1
|
McIntyre J, Morrison A, Maitland K, Berger D, Price DRG, Dougan S, Grigoriadis D, Tracey A, Holroyd N, Bull K, Rose Vineer H, Glover MJ, Morgan ER, Nisbet AJ, McNeilly TN, Bartley Y, Sargison N, Bartley D, Berriman M, Cotton JA, Devaney E, Laing R, Doyle SR. Chromosomal genome assembly resolves drug resistance loci in the parasitic nematode Teladorsagia circumcincta. PLoS Pathog 2025; 21:e1012820. [PMID: 39913358 PMCID: PMC11801625 DOI: 10.1371/journal.ppat.1012820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/09/2024] [Indexed: 02/11/2025] Open
Abstract
The parasitic nematode Teladorsagia circumcincta is one of the most important pathogens of sheep and goats in temperate climates worldwide and can rapidly evolve resistance to drugs used to control it. To understand the genetics of drug resistance, we have generated a highly contiguous genome assembly for the UK T. circumcincta isolate, MTci2. Assembly using PacBio long-reads and Hi-C long-molecule scaffolding together with manual curation resulted in a 573 Mb assembly (N50 = 84 Mb, total scaffolds = 1,286) with five autosomal and one sex-linked chromosomal-scale scaffolds consistent with its karyotype. The genome resource was further improved via annotation of 22,948 genes, with manual curation of over 3,200 of these, resulting in a robust and near complete resource (96.3% complete protein BUSCOs) to support basic and applied research on this important veterinary pathogen. Genome-wide analyses of drug resistance, combining evidence from three distinct experiments, identified selection around known candidate genes for benzimidazole, levamisole and ivermectin resistance, as well as novel regions associated with ivermectin and moxidectin resistance. These insights into contemporary and historic genetic selection further emphasise the importance of contiguous genome assemblies in interpreting genome-wide genetic variation associated with drug resistance and identifying key loci to prioritise in developing diagnostic markers of anthelmintic resistance to support parasite control.
Collapse
Affiliation(s)
- Jennifer McIntyre
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, United Kingdom
| | - Alison Morrison
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, United Kingdom
| | - Kirsty Maitland
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, United Kingdom
| | - Duncan Berger
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Daniel R. G. Price
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, United Kingdom
| | - Sam Dougan
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Dionysis Grigoriadis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Alan Tracey
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Nancy Holroyd
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Katie Bull
- Veterinary Parasitology and Ecology Group, University of Bristol, Bristol, United Kingdom
| | - Hannah Rose Vineer
- Veterinary Parasitology and Ecology Group, University of Bristol, Bristol, United Kingdom
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences, Leahurst Campus, Neston, Cheshire, United Kingdom
| | - Mike J. Glover
- Torch Farm & Equine Ltd., Veterinary Surgeons, South Molton, Devon, United Kingdom
| | - Eric R. Morgan
- Veterinary Parasitology and Ecology Group, University of Bristol, Bristol, United Kingdom
- Queen’s University Belfast, School of Biological Sciences, Belfast, United Kingdom
| | - Alasdair J. Nisbet
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, United Kingdom
| | - Tom N. McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, United Kingdom
| | - Yvonne Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, United Kingdom
| | - Neil Sargison
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Dave Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, United Kingdom
| | - Matt Berriman
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - James A. Cotton
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Eileen Devaney
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, United Kingdom
| | - Roz Laing
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, United Kingdom
| | - Stephen R. Doyle
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| |
Collapse
|
2
|
Shen Q, Zhang X, Qi H, Tang Q, Sheng Q, Yi S. Chromosome-level genome assembly of the butterfly hillstream loach Beaufortia pingi. Sci Data 2024; 11:1260. [PMID: 39567629 PMCID: PMC11579477 DOI: 10.1038/s41597-024-04144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
The Butterfly hillstream loach (Beaufortia pingi), an aquatic benthic fish species inhabiting mountain rapids, exhibits exceptional capabilities in movement, adsorption, and desorption processes, enabling it to adhere to smooth and contaminated surfaces in turbulent streams. These attributes make it a significant subject for genetic and evolutionary research. In this study, the genomic sequences of this species were acquired utilizing PacBio sequencing and Hi-C methods. The genome assembly is 459.8 Mb in size with a contig N50 of 5.35 Mb, and the assembled contigs were anchored into 25 chromosomes. BUSCO analysis confirmed a high completeness level with 97.0% gene coverage. A total of 111.47 Mb repetitive sequences (24.25% of the assembled genome), and 22,906 protein-coding genes were identified in the genome. This study represents the first investigation of the species' genome. The establishment of this genome assembly provides valuable resources for future genetic research and facilitates the study of genetic changes during evolution.
