1
|
Chatzokou D, Tsarna E, Davouti E, Siristatidis CS, Christopoulou S, Spanakis N, Tsakris A, Christopoulos P. Semen Microbiome, Male Infertility, and Reproductive Health. Int J Mol Sci 2025; 26:1446. [PMID: 40003912 PMCID: PMC11854939 DOI: 10.3390/ijms26041446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The semen microbiome, once believed to be sterile, is now recognized as a dynamic ecosystem containing a diverse range of microorganisms with potential implications for male fertility and reproductive health. We aimed to examine the relationship between the semen microbiome, male infertility, and reproductive outcomes, highlighting the transformative role of next generation sequencing techniques and bioinformatics in exploring this intricate interaction, and we present a critical review of the published literature on this issue. Current evidence suggests a complex association between the composition of the semen microbiome and male fertility, with certain bacterial genera, such as Lactobacillus and Prevotella that exert opposing effects on sperm quality and DNA integrity. In addition, the influence of the semen microbiome extends beyond natural fertility, affecting assisted reproductive technologies and pregnancy outcomes. Despite considerable progress, challenges remain in standardizing methodologies and interpreting findings. In conclusion, we identify the lack of a definitive management proposal for couples presenting with this phenomenon, and we underline the need for an algorithm and indicate the questions raised that point toward our goal for a strategy. Continued research is essential to clarify the role of the semen microbiome in male reproductive health and to advance the development of personalized fertility management approaches.
Collapse
Affiliation(s)
- Dimitra Chatzokou
- 2nd Department of Obstetrics and Gynecology, Faculty of Medicine, “Aretaieion” Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
- AlfaLab, Hellenic HealthCare Group, 11524 Athens, Greece
| | - Ermioni Tsarna
- 2nd Department of Obstetrics and Gynecology, Faculty of Medicine, “Aretaieion” Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Efstathia Davouti
- 2nd Department of Obstetrics and Gynecology, Faculty of Medicine, “Aretaieion” Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Charalampos S Siristatidis
- 2nd Department of Obstetrics and Gynecology, Faculty of Medicine, “Aretaieion” Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Smaragdi Christopoulou
- 2nd Department of Obstetrics and Gynecology, Faculty of Medicine, “Aretaieion” Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Nikolaos Spanakis
- AlfaLab, Hellenic HealthCare Group, 11524 Athens, Greece
- Microbiology Department, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios Tsakris
- Microbiology Department, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Panagiotis Christopoulos
- 2nd Department of Obstetrics and Gynecology, Faculty of Medicine, “Aretaieion” Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
2
|
Frutos-Grilo E, Ana Y, Gonzalez-de Miguel J, Cardona-I-Collado M, Rodriguez-Arce I, Serrano L. Bacterial live therapeutics for human diseases. Mol Syst Biol 2024; 20:1261-1281. [PMID: 39443745 PMCID: PMC11612307 DOI: 10.1038/s44320-024-00067-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
The genomic revolution has fueled rapid progress in synthetic and systems biology, opening up new possibilities for using live biotherapeutic products (LBP) to treat, attenuate or prevent human diseases. Among LBP, bacteria-based therapies are particularly promising due to their ability to colonize diverse human tissues, modulate the immune system and secrete or deliver complex biological products. These bacterial LBP include engineered pathogenic species designed to target specific diseases, and microbiota species that promote microbial balance and immune system homeostasis, either through local administration or the gut-body axes. This review focuses on recent advancements in preclinical and clinical trials of bacteria-based LBP, highlighting both on-site and long-reaching strategies.
Collapse
Affiliation(s)
- Elisabet Frutos-Grilo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Yamile Ana
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Javier Gonzalez-de Miguel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marcel Cardona-I-Collado
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Irene Rodriguez-Arce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, Barcelona, Spain.
| |
Collapse
|
3
|
Miao X, Zhao Y, Zhu L, Zeng Y, Yang C, Zhang R, Lund AK, Zhang M. The Equilibrium of Bacterial Microecosystem: Probiotics, Pathogenic Bacteria, and Natural Antimicrobial Substances in Semen. Microorganisms 2024; 12:2253. [PMID: 39597642 PMCID: PMC11596911 DOI: 10.3390/microorganisms12112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Semen is a complex fluid that contains spermatozoa and also functions as a dynamic bacterial microecosystem, comprising probiotics, pathogenic bacteria, and natural antimicrobial substances. Probiotic bacteria, such as Lactobacillus and Bifidobacterium, along with pathogenic bacteria like Pseudomonas aeruginosa and Escherichia coli, play significant roles in semen preservation and reproductive health. Studies have explored the impact of pathogenic bacteria on sperm quality, providing insights into the bacterial populations in mammalian semen and their influence on sperm function. These reviews highlight the delicate balance between beneficial and harmful bacteria, alongside the role of natural antimicrobial substances that help maintain this equilibrium. Moreover, we discuss the presence and roles of antimicrobial substances in semen, such as lysozyme, secretory leukocyte peptidase inhibitors, lactoferrin, and antimicrobial peptides, as well as emerging antibacterial substances like amyloid proteins. Understanding the interactions among probiotics, pathogens, and antimicrobial agents is crucial for elucidating semen preservation and fertility mechanisms. Additionally, the potential for adding probiotic bacteria with recombinant antibacterial properties presents a promising avenue for the development of new semen extenders. This review offers updated insights to understand the equilibrium of the bacterial microecosystem in semen and points toward innovative approaches for improving semen preservation.
