1
|
Cao Q, Li Y, Li Y, Tan S, Gao G, Li L. The regulatory mechanism of long non-coding RNAs (lncRNAs) of integrin alpha L (ITGAL) sequences (lncRNA-ITGAL) in CD4+ T cell differentiation during immune rejection of corneal transplants. Transpl Immunol 2025; 90:102226. [PMID: 40169078 DOI: 10.1016/j.trim.2025.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/03/2025]
Abstract
OBJECTIVE Corneal blindness remains a major global contributor to visual impairment, affecting approximately 6.17 million individuals. High-risk corneal transplantation is associated with rejection rates of up to 50 %, necessitating the development of new therapeutic strategies to complement or enhance conventional immunosuppressive treatments, including corticosteroids and calcineurin inhibitors. This study aimed to examine the regulatory function of long non-coding RNAs (lncRNAs) transcribed from integrin alpha L (ITGAL) sequences (lncRNA-ITGAL) in CD4+ T cell differentiation during immune rejection following corneal transplantation. METHODS Sprague Dawley rats (n = 20) were assigned to either a control or rejection group. Corneal rejection indices were assessed two weeks post-transplantation. Histopathological evaluation was performed using hematoxylin and eosin staining. RNA sequencing was conducted to analyze differentially expressed lncRNA and messenger RNA profiles. Flow cytometry was used to quantify Th1, Th2, and Th17 subsets in human peripheral blood mononuclear cells. Quantitative reverse transcription polymerase chain reaction was employed to measure the expression of lncRNA-ITGAL, miR-378a-3p, and tumor necrosis factor receptor-associated factor 1. Spatial interactions were examined through fluorescence in situ hybridization and immunohistochemistry. RESULTS Corneal tissues in the rejection group exhibited significant stromal edema and opacity (p < 0.05). RNA sequencing identified 7057 differentially expressed lncRNAs and 5485 differentially expressed mRNAs (p < 0.05). The expression of lncRNA-ITGAL was positively correlated with TRAF1 and negatively correlated with miR-378a-3p. Flow cytometry demonstrated that overexpression of lncRNA-ITGAL increased the proportions of Th1, Th2, and Th17 subsets (p < 0.05), whereas its knockdown reduced these subsets. In corneal tissues, upregulated expression of lncRNA-ITGAL and TRAF1, along with downregulated miR-378a-3p, was observed in the rejection group (p < 0.05). Immunohistochemical analysis confirmed elevated tumor necrosis factor receptor-associated factor 1 (TRAF1) expression in the corneal epithelium (p < 0.05). CONCLUSION lncRNA-ITGAL modulates the differentiation of Th1, Th2, and Th17 subsets through the miR-378a-3p/TRAF1 axis, highlighting its potential as a therapeutic target for improving corneal graft survival.
Collapse
Affiliation(s)
- Qian Cao
- Department of Ophthalmology, The Affiliated Calmette Hospital of Kunming Medical University, KunMing 650000, China
| | - Yong Li
- Department of Ophthalmology, The Affiliated Calmette Hospital of Kunming Medical University, KunMing 650000, China
| | - Yunchuan Li
- Department of Ophthalmology, The Affiliated Calmette Hospital of Kunming Medical University, KunMing 650000, China
| | - Shuang Tan
- Department of Ophthalmology, The Affiliated Calmette Hospital of Kunming Medical University, KunMing 650000, China
| | - Guojun Gao
- Department of Ophthalmology, The First People's Hospital of YiChang, Yichang 443000, China
| | - Lan Li
- Department of Ophthalmology, The Affiliated Calmette Hospital of Kunming Medical University, KunMing 650000, China.
| |
Collapse
|
2
|
Chu X, Yin Y, Chen S, Chen F, Liu H, Zhao S. Suppressive Role of Pigment Epithelium-derived Factor in a Rat Model of Corneal Allograft Rejection. Transplantation 2024; 108:2072-2083. [PMID: 38644534 DOI: 10.1097/tp.0000000000005032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
BACKGROUND Immunological rejection is the most common reason for corneal transplantation failure. The importance of T cells in corneal allograft rejection is well demonstrated. Recent studies highlight that pigment epithelium-derived factor (PEDF) plays an immunoregulatory role in ocular diseases by enhancing the suppressive phenotype of regulatory T cells besides its other functions in neurotrophy and antiangiogenesis. METHODS The effects of PEDF on immune rejection were examined in rat models of corneal transplantation using slit-lamp microscope observation, immunohistochemistry, flow cytometry, and Western blot. In vitro, we demonstrated PEDF reduced alloreactive T-cell activation using real-time polymerase chain reaction, flow cytometry, and Western blot. RESULTS Topical administration of PEDF provided corneal transplantation rats with an improved graft survival rate of corneal allografts, reduced hemangiogenesis, and infiltration of immune cells in corneas, in particular, type 17 T helper cells while increased regulatory T cells. Moreover, nerve reinnervation within grafts was promoted in PEDF-treated recipient rats. In vitro, PEDF inhibited alloreactive T-cell activation via the c-Jun N-terminal kinase/c-Jun signaling pathway and upregulated the expressions of interleukin-10 and transforming growth factor-β, emphasizing the suppressive role of PEDF on immune responses. CONCLUSIONS Our results underscore the feasibility of PEDF in alleviating corneal allograft rejection and further illustrate its potential in managing immune-related diseases.