Collapse
Affiliation(s)
- Qi Shen
- School of Life Sciences, Huzhou University, Huzhou, 313000, China
| | - Xinhui Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, 518081, China
| | - Hangyu Qi
- School of Life Sciences, Huzhou University, Huzhou, 313000, China
| | - Qiongying Tang
- School of Life Sciences, Huzhou University, Huzhou, 313000, China
| | - Qiang Sheng
- School of Life Sciences, Huzhou University, Huzhou, 313000, China.
| | - Shaokui Yi
- School of Life Sciences, Huzhou University, Huzhou, 313000, China.
| |
Collapse
|
3
|
Ilík V, Schwarz EM, Nosková E, Pafčo B. Hookworm genomics: dusk or dawn? Trends Parasitol 2024; 40:452-465. [PMID: 38677925 DOI: 10.1016/j.pt.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024]
Abstract
Hookworms are parasites, closely related to the model nematode Caenorhabditis elegans, that are a major economic and health burden worldwide. Primarily three hookworm species (Necator americanus, Ancylostoma duodenale, and Ancylostoma ceylanicum) infect humans. Another 100 hookworm species from 19 genera infect primates, ruminants, and carnivores. Genetic data exist for only seven of these species. Genome sequences are available from only four of these species in two genera, leaving 96 others (particularly those parasitizing wildlife) without any genomic data. The most recent hookworm genomes were published 5 years ago, leaving the field in a dusk. However, assembling genomes from single hookworms may bring a new dawn. Here we summarize advances, challenges, and opportunities for studying these neglected but important parasitic nematodes.
Collapse
Affiliation(s)
- Vladislav Ilík
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Erich M Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Eva Nosková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Barbora Pafčo
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
4
|
Shanley HT, Taki AC, Nguyen N, Wang T, Byrne JJ, Ang CS, Leeming MG, Nie S, Williamson N, Zheng Y, Young ND, Korhonen PK, Hofmann A, Chang BCH, Wells TNC, Häberli C, Keiser J, Jabbar A, Sleebs BE, Gasser RB. Structure-activity relationship and target investigation of 2-aryl quinolines with nematocidal activity. Int J Parasitol Drugs Drug Resist 2024; 24:100522. [PMID: 38295619 PMCID: PMC10845918 DOI: 10.1016/j.ijpddr.2024.100522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Within the context of our anthelmintic discovery program, we recently identified and evaluated a quinoline derivative, called ABX464 or obefazimod, as a nematocidal candidate; synthesised a series of analogues which were assessed for activity against the free-living nematode Caenorhabditis elegans; and predicted compound-target relationships by thermal proteome profiling (TPP) and in silico docking. Here, we logically extended this work and critically evaluated the anthelmintic activity of ABX464 analogues on Haemonchus contortus (barber's pole worm) - a highly pathogenic nematode of ruminant livestock. First, we tested a series of 44 analogues on H. contortus (larvae and adults) to investigate the nematocidal pharmacophore of ABX464, and identified one compound with greater potency than the parent compound and showed moderate activity against a select number of other parasitic nematodes (including Ancylostoma, Heligmosomoides and Strongyloides species). Using TPP and in silico modelling studies, we predicted protein HCON_00074590 (a predicted aldo-keto reductase) as a target candidate for ABX464 in H. contortus. Future work aims to optimise this compound as a nematocidal candidate and investigate its pharmacokinetic properties. Overall, this study presents a first step toward the development of a new nematocide.