Collapse
Affiliation(s)
- Xuelan Miao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Yanhua Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Lingxi Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Yutian Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Cuiting Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Run Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Arab Khan Lund
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
- Faculty of Animal Production and Technology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Garmendia JV, De Sanctis CV, Hajdúch M, De Sanctis JB. Microbiota and Recurrent Pregnancy Loss (RPL); More than a Simple Connection. Microorganisms 2024; 12:1641. [PMID: 39203483 PMCID: PMC11357228 DOI: 10.3390/microorganisms12081641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Recurrent Pregnancy Loss (RPL) affects 1-2% of women, and its triggering factors are unclear. Several studies have shown that the vaginal, endometrial, and gut microbiota may play a role in RPL. A decrease in the quantity of Lactobacillus crispatus in local microbiota has been associated with an increase in local (vaginal and endometrial) inflammatory response and immune cell activation that leads to pregnancy loss. The inflammatory response may be triggered by gram-negative bacteria, lipopolysaccharides (LPS), viral infections, mycosis, or atypia (tumor growth). Bacterial structures and metabolites produced by microbiota could be involved in immune cell modulation and may be responsible for immune cell activation and molecular mimicry. Gut microbiota metabolic products may increase the amount of circulating pro-inflammatory lymphocytes, which, in turn, will migrate into vaginal or endometrial tissues. Local pro-inflammatory Th1 and Th17 subpopulations and a decrease in local Treg and tolerogenic NK cells are accountable for the increase in pregnancy loss. Local microbiota may modulate the local inflammatory response, increasing pregnancy success. Analyzing local and gut microbiota may be necessary to characterize some RPL patients. Although oral supplementation of probiotics has not been shown to modify vaginal or endometrial microbiota, the metabolites produced by it may benefit patients. Lactobacillus crispatus transplantation into the vagina may enhance the required immune tolerogenic response to achieve a normal pregnancy. The effect of hormone stimulation and progesterone to maintain early pregnancy on microbiota has not been adequately studied, and more research is needed in this area. Well-designed clinical trials are required to ascertain the benefit of microbiota modulation in RPL.
Collapse
Affiliation(s)
- Jenny Valentina Garmendia
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic; (J.V.G.); (M.H.)
| | - Claudia Valentina De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic; (J.V.G.); (M.H.)
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic; (J.V.G.); (M.H.)
- Czech Advanced Technology and Research Institute, Palacky University, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital Olomouc (FNOL), Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic; (J.V.G.); (M.H.)
- Czech Advanced Technology and Research Institute, Palacky University, 779 00 Olomouc, Czech Republic
| |
Collapse
|
5
|
Wu LY, Yang TH, Ou YC, Lin H. The role of probiotics in women's health: An update narrative review. Taiwan J Obstet Gynecol 2024; 63:29-36. [PMID: 38216265 DOI: 10.1016/j.tjog.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 01/14/2024] Open
Abstract
Probiotics, live microorganisms that confer health benefits to the host when administered in adequate amounts, have gained considerable attention for their potential role in maintaining women's health. This overview summarizes key clinical findings on the beneficial effects of probiotics in various aspects of women's health. Probiotics, particularly Lactobacillus species, contribute to vaginal health by promoting a balanced vaginal microbiome to prevent infections and maintain an acidic environment. In gynecologic conditions, probiotics show potential in preventing and managing bacterial vaginosis, vulvovaginal candidiasis, and sexually transmitted infections. Probiotic supplementation has also been associated with improvements in metabolic parameters and menstrual irregularities in polycystic ovary syndrome patients. During pregnancy, probiotics may be helpful in reducing the risk of gestational diabetes, maternal group B streptococcal colonization, obstetric anemia, and postpartum mastitis. In recent years, the potential role of probiotics in the prevention and management of gynecologic cancer has gained attention. Further research is needed to better understand the specific mechanisms and determine the optimal Lactobacillus strains and dosages regimens for gynecologic cancer prevention and therapy. In conclusion, probiotics offer a non-invasive and cost-effective approach to support women's health and prevent obstetric and gynecologic complications.