Collapse
Affiliation(s)
- Xiaoran Chu
- Department of Cornea and Refractive Surgery, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | | | | | | | | | | |
Collapse
|
3
|
Rubino G, Yörük E. Immunosenescence, immunotolerance and rejection: clinical aspects in solid organ transplantation. Transpl Immunol 2024; 86:102068. [PMID: 38844001 DOI: 10.1016/j.trim.2024.102068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 07/21/2024]
Abstract
As a consequence of increased lifespan and rising number of elderly individuals developing end-stage organ disease, the higher demand for organs along with a growing availability for organs from older donors pose new challenges for transplantation. During aging, dynamic adaptations in the functionality and structure of the biological systems occur. Consistently, immunosenescence (IS) accounts for polydysfunctions within the lymphocyte subsets, and the onset of a basal but persistent systemic inflammation characterized by elevated levels of pro-inflammatory mediators. There is an emerging consensus about a causative link between such hallmarks and increased susceptibility to morbidities and mortality, however the role of IS in solid organ transplantation (SOT) remains loosely addressed. Dissecting the immune-architecture of immunologically-privileged sites may prompt novel insights to extend allograft survival. A deeper comprehension of IS in SOT might unveil key standpoints for the clinical management of transplanted patients.
Collapse
Affiliation(s)
- Graziella Rubino
- University Hospital Tübingen, Department of Tropical Medicine, Wilhelmstraße 27, 72074 Tübingen, Germany; Institute for Transfusion Medicine, University Ulm and Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, 89081 Ulm, Germany.
| | - Efdal Yörük
- Berit Klinik, Gastrointestinal Center, Florastrasse 1, 9403 Goldach, Switzerland; University Hospital Tübingen, Department of Ophthalmology, Elfriede-Alhorn-Straße 7, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Li W, Guan X, Wang Y, Lv Y, Wu Y, Yu M, Sun Y. Cuproptosis-related gene identification and immune infiltration analysis in systemic lupus erythematosus. Front Immunol 2023; 14:1157196. [PMID: 37313407 PMCID: PMC10258330 DOI: 10.3389/fimmu.2023.1157196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
Background Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by loss of tolerance to self-antigen, autoantibody production, and abnormal immune response. Cuproptosis is a recently reported cell death form correlated with the initiation and development of multiple diseases. This study intended to probe cuproptosis-related molecular clusters in SLE and constructed a predictive model. Methods We analyzed the expression profile and immune features of cuproptosis-related genes (CRGs) in SLE based on GSE61635 and GSE50772 datasets and identified core module genes associated with SLE occurrence using the weighted correlation network analysis (WGCNA). We selected the optimal machine-learning model by comparing the random forest (RF) model, support vector machine (SVM) model, generalized linear model (GLM), and the extreme gradient boosting (XGB) model. The predictive performance of the model was validated by nomogram, calibration curve, decision curve analysis (DCA), and external dataset GSE72326. Subsequently, a CeRNA network based on 5 core diagnostic markers was established. Drugs targeting core diagnostic markers were acquired using the CTD database, and Autodock vina software was employed to perform molecular docking. Results Blue module genes identified using WGCNA were highly related to SLE initiation. Among the four machine-learning models, the SVM model presented the best discriminative performance with relatively low residual and root-mean-square error (RMSE) and high area under the curve (AUC = 0.998). An SVM model was constructed based on 5 genes and performed favorably in the GSE72326 dataset for validation (AUC = 0.943). The nomogram, calibration curve, and DCA validated the predictive accuracy of the model for SLE as well. The CeRNA regulatory network includes 166 nodes (5 core diagnostic markers, 61 miRNAs, and 100 lncRNAs) and 175 lines. Drug detection showed that D00156 (Benzo (a) pyrene), D016604 (Aflatoxin B1), D014212 (Tretinoin), and D009532 (Nickel) could simultaneously act on the 5 core diagnostic markers. Conclusion We revealed the correlation between CRGs and immune cell infiltration in SLE patients. The SVM model using 5 genes was selected as the optimal machine learning model to accurately evaluate SLE patients. A CeRNA network based on 5 core diagnostic markers was constructed. Drugs targeting core diagnostic markers were retrieved with molecular docking performed.
