis revealed that the 68 LcPP2C genes contained hormone and stress response elements with varying quantities, implying their potential in litchi stress resistance. Expression analysis showed that all the LcPP2C genes exhibited varying expression levels across nine different litchi tissues, more than 50% of genes within each group displayed similar tissue-specific expression patterns. The expression intensity, duration and regulation direction (up- or down-regulation) of the LcPP2C genes were varied under different abiotic stresses (cold, heat, and drought). The physiological and biochemical tests indicated that eight activation indexes (peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), proline (PRO), soluble protein (SP), hydrogen peroxide (H2O2), and soluble sugar (SS)) increase at different level. Additionally, we analyzed physicochemical properties, subcellular locations, and secondary structures of the LcPP2C family members. Notably, the extensive connectivity of LcPP2C32/60/9/37 underscored their vital roles in orchestrating and regulating biomolecular networks. These results provide valuable information for the identification of the LcPP2C genes and ideas for the cultivation of its transgenic induction lines in litchi.
Collapse
Affiliation(s)
| | | | | | - Chao Fan
- Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
3
|
Wang X, Shang W, Li M, Cao F, Wang D, Wang M, Lu Y, Zhang H, Shen F, Liu J. Identification and characterization of CmPP2C31 playing a positive role in the abiotic stress resistance of Chinese chestnut via an integrated strategy. FRONTIERS IN PLANT SCIENCE 2024; 15:1491269. [PMID: 39735773 PMCID: PMC11671270 DOI: 10.3389/fpls.2024.1491269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024]
Abstract
Chinese chestnut (Castanea mollissima Blume) is an important economic forest tree species and mainly cultivated in mountainous areas and wastelands, subjecting it to various abiotic stresses. The protein phosphatase 2C (PP2C) genes contributes largely to stress responses in plants. However, the characteristics and functions of PP2C genes in C. mollissima remain unknown. This study provides comprehensive analyses (including phylogenetic, synteny, RNA-seq, transgenic and yeast one-hybrid methods) revealing the characteristics of CmPP2C gene, which plays an important role in response to abiotic stress. Here, we identified 68 CmPP2Cs in the Chinese chestnut genome, and analyzed their characteristics and phylogenetic relationships. Furthermore, synteny analysis revealed that segmental and tandem duplication drove the expansion of the CmPP2C family to adapt to natural environmental pressures. RNA sequencing and co-expression analyses indicated that four hub CmPP2Cs in two key modules probably play important roles in the resistance to abiotic stress in chestnut. Among them, CmPP2C31 was significantly down-regulated under drought stress. Transgenic experiments via pollen magnetofection revealed that CmPP2C31 could positively and significantly regulate the drought resistance of Chinese chestnut seedlings. Subcellular localization showed that CmPP2C31 was a nuclear protein. Yeast one-hybrid assays suggested that EVM0007407 could regulate CmPP2C31 expression by binding to its promoter, thereby participating in abiotic stress resistance. These findings in our study provided detailed information on the CmPP2C family genes and laid a foundation for further elucidating the molecular mechanism of resistance to abiotic stress chestnut.