Collapse
Affiliation(s)
- Harrison T Shanley
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia; Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Aya C Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Nghi Nguyen
- Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Joseph J Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ching-Seng Ang
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Michael G Leeming
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Nicholas Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yuanting Zheng
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia; National Reference Centre for Authentic Food, Max Rubner-Institut, 95326, Kulmbach, Germany
| | - Bill C H Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Tim N C Wells
- Medicines for Malaria Venture (MMV), 1215, Geneva, Switzerland
| | - Cécile Häberli
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123, Allschwil, Switzerland; University of Basel, 4001, Basel, Switzerland
| | - Jennifer Keiser
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123, Allschwil, Switzerland; University of Basel, 4001, Basel, Switzerland
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Brad E Sleebs
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia; Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
5
|
Shanley HT, Taki AC, Nguyen N, Wang T, Byrne JJ, Ang CS, Leeming MG, Nie S, Williamson N, Zheng Y, Young ND, Korhonen PK, Hofmann A, Wells TNC, Jabbar A, Sleebs BE, Gasser RB. Structure activity relationship and target prediction for ABX464 analogues in Caenorhabditis elegans. Bioorg Med Chem 2024; 98:117540. [PMID: 38134663 DOI: 10.1016/j.bmc.2023.117540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
Global challenges with treatment failures and/or widespread resistance in parasitic worms against commercially available anthelmintics lend impetus to the development of new anthelmintics with novel mechanism(s) of action. The free-living nematode Caenorhabditis elegans is an important model organism used for drug discovery, including the screening and structure-activity investigation of new compounds, and target deconvolution. Previously, we conducted a whole-organism phenotypic screen of the 'Pandemic Response Box' (from Medicines for Malaria Venture, MMV) and identified a hit compound, called ABX464, with activity against C. elegans and a related, parasitic nematode, Haemonchus contortus. Here, we tested a series of 44 synthesized analogues to explore the pharmacophore of activity on C. elegans and revealed five compounds whose potency was similar or greater than that of ABX464, but which were not toxic to human hepatoma (HepG2) cells. Subsequently, we employed thermal proteome profiling (TPP), protein structure prediction and an in silico-docking algorithm to predict ABX464-target candidates. Taken together, the findings from this study contribute significantly to the early-stage drug discovery of a new nematocide based on ABX464. Future work is aimed at validating the ABX464-protein interactions identified here, and at assessing ABX464 and associated analogues against a panel of parasitic nematodes, towards developing a new anthelmintic with a mechanism of action that is distinct from any of the compounds currently-available commercially.
Collapse
Affiliation(s)
- Harrison T Shanley
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia; Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Aya C Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nghi Nguyen
- Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ching-Seng Ang
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael G Leeming
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicholas Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yuanting Zheng
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia; National Reference Centre for Authentic Food, Max Rubner-Institut, 95326 Kulmbach, Germany
| | - Tim N C Wells
- Medicines for Malaria Venture (MMV), 1215 Geneva, Switzerland
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brad E Sleebs
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia; Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
6
|
Stevens L, Martínez-Ugalde I, King E, Wagah M, Absolon D, Bancroft R, Gonzalez de la Rosa P, Hall JL, Kieninger M, Kloch A, Pelan S, Robertson E, Pedersen AB, Abreu-Goodger C, Buck AH, Blaxter M. Ancient diversity in host-parasite interaction genes in a model parasitic nematode. Nat Commun 2023; 14:7776. [PMID: 38012132 PMCID: PMC10682056 DOI: 10.1038/s41467-023-43556-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
Host-parasite interactions exert strong selection pressures on the genomes of both host and parasite. These interactions can lead to negative frequency-dependent selection, a form of balancing selection that is hypothesised to explain the high levels of polymorphism seen in many host immune and parasite antigen loci. Here, we sequence the genomes of several individuals of Heligmosomoides bakeri, a model parasite of house mice, and Heligmosomoides polygyrus, a closely related parasite of wood mice. Although H. bakeri is commonly referred to as H. polygyrus in the literature, their genomes show levels of divergence that are consistent with at least a million years of independent evolution. The genomes of both species contain hyper-divergent haplotypes that are enriched for proteins that interact with the host immune response. Many of these haplotypes originated prior to the divergence between H. bakeri and H. polygyrus, suggesting that they have been maintained by long-term balancing selection. Together, our results suggest that the selection pressures exerted by the host immune response have played a key role in shaping patterns of genetic diversity in the genomes of parasitic nematodes.
Collapse
Affiliation(s)
- Lewis Stevens
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK.
| | - Isaac Martínez-Ugalde
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Erna King
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | - Martin Wagah
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | | | - Rowan Bancroft
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Jessica L Hall
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | - Sarah Pelan
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | - Elaine Robertson
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Amy B Pedersen
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Cei Abreu-Goodger
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Amy H Buck
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|