Collapse
Affiliation(s)
- Wuquan Li
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xiaoran Guan
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yong Wang
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yan Lv
- College of Life Science, Yantai University, Yantai, China
| | - Yuyong Wu
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Min Yu
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yeying Sun
- College of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
5
|
Cao Q, Li Y, Li Y, Li L. miR-151-5p alleviates corneal allograft rejection by activating PI3K/AKT signaling pathway and balancing Th17/Treg after corneal transplantation via targeting IL-2Rɑ. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1410. [PMID: 34733962 PMCID: PMC8506781 DOI: 10.21037/atm-21-2054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022]
Abstract
Background Worldwide, corneal transplantation (CT) is the most common type of tissue replacement and the increased rate of corneal graft rejection (CGR) after CT is a critical problem. Corneal endothelium cells (CECs) are often targets of the immune response mediated by graft-attacking effector T cells. However, the molecular mechanism underlying CGR remains poorly understood. Methods The differentially expressed microRNAs (miRNAs) and mRNA of graft-fail corneas were measured by transcriptome sequencing (RNA-Seq). real-time quantitative polymerase chain reaction was used to measure gene expression levels. Western blot and immunofluorescence staining were used to measure protein expression levels. Kaplan-Meier survival curves were constructed to assess corneal graft survival. Hematoxylin and eosin staining was used for histopathological examination. CCK-8 and ELISA staining were used to detect cell viability and inflammatory cytokines levels, respectively. Flow cytometry was used to detect cell apoptosis and the population of Treg and Th17. Transwell migration and wound-healing assays were used to measure cell migration. Results We identified 453 miRNAs and 4,279 mRNAs aberrant expression in the corneas showing CGR. The differentially expressed miR-151-5p and its potential target gene [interleukin 2 receptor subunit alpha (IL-2Rɑ)] were selected from the RNA-Seq microarrays. The levels of miR-151-5p and IL-2Rɑ were respectively downregulated and upregulated in the CGR. The luciferase activity assay suggested that IL-2Rɑ is a target of miR-151-5p in 293 T cells. In addition, the miR-151-5p inhibitor, si-IL-2Rɑ, and oe-IL-2Rɑ transfection tests in CECs further confirmed that miR-151-5p downregulation and IL-2Rɑ overexpression promoted apoptosis of CECs and inhibited CEC migration, tight junction-related protein ZO-1 and Claudin-5 expression, and PI3K/AKT signaling pathway activity; however, downregulation of IL-2Rɑ abolished the inhibitor effect of miR-151-5p. Similarly, upregulation of miR-151-5p alleviated CGR via activation of the PI3K/AKT signaling pathway and balancing of Th17/Treg, and upregulation of IL-2Rɑ abolished the alleviating effect of miR-151-5p. Conclusions Upregulation of miR-151-5p alleviated CGR by activating the PI3K/AKT signaling pathway and balancing Th17/Treg via targeting of IL-2Rɑ, which contributes to improving the results of CT.
Collapse
Affiliation(s)
- Qian Cao
- Department of Ophthalmology, The Affiliated Calmette Hospital of Kunming Medical University, Kunming, China
| | - Yunchuan Li
- Department of Ophthalmology, The Affiliated Calmette Hospital of Kunming Medical University, Kunming, China
| | - Yong Li
- Department of Ophthalmology, The Affiliated Calmette Hospital of Kunming Medical University, Kunming, China
| | - Lan Li
- Department of Ophthalmology, The Affiliated Calmette Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
6
|
Cao Q, Li Y, Li Y, Li L. Loss of miR-673-5p expression in the cornea promotes rat corneal allograft rejection by promoting Th17 cell differentiation mediated by JAK2/STAT3. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1409. [PMID: 34733961 PMCID: PMC8506749 DOI: 10.21037/atm-21-2051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/26/2021] [Indexed: 11/10/2022]
Abstract
Background Cluster of differentiation 4 positive (CD4+) T cells play an important role in corneal graft rejection, especially the dynamic balance between regulatory T cells and helper T cells. This study aims to explore the upstream and downstream regulatory mechanisms of Th17 cell differentiation-mediated corneal allograft rejection. Methods By establishing rat corneal allograft transplantation model, transcriptome analysis was carried out to screen the differentially expressed genes related to T helper 17 (Th17) cell differentiation, and then cell experiments were used to verify the effect of miR-673-5p/Janus Kinase 2 (JAK2) signal on naïve CD4+ T cell differentiation and the proliferation, migration, and tube formation ability of human umbilical vein endothelial cells (HUVECs). Finally, the role of miR-673-5p/JAK2 signal in corneal allograft rejection was verified by animal model in vivo. Results The results showed that JAK2/STAT3 signaling activation-mediated Th17 cell differentiation was significantly up-regulated during corneal allograft rejection, and miR-673-5p expression was down-regulated after corneal allograft rejection. Low expression of miR-673-5p promoted Th17 cell differentiation by up-regulating JAK2, and then promoted placental growth factor (PLGF)mediated corneal neovascularization (CNV). Conclusions The results of this study suggested that low expression of miR-673-5p is a promoter of corneal allograft rejection. Overexpression of miR-673-5p can improve the survival rate of corneal allografts by inhibiting the differentiation and maturation of Th17 cells mediated by JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- Qian Cao
- Department of Ophthalmology, the Affiliated Calmette Hospital of Kunming Medical University, Kunming, China
| | - Yunchuan Li
- Department of Ophthalmology, the Affiliated Calmette Hospital of Kunming Medical University, Kunming, China
| | - Yong Li
- Department of Ophthalmology, the Affiliated Calmette Hospital of Kunming Medical University, Kunming, China
| | - Lan Li
- Department of Ophthalmology, the Affiliated Calmette Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
7
|
Hawthorne WJ, Thomas A, Burlak C. Xenotransplantation literature update, November/December 2020. Xenotransplantation 2021; 28:e12674. [PMID: 33745161 DOI: 10.1111/xen.12674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/27/2022]
Affiliation(s)
- Wayne J Hawthorne
- The Centre for Transplant & Renal Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,The Department of Surgery, Westmead Hospital, University of Sydney, Westmead, NSW, Australia
| | - Adwin Thomas
- The Centre for Transplant & Renal Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Christopher Burlak
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
8
|
Fiorino S, Zippi M, Gallo C, Sifo D, Sabbatani S, Manfredi R, Rasciti E, Rasciti L, Giampieri E, Corazza I, Leandri P, de Biase D. The rationale for a multi-step therapeutic approach based on antivirals, drugs and nutrients with immunomodulatory activity in patients with coronavirus-SARS2-induced disease of different severities. Br J Nutr 2021; 125:275-293. [PMID: 32703328 PMCID: PMC7431858 DOI: 10.1017/s0007114520002913] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
In December 2019, a novel human-infecting coronavirus, named Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2), was recognised to cause a pneumonia epidemic outbreak with different degrees of severity in Wuhan, Hubei Province in China. Since then, this epidemic has spread worldwide; in Europe, Italy has been involved. Effective preventive and therapeutic strategies are absolutely required to block this serious public health concern. Unfortunately, few studies about SARS-CoV-2 concerning its immunopathogenesis and treatment are available. On the basis of the assumption that the SARS-CoV-2 is genetically related to SARS-CoV (about 82 % of genome homology) and that its characteristics, like the modality of transmission or the type of the immune response it may stimulate, are still poorly known, a literature search was performed to identify the reports assessing these elements in patients with SARS-CoV-induced infection. Therefore, we have analysed: (1) the structure of SARS-CoV-2 and SARS-CoV; (2) the clinical signs and symptoms and pathogenic mechanisms observed during the development of acute respiratory syndrome and the cytokine release syndrome; (3) the modification of the cell microRNome and of the immune response in patients with SARS infection; and (4) the possible role of some fat-soluble compounds (such as vitamins A, D and E) in modulating directly or indirectly the replication ability of SARS-CoV-2 and host immune response.