Collapse
Affiliation(s)
- Xuan Wang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
| | - Wenli Shang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
| | - Mingyuan Li
- Rural Revitalization Research Center, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Fei Cao
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
| | - Dongsheng Wang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Meng Wang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Yi Lu
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Haie Zhang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Fei Shen
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Liu
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| |
Collapse
|
4
|
Zhang X, Yang H, Wang X, Wang X, Chen C. Genome-Wide Identification and Characterization of OSC Gene Family in Gynostemma pentaphyllum (Cucurbitaceae). Life (Basel) 2024; 14:1599. [PMID: 39768308 PMCID: PMC11676476 DOI: 10.3390/life14121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Gynostemma pentaphyllum is a traditional Chinese medicinal plant of considerable application value and commercial potential, primarily due to its production of various bioactive compounds, particularly dammarane-type triterpenoid saponins that are structurally analogous to ginsenosides. Oxidosqualene cyclase (OSC), a pivotal enzyme in the biosynthesis of triterpenoid metabolites in plants, catalyzes the conversion of oxidosqualene into triterpenoid precursors, which are essential components of the secondary metabolites found in G. pentaphyllum. To elucidate the role of OSC gene family members in the synthesis of gypenosides within G. pentaphyllum, this study undertook a comprehensive genome-wide identification and characterization of OSC genes within G. pentaphyllum and compared their expression levels across populations distributed over different geographical regions by both transcriptome sequencing and qRT-PCR experimental validation. The results identified a total of 11 members of the OSC gene family within the genome of G. pentaphyllum. These genes encode proteins ranging from 356 to 767 amino acids, exhibiting minor variations in their physicochemical properties, and are localized in peroxisomes, cytoplasm, plasma membranes, and lysosomes. All GpOSCs contain highly conserved DCTAE and QW sequences that are characteristic of the OSC gene family. A phylogenetic analysis categorized the GpOSCs into four distinct subfamilies. A cis-element analysis of the GpOSC promoters revealed a substantial number of abiotic stress-related elements, indicating that these genes may respond to drought conditions, low temperatures, and anaerobic environments, thus potentially contributing to the stress resistance observed in G. pentaphyllum. Expression analyses across different G. pentaphyllum populations demonstrated significant variability in OSC gene expression among geographically diverse samples of G. pentaphyllum, likely attributable to genetic variation or external factors such as environmental conditions and soil composition. These differences may lead to the synthesis of various types of gypenosides within geographically distinct G. pentaphyllum populations. The findings from this study enhance our understanding of both the evolutionary history of the OSC gene family in G. pentaphyllum and the biosynthetic mechanisms underlying triterpenoid compounds. This knowledge is essential for investigating molecular mechanisms involved in forming dammarane-type triterpenoid saponins as well as comprehending geographical variations within G. pentaphyllum populations. Furthermore, this research lays a foundation for employing plant genetic engineering techniques aimed at increasing gypenoside content.
Collapse
Affiliation(s)
- Xiao Zhang
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, Xi’an 710061, China; (X.Z.); (X.W.); (X.W.)
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, No. 17 Cuihua South Road, Xi’an 710061, China
- College of Life Sciences, Northwest University, Xi’an 710069, China;
| | - Huan Yang
- College of Life Sciences, Northwest University, Xi’an 710069, China;
| | - Xuan Wang
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, Xi’an 710061, China; (X.Z.); (X.W.); (X.W.)
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, No. 17 Cuihua South Road, Xi’an 710061, China
| | - Xiaoting Wang
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, Xi’an 710061, China; (X.Z.); (X.W.); (X.W.)
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, No. 17 Cuihua South Road, Xi’an 710061, China
- School of Life Science, Shaanxi Normal University, Xi’an 710119, China
| | - Chen Chen
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, Xi’an 710061, China; (X.Z.); (X.W.); (X.W.)
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, No. 17 Cuihua South Road, Xi’an 710061, China
| |
Collapse
|
5
|
Zhang P, Liu D, Ma J, Sun C, Wang Z, Zhu Y, Zhang X, Liu Y. Genome-wide analysis and expression pattern of the ZoPP2C gene family in Zingiber officinale Roscoe. BMC Genomics 2024; 25:83. [PMID: 38245685 PMCID: PMC10799369 DOI: 10.1186/s12864-024-09966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Protein phosphatases type 2C (PP2C) are heavily involved in plant growth and development, hormone-related signaling pathways and the response of various biotic and abiotic stresses. However, a comprehensive report identifying the genome-scale of PP2C gene family in ginger is yet to be published. RESULTS In this study, 97 ZoPP2C genes were identified based on the ginger genome. These genes were classified into 15 branches (A-O) according to the phylogenetic analysis and distributed unevenly on 11 ginger chromosomes. The proteins mainly functioned in the nucleus. Similar motif patterns and exon/intron arrangement structures were identified in the same subfamily of ZoPP2Cs. Collinearity analysis indicated that ZoPP2Cs had 33 pairs of fragment duplicated events uniformly distributed on the corresponding chromosomes. Furthermore, ZoPP2Cs showed greater evolutionary proximity to banana's PP2Cs. The forecast of cis-regulatory elements and transcription factor binding sites demonstrated that ZoPP2Cs participate in ginger growth, development, and responses to hormones and stresses. ZoERFs have plenty of binding sites of ZoPP2Cs, suggesting a potential synergistic contribution between ZoERFs and ZoPP2Cs towards regulating growth/development and adverse conditions. The protein-protein interaction network displayed that five ZoPP2Cs (9/23/26/49/92) proteins have robust interaction relationship and potential function as hub proteins. Furthermore, the RNA-Seq and qRT-PCR analyses have shown that ZoPP2Cs exhibit various expression patterns during ginger maturation and responses to environmental stresses such as chilling, drought, flooding, salt, and Fusarium solani. Notably, exogenous application of melatonin led to notable up-regulation of ZoPP2Cs (17/59/11/72/43) under chilling stress. CONCLUSIONS Taken together, our investigation provides significant insights of the ginger PP2C gene family and establishes the groundwork for its functional validation and genetic engineering applications.