Collapse
Affiliation(s)
- Ling-Ying Wu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsai-Hwa Yang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Che Ou
- Department of Obstetrics and Gynecology, Chia-Yi Chang Gung Memorial Hospital, Chia-Yi, Taiwan
| | - Hao Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
6
|
Cao T, Wang S, Pan Y, Guo F, Wu B, Zhang Y, Wang Y, Tian J, Xing Q, Liu X. Characterization of the semen, gut, and urine microbiota in patients with different semen abnormalities. Front Microbiol 2023; 14:1182320. [PMID: 37293215 PMCID: PMC10244769 DOI: 10.3389/fmicb.2023.1182320] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Semen quality is decreasing worldwide, leading to increased male infertility. This study analyzed the microbiota of the gut, semen, and urine in individuals with semen abnormalities to identify potential probiotics and pathogenic bacteria that affect semen parameters and help develop new methods for the diagnosis and treatment of patients with semen abnormalities. Methods We recruited 12 individuals with normal semen parameters (control group), 12 with asthenospermia but no semen hyperviscosity (Group_1), 6 with oligospermia (Group_2), 9 with severe oligospermia or azoospermia (Group_3), and 14 with semen hyperviscosity only (Group_4). The semen, gut, and urine microbiota were examined by analyzing the 16S ribosomal RNA gene sequence using next-generation sequencing. Results The gut microbes were clustered into the highest number of operational taxonomic units, followed by urine and semen. Furthermore, the α-diversity of gut microbes was highest and significantly different from that of urine and semen microbiota. The microbiota of the gut, urine, and semen were all significantly different from each other in terms of β-diversity. The gut abundance of Collinsella was significantly reduced in groups 1, 3, and 4. Furthermore, the gut abundance of Bifidobacterium and Blautia was significantly decreased in Group_1, while that of Bacteroides was significantly increased in Group_3. The abundance of Staphylococcus was significantly increased in the semen of groups 1 and 4. Finally, Lactobacillus abundance was significantly reduced in the urine of groups 2 and 4. Discussion This study comprehensively describes the differences in intestinal and genitourinary tract microbiota between healthy individuals and those with abnormal semen parameters. Furthermore, our study identified Collinsella, Bifidobacterium, Blautia, and Lactobacillus as potential probiotics. Finally, the study identified Bacteroides in the gut and Staphylococcus in semen as potential pathogenic bacteria. Our study lays the foundation of a new approach to the diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Tingshuai Cao
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Urology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shangren Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Pan
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Guo
- Department of Urology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bin Wu
- Center for Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingchun Zhang
- Center for Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yujie Wang
- Center for Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiaqing Tian
- Center for Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qingfei Xing
- Department of Urology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
7
|
Giannella L, Grelloni C, Quintili D, Fiorelli A, Montironi R, Alia S, Delli Carpini G, Di Giuseppe J, Vignini A, Ciavattini A. Microbiome Changes in Pregnancy Disorders. Antioxidants (Basel) 2023; 12:463. [PMID: 36830021 PMCID: PMC9952029 DOI: 10.3390/antiox12020463] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The human microbiota comprises all microorganisms, such as bacteria, fungi, and viruses, found within a specific environment that live on our bodies and inside us. The last few years have witnessed an explosion of information related to the role of microbiota changes in health and disease. Even though the gut microbiota is considered the most important in maintaining our health, other regions of the human body, such as the oral cavity, lungs, vagina, and skin, possess their own microbiota. Recent work suggests a correlation between the microbiota present during pregnancy and pregnancy complications. The aim of our literature review was to provide a broad overview of this growing and important topic. We focused on the most significant changes in the microbiota in the four more common obstetric diseases affecting women's health. Thus, our attention will be focused on hypertensive disorders, gestational diabetes mellitus, preterm birth, and recurrent miscarriage. Pregnancy is a unique period in a woman's life since the body undergoes different adaptations to provide an optimal environment for fetal growth. Such changes also involve all the microorganisms, which vary in composition and quantity during the three trimesters of gestation. In addition, special attention will be devoted to the potential and fundamental advances in developing clinical applications to prevent and treat those disorders by modulating the microbiota to develop personalized therapies for disease prevention and tailored treatments.
Collapse
Affiliation(s)
- Luca Giannella
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Camilla Grelloni
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Dayana Quintili
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Alessia Fiorelli
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Ramona Montironi
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Sonila Alia
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Giovanni Delli Carpini
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Jacopo Di Giuseppe
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Andrea Ciavattini
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| |
Collapse
|