Collapse
Affiliation(s)
- Sirio Fiorino
- Medicine Department, Internal Medicine Unit, Budrio Hospital Azienda USL, Budrio, 40054 Bologna, Italy
- Medicine Department, Internal Medicine Unit C, Maggiore Hospital Azienda USL, 40100 Bologna, Italy
| | - Maddalena Zippi
- Gastroenterology and Hepatology Department, Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, 00100 Rome, Italy
| | - Claudio Gallo
- Medicine Department, Internal Medicine Unit, Budrio Hospital Azienda USL, Budrio, 40054 Bologna, Italy
| | - Debora Sifo
- Medicine Department, Internal Medicine Unit, Budrio Hospital Azienda USL, Budrio, 40054 Bologna, Italy
| | - Sergio Sabbatani
- Gastroenterology and Hepatology Department, Infective Disease Unit, Policlinico S. Orsola-Malpighi, University of Bologna, 40100 Bologna, Italy
| | - Roberto Manfredi
- Gastroenterology and Hepatology Department, Infective Disease Unit, Policlinico S. Orsola-Malpighi, University of Bologna, 40100 Bologna, Italy
| | - Edoardo Rasciti
- Unit of Radiodiagnostics, Ospedale degli Infermi, 48018 Faenza, AUSL Romagna, Italy
| | - Leonardo Rasciti
- Medicine Department, Internal Medicine Unit, Budrio Hospital Azienda USL, Budrio, 40054 Bologna, Italy
| | - Enrico Giampieri
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, 40100 Bologna, Italy
| | - Ivan Corazza
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, 40100 Bologna, Italy
| | - Paolo Leandri
- Medicine Department, Internal Medicine Unit C, Maggiore Hospital Azienda USL, 40100 Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, 40100 Bologna, Italy
| |
Collapse
|
9
|
Wei C, Ma L, Chi H, Li L, Zhang S, Yin W, Liu T, Gao H, Shi W. The NLRP3 inflammasome regulates corneal allograft rejection through enhanced phosphorylation of STAT3. Am J Transplant 2020; 20:3354-3366. [PMID: 32583615 DOI: 10.1111/ajt.16071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023]
Abstract
The success of corneal transplantation is limited by allograft rejection, but the pathogenic mechanisms of this disease remain poorly defined. In this study, we showed that the NOD, LRR-and pyrin domain-containing protein3 (NLRP3) inflammasome-mediated interleukin-1β (IL-1β) production exacerbated corneal allograft rejection. Extracellular ATP contributed to the NLRP3 inflammasome-mediated IL-1β release, which in turn was preferentially skewed toward Th17 differentiation via enhanced phosphorylation of STAT3. Pharmacological inhibition of IL-1β/IL-6-STAT3 signaling significantly delayed corneal allograft rejection. Thus, the identification of NLRP3 inflammasome's key role sheds new light on the pathogenesis of corneal allograft rejection and opens a potential new avenue for treating or preventing corneal allograft rejection.