Collapse
Affiliation(s)
- Pan Zhang
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Deqi Liu
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiawei Ma
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Chong Sun
- Special Plants Institute, College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Zhaofei Wang
- Special Plants Institute, College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Yongxing Zhu
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xuemei Zhang
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Yiqing Liu
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China.
- Special Plants Institute, College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| |
Collapse
|
6
|
Zhou H, Ma J, Liu H, Zhao P. Genome-Wide Identification of the CBF Gene Family and ICE Transcription Factors in Walnuts and Expression Profiles under Cold Conditions. Int J Mol Sci 2023; 25:25. [PMID: 38203199 PMCID: PMC10778614 DOI: 10.3390/ijms25010025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Cold stress impacts woody tree growth and perennial production, especially when the temperature rapidly changes in late spring. To address this issue, we conducted the genome-wide identification of two important transcription factors (TFs), CBF (C-repeat binding factors) and ICE (inducers of CBF expression), in three walnut (Juglans) genomes. Although the CBF and ICE gene families have been identified in many crops, very little systematic analysis of these genes has been carried out in J. regia and J. sigillata. In this study, we identified a total of 16 CBF and 12 ICE genes in three Juglans genomes using bioinformatics analysis. Both CBF and ICE had conserved domains, motifs, and gene structures, which suggests that these two TFs were evolutionarily conserved. Most ICE genes are located at both ends of the chromosomes. The promoter cis-regulatory elements of CBF and ICE genes are largely involved in light and phytohormone responses. Based on 36 RNA sequencing of leaves from four walnut cultivars ('Zijing', 'Lvling', 'Hongren', and 'Liao1') under three temperature conditions (8 °C, 22 °C, and 5 °C) conditions in late spring, we found that the ICE genes were expressed more highly than CBFs. Both CBF and ICE proteins interacted with cold-related proteins, and many putative miRNAs had interactions with these two TFs. These results determined that CBF1 and ICE1 play important roles in the tolerance of walnut leaves to rapid temperature changes. Our results provide a useful resource on the function of the CBF and ICE genes related to cold tolerance in walnuts.
Collapse
Affiliation(s)
- Huijuan Zhou
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an 710061, China;
| | - Jiayu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (J.M.); (H.L.)
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (J.M.); (H.L.)
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (J.M.); (H.L.)