Collapse
Affiliation(s)
- Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Li Ma
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Hao Chi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China
| | - Lin Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Sai Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China
| | - Wenhui Yin
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Department of Medicine, Qingdao University, Qingdao, China
| | - Ting Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
10
|
Zhao Y, Hu W, Chen P, Cao M, Zhang Y, Zeng C, Hara H, Cooper DKC, Mou L, Luan S, Gao H. Immunosuppressive and metabolic agents that influence allo‐ and xenograft survival by in vivo expansion of T regulatory cells. Xenotransplantation 2020; 27:e12640. [PMID: 32892428 DOI: 10.1111/xen.12640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/06/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Yanli Zhao
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center Institute of Translational Medicine Shenzhen University Health Science Center, Shenzhen University School of Medicine First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s Hospital Shenzhen China
- Department of Medical Laboratory Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | | | - Pengfei Chen
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
- Department of Medical Laboratory Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | - Mengtao Cao
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
- Department of Medical Laboratory Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | - Yingwei Zhang
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | - Changchun Zeng
- Department of Medical Laboratory Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | - Hidetaka Hara
- Xenotransplantation Program Department of Surgery University of Alabama at Birmingham Birmingham AL USA
| | - David K. C. Cooper
- Xenotransplantation Program Department of Surgery University of Alabama at Birmingham Birmingham AL USA
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center Institute of Translational Medicine Shenzhen University Health Science Center, Shenzhen University School of Medicine First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s Hospital Shenzhen China
| | - Shaodong Luan
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | - Hanchao Gao
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center Institute of Translational Medicine Shenzhen University Health Science Center, Shenzhen University School of Medicine First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s Hospital Shenzhen China
- Department of Medical Laboratory Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| |
Collapse
|
11
|
Wu XS, Lu XL, Wu J, Ma M, Yu J, Zhang ZY. Tocilizumab promotes corneal allograft survival in rats by modulating Treg-Th17 balance. Int J Ophthalmol 2019; 12:1823-1831. [PMID: 31850163 DOI: 10.18240/ijo.2019.12.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/27/2019] [Indexed: 02/08/2023] Open
Abstract
AIM To examine the therapeutic effects of tocilizumab on experimental corneal transplantation and its effect on Treg/Th17 balance. METHODS Allograft corneal graft was performed between host Sprague Dawley and Wistar donor rats. The rats were randomly divided into four groups: normal, autograft, allograft, and allograft treated with tocilizumab. Kaplan-Meier was performed to draw the survival curve. The protein levels of interleukin-17A (IL-17A), vascular endothelial growth factor (VEGF), and forkhead box protein 3 (Foxp3) were measured by immunohistochemistry. The mRNA levels of IL-17A, VEGF, retinoid-related orphan receptor gammat (RORγt), interleukin-6 (IL-6) and Foxp3 were detected by reverse transcription real-time polymerase chain reaction (RT-PCR). The Treg and Th17 cells were investigated by flow cytometry. RESULTS The survival time of tocilizumab group was (24±1.27d) longer than that of allograft group (10±0.55d). Moreover, immunohistochemical examination revealed that IL-17A and VEGF protein levels in the allograft group were significantly higher than that of tocilizumab group (P<0.01), while Foxp3 levels in the allograft group was significantly lower than that of the tocilizumab treated group (P<0.001). Flow cytometry showed that the number of Th17 cells in allograft group was significantly higher than that in tocilizumab group (P<0.001). Meanwhile, the number of Tregs was significantly lower than in tocilizumab group (P<0.001). Simultaneously, Foxp3 mRNA expression level in corneal tissues of tocilizumab treated group was significantly higher than other groups (P<0.001). CONCLUSION These findings suggest that tocilizumab may promote corneal allograft survival, possibly by modulating Treg-Th17 balance.
Collapse
Affiliation(s)
- Xiao-Song Wu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xiao-Li Lu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Jing Wu
- Department of Huiqiao Building, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ming Ma
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Jian Yu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Zhen-Yu Zhang
- Guangdong Women And Children Hospital, Guangzhou 511400, Guangdong Province, China
| |
Collapse
|
12
|
Fettouh DS, Saif DS, El Gazzar SF, Sonbol AA. Study the relationship between vitamin A deficiency, T helper 17, regulatory T cells, and disease activity in patients with systemic lupus erythematosus. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2019. [DOI: 10.4103/err.err_5_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
13
|
Chu Y, Zhao C, Zhang B, Wang X, Wang Y, An J, Chen J. Restoring T-helper 17 cell/regulatory T-cell balance and decreasing disease activity by rapamycin and all-trans retinoic acid in patients with systemic lupus erythematosus. Lupus 2019; 28:1397-1406. [PMID: 31551029 DOI: 10.1177/0961203319877239] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE This study aimed to investigate the effect of rapamycin (RAPA) alone or in combination with all-trans retinoic acid (ATRA) on the T-helper 17 (Th17) cell/regulatory T-cell (Treg) balance in patients with systemic lupus erythematosus (SLE) and to evaluate the clinical efficacy. METHODS Seventy patients with SLE were enrolled. They were randomly and equally divided into RAPA and RAPA + ATRA groups. The number of Th17 and Treg cells was measured by flow cytometry before and after treatment for 6, 12 and 24 weeks. The SLE Disease Activity Index (SLEDAI) score and the prednisone dose before and after treatment were used to evaluate the efficacy between the two groups. RESULTS In both groups, at different time points after treatment, the number of Th17 cells (p = 0.003) and Th17/Treg ratio (p = 0.044) reduced, while the number of Treg cells (p = 0.574) tended to increase. The SLEDAI score and the dose of prednisone decreased significantly (p < 0.001). There was no significant difference in the number of Th17 cells (p = 0.089), Treg cells (p = 0.059), Th17/Treg ratio (p = 0.580), SLEDAI score (p = 0.127) and the dose of prednisone (p = 0.329) between the two groups. CONCLUSION Disease activity in SLE patients reduced with RAPA alone or in conjunction with ATRA, reducing glucocorticoid requirement. One of its mechanisms of action may be regulating the Th17/Treg cell balance, which provides a new model for the pathogenesis and potential treatment of SLE.