| |
Collapse
|
7
|
Liu Q, Qin B, Zhang D, Liang X, Yang Y, Wang L, Wang M, Zhang Y. Identification and Characterization of the HbPP2C Gene Family and Its Expression in Response to Biotic and Abiotic Stresses in Rubber Tree. Int J Mol Sci 2023; 24:16061. [PMID: 38003251 PMCID: PMC10671201 DOI: 10.3390/ijms242216061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Plant PP2C genes are crucial for various biological processes. To elucidate the potential functions of these genes in rubber tree (Hevea brasiliensis), we conducted a comprehensive analysis of these genes using bioinformatics methods. The 60 members of the PP2C family in rubber tree were identified and categorized into 13 subfamilies. The PP2C proteins were conserved across different plant species. The results revealed that the HbPP2C genes contained multiple elements responsive to phytohormones and stresses in their promoters, suggesting their involvement in these pathways. Expression analysis indicated that 40 HbPP2C genes exhibited the highest expression levels in branches and the lowest expression in latex. Additionally, the expression of A subfamily members significantly increased in response to abscisic acid, drought, and glyphosate treatments, whereas the expression of A, B, D, and F1 subfamily members notably increased under temperature stress conditions. Furthermore, the expression of A and F1 subfamily members was significantly upregulated upon powdery mildew infection, with the expression of the HbPP2C6 gene displaying a remarkable 33-fold increase. These findings suggest that different HbPP2C subgroups may have distinct roles in the regulation of phytohormones and the response to abiotic and biotic stresses in rubber tree. This study provides a valuable reference for further investigations into the functions of the HbPP2C gene family in rubber tree.
Collapse
Affiliation(s)
- Qifeng Liu
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Q.L.); (D.Z.); (X.L.); (Y.Y.)
| | - Bi Qin
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (B.Q.); (L.W.)
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture and Rural Affairs, Danzhou 571737, China
| | - Dong Zhang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Q.L.); (D.Z.); (X.L.); (Y.Y.)
| | - Xiaoyu Liang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Q.L.); (D.Z.); (X.L.); (Y.Y.)
| | - Ye Yang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Q.L.); (D.Z.); (X.L.); (Y.Y.)
| | - Lifeng Wang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (B.Q.); (L.W.)
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture and Rural Affairs, Danzhou 571737, China
| | - Meng Wang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Q.L.); (D.Z.); (X.L.); (Y.Y.)
| | - Yu Zhang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Q.L.); (D.Z.); (X.L.); (Y.Y.)
| |
Collapse
|
8
|
Chen Y, Zhao H, Wang Y, Qiu X, Gao G, Zhu A, Chen P, Wang X, Chen K, Chen J, Chen P, Chen J. Genome-Wide Identification and Expression Analysis of BnPP2C Gene Family in Response to Multiple Stresses in Ramie ( Boehmeria nivea L.). Int J Mol Sci 2023; 24:15282. [PMID: 37894962 PMCID: PMC10607689 DOI: 10.3390/ijms242015282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The protein phosphatase 2C (PP2C), a key regulator of the ABA signaling pathway, plays important roles in plant growth and development, hormone signaling, and abiotic stress response. Although the PP2C gene family has been identified in many species, systematic analysis was still relatively lacking in ramie (Boehmeria nivea L.). In the present study, we identified 63 BnPP2C genes from the ramie genome, using bioinformatics analysis, and classified them into 12 subfamilies, and this classification was consistently supported by their gene structures and conserved motifs. In addition, we observed that the functional differentiation of the BnPP2C family of genes was restricted and that fragment replication played a major role in the amplification of the BnPP2C gene family. The promoter cis-regulatory elements of BnPP2C genes were mainly involved in light response regulation, phytohormone synthesis, transport and signaling, environmental stress response and plant growth and development regulation. We identified BnPP2C genes with tissue specificity, using ramie transcriptome data from different tissues, in rhizome leaves and bast fibers. The qRT-PCR results showed that the BnPP2C1, BnPP2C26 and BnPP2C27 genes had a strong response to drought, high salt and ABA, and there were a large number of stress-responsive elements in the promoter region of BnPP2C1 and BnPP2C26. The results suggested that BnPP2C1 and BnPP2C26 could be used as the candidate genes for drought and salt tolerance in ramie. These results provide a reference for further studies on the function of the PP2C gene and advance the development of the mechanism of ramie stress response, with a view to providing candidate genes for the molecular breeding of ramie for drought and salt tolerance.
Collapse
Affiliation(s)
- Yu Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Haohan Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Yue Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Xiaojun Qiu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Gang Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Xiaofei Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Kunmei Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Jia Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Peng Chen
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
- National Breeding Center or Bast Fiber Crops, MARA, Changsha 410221, China
| |
Collapse
|