Collapse
Affiliation(s)
- Y Chu
- Department of Rheumatology and Immunology, the Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - C Zhao
- Department of Rheumatology and Immunology, the Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - B Zhang
- Department of Rheumatology and Immunology, the Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - X Wang
- Department of Rheumatology and Immunology, the Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Y Wang
- Department of Rheumatology and Immunology, the Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - J An
- Department of Rheumatology and Immunology, the Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - J Chen
- Department of Rheumatology and Immunology, the Second Hospital of Shanxi Medical University, Taiyuan, PR China
| |
Collapse
|
14
|
Chapman NM, Shrestha S, Chi H. Metabolism in Immune Cell Differentiation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1011:1-85. [PMID: 28875486 DOI: 10.1007/978-94-024-1170-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The immune system is a central determinant of organismal health. Functional immune responses require quiescent immune cells to rapidly grow, proliferate, and acquire effector functions when they sense infectious agents or other insults. Specialized metabolic programs are critical regulators of immune responses, and alterations in immune metabolism can cause immunological disorders. There has thus been growing interest in understanding how metabolic processes control immune cell functions under normal and pathophysiological conditions. In this chapter, we summarize how metabolic programs are tuned and what the physiological consequences of metabolic reprogramming are as they relate to immune cell homeostasis, differentiation, and function.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Sharad Shrestha
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
15
|
Hori J, Yamaguchi T, Keino H, Hamrah P, Maruyama K. Immune privilege in corneal transplantation. Prog Retin Eye Res 2019; 72:100758. [PMID: 31014973 DOI: 10.1016/j.preteyeres.2019.04.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Corneal transplantation is the most successful solid organ transplantation performed in humans. The extraordinary success of orthotopic corneal allografts, in both humans and experimental animals, is related to the phenomenon of "immune privilege". Inflammation is self-regulated to preserve ocular functions because the eye has immune privilege. At present, three major mechanisms are considered to provide immune privilege in corneal transplantation: 1) anatomical, cellular, and molecular barriers in the cornea; 2) tolerance related to anterior chamber-associated immune deviation and regulatory T cells; and 3) an immunosuppressive intraocular microenvironment. This review describes the mechanisms of immune privilege that have been elucidated from animal models of ocular inflammation, especially those involving corneal transplantation, and its relevance for the clinic. An update on molecular, cellular, and neural interactions in local and systemic immune regulation is provided. Therapeutic strategies for restoring immune privilege are also discussed.
Collapse
Affiliation(s)
- Junko Hori
- Department of Ophthalmology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan; Department of Ophthalmology, Nippon Medical School, Tama-Nagayama Hospital, 1-7-1 Nagayama, Tama, Tokyo, 206-8512, Japan.
| | - Takefumi Yamaguchi
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa-shi, Chiba, 272-8513, Japan; Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroshi Keino
- Department of Ophthalmology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Tufts University, 800 Washington St, Boston, MA, 02111, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Tufts University, 800 Washington St, Boston, MA, 02111, USA
| | - Kazuichi Maruyama
- Department of Innovative Visual Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Wang H, Zhao Q, Luo D, Yin Y, Li T, Zhao M. Resolvin E1 Inhibits Corneal Allograft Rejection in High-Risk Corneal Transplantation. Invest Ophthalmol Vis Sci 2019; 59:3911-3919. [PMID: 30073362 DOI: 10.1167/iovs.18-24562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the effects of Resolvin E1 (RvE1) on corneal allograft rejection in a high -risk corneal allograft transplantation model. Methods High-risk corneal beds were created via placement of intrastromal sutures in the corneas of BALB/c mice for 2 weeks. Allogeneic corneal transplantation was performed by transplanting corneas of C57BL/6 mice onto BALB/c hosts. RvE1 or normal saline (control) was subconjunctivally injected. Allograft survival was observed by slit lamp biomicroscope, and inflammatory cell infiltration was detected by hematoxylin and eosin and immunohistochemistry. The percentage of Th1, Th17, and Treg cells in draining lymph nodes (DLNs) were evaluated by flow cytometric analysis. The levels of Th1, Th2, and Th17-associated cytokines in the grafts were measured by cytometric bead array and real-time PCR. Results RvE1 treatment significantly improved allograft survival compared to the control group. After RvE1 treatment, the infiltration of neutrophils and CD4+ T (Th1/Th17) cells were decreased in corneal grafts, and the percentage of Th1/Th17 cells in DLNs were reduced. In addition, RvE1 treatment significantly reduced the mRNA expression of proinflammatory cytokines in the graft including IL-1α, IL-1β, TNF-α, IL-2, IL-6, IFN-γ, IL-17A, IL-17F, IL-21, and IL-22 as well as the protein level of the proinflammatory cytokines, including IL-2, TNF, IL-6, IFN-γ, and IL-17. However, RvE1 treatment did not alter the percentage of Treg cells in DLNs and the expression of IL-4, IL-5, and IL-10. Conclusions RvE1 treatment improves allogeneic corneal graft survival in a high-risk corneal transplantation model via inhibiting the Th1/Th17-related inflammation.
Collapse
Affiliation(s)
- Han Wang
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Qingqing Zhao
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Luo
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Yizhou Yin
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Ting Li
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Min Zhao
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| |
Collapse
|
17
|
The Balance of Th1/Th2 and LAP+Tregs/Th17 Cells Is Crucial for Graft Survival in Allogeneic Corneal Transplantation. J Ophthalmol 2018; 2018:5404989. [PMID: 29576879 PMCID: PMC5822769 DOI: 10.1155/2018/5404989] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/23/2017] [Accepted: 10/15/2017] [Indexed: 12/18/2022] Open
Abstract
Purpose CD4+LAP+ T cells are newly discovered regulatory T cells (Tregs). The aim of this study is to investigate the balance of Th1/Th2 and LAP+Tregs/Th17 in mice after allogeneic corneal transplantation. Methods A total of 65 mice received orthotopic penetrating transplantation. According to the survival scores of the grafts, the mice were divided into the rejection group and the survival group 3 weeks after transplantation. Th1, Th2, Th17, and regulatory T cells in the ipsilateral drainage lymph nodes and spleens were measured with flow cytometry. The related cytokines in aqueous humor were also analyzed. Results The frequencies of Foxp3+Tregs, GARP+Tregs, and LAP+Tregs in the survival group were significantly higher than those in the rejection group. And the expression trend of CD4+LAP+ T cells and CD4+GARP+ T cells was consistent. The level of IFN-γ, TNF, IL-6, and IL-17A markedly increased in aqueous humor during corneal allograft rejection. The ratio of Th1/Th2 and Th17/LAP+Tregs significantly increased in the rejection group at the 3rd week after corneal transplantation. Conclusion LAP+Tregs might be regarded as substitute for Foxp3+Tregs. The balance of Th1/Th2 and LAP+Tregs/Th17 is crucial for corneal allograft survival.
Collapse
|
18
|
Tahvildari M, Amouzegar A, Foulsham W, Dana R. Therapeutic approaches for induction of tolerance and immune quiescence in corneal allotransplantation. Cell Mol Life Sci 2018; 75:1509-1520. [PMID: 29307015 DOI: 10.1007/s00018-017-2739-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/12/2017] [Accepted: 12/27/2017] [Indexed: 01/08/2023]
Abstract
The cornea is the most commonly transplanted tissue in the body. Corneal grafts in low-risk recipients enjoy high success rates, yet over 50% of high-risk grafts (with inflamed and vascularized host beds) are rejected. As our understanding of the cellular and molecular pathways that mediate rejection has deepened, a number of novel therapeutic strategies have been unveiled. This manuscript reviews therapeutic approaches to promote corneal transplant survival through targeting (1) corneal lymphangiogenesis and hemangiogenesis, (2) antigen presenting cells, (3) effector and regulatory T cells, and (4) mesenchymal stem cells.
Collapse
Affiliation(s)
- Maryam Tahvildari
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.,Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Retinoic acid-mediated anti-inflammatory responses in equine immune cells stimulated by LPS and allogeneic mesenchymal stem cells. Res Vet Sci 2017; 114:225-232. [DOI: 10.1016/j.rvsc.2017.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/05/2017] [Indexed: 01/08/2023]
|
20
|
Vilchez V, Turcios L, Butterfield DA, Mitov MI, Coquillard CL, Brandon JA, Cornea V, Gedaly R, Marti F. Evidence of the immunomodulatory role of dual PI3K/mTOR inhibitors in transplantation: an experimental study in mice. Transpl Int 2017; 30:1061-1074. [DOI: 10.1111/tri.12989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Valery Vilchez
- Department of Surgery; College of Medicine; University of Kentucky; Lexington KY USA
| | - Lilia Turcios
- Department of Surgery; College of Medicine; University of Kentucky; Lexington KY USA
| | - David A. Butterfield
- Redox Metabolism (RM) Shared Resource Facility (SRF); Markey Cancer Center; College of Medicine; University of Kentucky; Lexington KY USA
- Department of Chemistry; College of Medicine; University of Kentucky; Lexington KY USA
| | - Mihail I. Mitov
- Redox Metabolism (RM) Shared Resource Facility (SRF); Markey Cancer Center; College of Medicine; University of Kentucky; Lexington KY USA
| | - Cristin L. Coquillard
- Department of Surgery; College of Medicine; University of Kentucky; Lexington KY USA
| | - Ja Anthony Brandon
- Department of Internal Medicine; College of Medicine; University of Kentucky; Lexington KY USA
| | - Virgilius Cornea
- Department of Pathology and Laboratory Medicine; College of Medicine; University of Kentucky; Lexington KY USA
| | - Roberto Gedaly
- Department of Surgery; College of Medicine; University of Kentucky; Lexington KY USA
| | - Francesc Marti
- Department of Surgery; College of Medicine; University of Kentucky; Lexington KY USA
| |
Collapse
|
21
|
Hou C, Wu Q, Ouyang C, Huang T. Effects of an intravitreal injection of interleukin-35-expressing plasmid on pro-inflammatory and anti-inflammatory cytokines. Int J Mol Med 2016; 38:713-20. [PMID: 27460435 PMCID: PMC4990317 DOI: 10.3892/ijmm.2016.2688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/27/2016] [Indexed: 12/23/2022] Open
Abstract
In order to explore the potential effects of interleukin (IL)-35 on IL-10, transforming growth factor-β (TGF-β), interferon-γ (INF)-γ, IL-12 and IL-17, a pcDNA3.1‑IL-35 plasmid was injected into the vitreous cavity of BALB/c mice. Enzyme-linked immunosorbent assay, western blot analysis and quantitative PCR analysis were performed to confirm the successful expression of IL-35. Slit-lamp biomicroscopy, hematoxylin and eosin staining and immunofluorescence were employed to detect the status of eyes, and western blot analysis was performed to examine the expression of corneal graft rejection-related cytokines. There were no abnormalities in the eyes pre-mydriasis or post-mydriasis and no injuries to the cornea or retina following the injection of IL-35-expressing plasmid. An immunofluorescence assay detected the positive expression of IL-35 in corneal epithelial cells from IL-35‑injected mice and negative staining in the control group. Further study revealed that IL-35 enhanced the expression of IL-10 and TGF-β which reached their highest levels at 1 and 2 weeks after injection, respectively (p<0.01). Moreover, the expression of INF-γ and IL-12 was decreased significantly at 2 weeks after the injection of IL-35-expressing plasmid (p<0.05), and the expression of IL-17 was suppressed notably at 4 weeks after the injection (p<0.05). The intravitreal injection of IL-35-expressing plasmid in mice downregulates the expression of pro-inflammatory cytokines and upregulates the expression of anti-inflammatory cytokines. Thus, IL-35 may further be assessed as a potential target for the treatment of corneal graft rejection.
Collapse
Affiliation(s)
- Chao Hou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510030, P.R. China
| | - Qianni Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510030, P.R. China
| | - Chen Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510030, P.R. China
| | - Ting Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510030, P.R. China
| |
Collapse
|
22
|
The dual nature of retinoic acid in pemphigus and its therapeutic potential: Special focus on all-trans Retinoic Acid. Int Immunopharmacol 2016; 36:180-186. [PMID: 27156125 DOI: 10.1016/j.intimp.2016.04.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/17/2016] [Accepted: 04/20/2016] [Indexed: 01/13/2023]
Abstract
The efficient treatment of pemphigus with no certain side effect remained a controversial issue. Although there are various options for controlling disease severity, the majority of them may cause serious side effects. Retinoic acid (RA), an active metabolite converted from vitamin A, plays an active role in immune functions. Effects of RA, especially all-trans-Retinoic Acid (ATRA) on different types of cells involved in immune responses were analyzed in vitro and in vivo. RAs could affect the differentiation of T helper (Th) cells, B cells responses, stabilization of both natural regulatory T cells (nTregs) and regulatory B cells (Bregs) populations, and regulating the expression of critical genes in immune responses. The role of RA, based on major immune cells involved in pemphigus has not been addressed so far. In this study, we sought to determine the possible effects of RA, with a special focus on ATRA in pemphigus. All the evidences of ATRA effects on the immune system were collected and their association with the pemphigus was analyzed. According to the previous results, ATRA causes a decline in Th17 populations; increase in CD4+ induced regulatory T cells (iTregs), stabilization of nTregs, and promotion of suppressive B cells, which are critical in the improvement of pemphigus. Nevertheless, it also causes shifting of the Th1:Th2 balance toward Th2 cells, which is not favorable for pemphigus patients. In conclusion, ATRA acts via different ways in pemphigus. Due to increase in the suppressive function via iTregs, nTregs, and Bregs, it is suggested that patients with pemphigus may benefit from systemic ATRA therapy. To clarify this issue, further studies, such as clinical trials are needed.
Collapse
|
23
|
Handono K, Firdausi SN, Pratama MZ, Endharti AT, Kalim H. Vitamin A improve Th17 and Treg regulation in systemic lupus erythematosus. Clin Rheumatol 2016; 35:631-8. [PMID: 26852315 DOI: 10.1007/s10067-016-3197-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 01/28/2023]
Abstract
The aim of this study was to determine the role of vitamin A in modulating T helper 17 (Th17) and regulatory T cell (Treg) balance in systemic lupus erythematosus (SLE) patients. Sixty-two female SLE patients and sixty-two female controls were measured for vitamin A levels from serum by enzyme-linked immunosorbent assay (ELISA) and percentages of Th17 and Treg from peripheral blood mononuclear cells (PBMC) by flow cytometry. We also performed an in vitro study to evaluate the effects of retinoic acid treatment (0, 0.1, 0.2, and 0.3 μg/ml) in modulating Th17/Treg balance in CD4(+) T cell culture from hypovitaminosis A SLE patients. Th17 and Treg percentages from cell cultures were measured by flow cytometry. Vitamin A levels in the SLE patients were lower compared to those in the healthy control (46.9 ± 43.4 vs. 75.6 ± 73.1 ng/ml, p = 0.015). Vitamin A levels also had a negative correlation to Th17 percentages in the SLE patients (p = 0.000, R = -0.642). Th17 percentages in the hypovitaminosis A SLE patients were higher compared to those SLE patients with normal vitamin A levels (10.9 ± 5.3 vs. 2.9 ± 2.2 %, p = 0.000). Treatment of 0.3 μg/ml of retinoic acid could increase Treg differentiation (33.9 ± 1.6 vs. 21.8 ± 1.1 %, p = 0.000) and decrease Th17 differentiation (27.2 ± 2.5 vs. 37.4 ± 1.3 %, p = 0.000). In conclusion, vitamin A has important roles in modulating Th17/Treg balance in the SLE patients shown by the significant decrease of vitamin A levels in the SLE patients which negatively correlate with Th17 population, and treatment of retinoic acid could decrease Th17 and increase Treg percentages in CD4(+) T cells cultures.
Collapse
Affiliation(s)
- Kusworini Handono
- Department of Clinical Pathology, Saiful Anwar General Hospital, Faculty of Medicine Brawijaya University, Malang, Indonesia. .,Faculty of Medicine Brawijaya University, Jalan Veteran, Malang, East Java, 65111, Indonesia.
| | - Sevita Nuril Firdausi
- Division of Rheumatology and Immunology, Department of Internal Medicine, Saiful Anwar General Hospital, Faculty of Medicine Brawijaya University, Malang, Indonesia.
| | - Mirza Zaka Pratama
- Division of Rheumatology and Immunology, Department of Internal Medicine, Saiful Anwar General Hospital, Faculty of Medicine Brawijaya University, Malang, Indonesia.
| | - Agustina Tri Endharti
- Department of Parasitology, Faculty of Medicine Brawijaya University, Malang, Indonesia.
| | - Handono Kalim
- Division of Rheumatology and Immunology, Department of Internal Medicine, Saiful Anwar General Hospital, Faculty of Medicine Brawijaya University, Malang, Indonesia.
| |
Collapse
|