1
|
Cho HJ, Yang SH, Lee HS, Kang BS. Structural comparison of three MoaE proteins in Mycobacterium tuberculosis: Insights into molybdopterin synthase assembly and specificity. Biochem Biophys Res Commun 2025; 768:151945. [PMID: 40345009 DOI: 10.1016/j.bbrc.2025.151945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2025] [Accepted: 05/04/2025] [Indexed: 05/11/2025]
Abstract
Molybdoenzymes are essential for the survival and pathogenicity of Mycobacterium tuberculosis and require the molybdenum cofactor (MoCo). The biosynthesis of MoCo involves the molybdopterin (MPT) synthase complex, which is composed of the MoaD and MoaE subunits. The genome of M. tuberculosis encodes three homologs of MoaE: MoaE1, MoaE2, and MoaXE (the latter being a MoaE component of a MoaD-MoaE fusion protein known as MoaX), as well as three MoaD proteins. However, the structural basis for their functional specificity and interaction with MoaD partners remains unclear. We determined the crystal structures of all three MoaE proteins, revealing a conserved α/β hammerhead fold with distinct binding interface features resulting from minor sequence variations. Pull-down assays demonstrate that MoaE2 and MoaXE selectively interact with their cognate MoaD partners, while MoaE1 exhibits promiscuous binding to all MoaD forms. Although the structural plasticity of MoaE1 enables binding to three MoaD forms, it suggests that not all MoaE-MoaD combinations yield functional MPT synthase complexes, as structural rearrangements can lead to enzymatic inactivation. Our findings provide detailed insights into the molecular determinants that govern the assembly and specificity of MPT synthase in M. tuberculosis.
Collapse
Affiliation(s)
- Hyo Je Cho
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Seung Hyeon Yang
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hyun-Shik Lee
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Beom Sik Kang
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
2
|
Shaku MT, Ocius KL, Apostolos AJ, Pires MM, VanNieuwenhze MS, Dhar N, Kana BD. Amidation of glutamate residues in mycobacterial peptidoglycan is essential for cell wall cross-linking. Front Cell Infect Microbiol 2023; 13:1205829. [PMID: 37692163 PMCID: PMC10484409 DOI: 10.3389/fcimb.2023.1205829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Mycobacteria assemble a complex cell wall with cross-linked peptidoglycan (PG) which plays an essential role in maintenance of cell wall integrity and tolerance to osmotic pressure. We previously demonstrated that various hydrolytic enzymes are required to remodel PG during essential processes such as cell elongation and septal hydrolysis. Here, we explore the chemistry associated with PG cross-linking, specifically the requirement for amidation of the D-glutamate residue found in PG precursors. Methods Synthetic fluorescent probes were used to assess PG remodelling dynamics in live bacteria. Fluorescence microscopy was used to assess protein localization in live bacteria and CRISPR-interference was used to construct targeted gene knockdown strains. Time-lapse microscopy was used to assess bacterial growth. Western blotting was used to assess protein phosphorylation. Results and discussion In Mycobacterium smegmatis, we confirmed the essentiality for D-glutamate amidation in PG biosynthesis by labelling cells with synthetic fluorescent PG probes carrying amidation modifications. We also used CRISPRi targeted knockdown of genes encoding the MurT-GatD complex, previously implicated in D-glutamate amidation, and demonstrated that these genes are essential for mycobacterial growth. We show that MurT-rseGFP co-localizes with mRFP-GatD at the cell poles and septum, which are the sites of cell wall synthesis in mycobacteria. Furthermore, time-lapse microscopic analysis of MurT-rseGFP localization, in fluorescent D-amino acid (FDAA)-labelled mycobacterial cells during growth, demonstrated co-localization with maturing PG, suggestive of a role for PG amidation during PG remodelling and repair. Depletion of MurT and GatD caused reduced PG cross-linking and increased sensitivity to lysozyme and β-lactam antibiotics. Cell growth inhibition was found to be the result of a shutdown of PG biosynthesis mediated by the serine/threonine protein kinase B (PknB) which senses uncross-linked PG. Collectively, these data demonstrate the essentiality of D-glutamate amidation in mycobacterial PG precursors and highlight the MurT-GatD complex as a novel drug target.
Collapse
Affiliation(s)
- Moagi T. Shaku
- DSI/NRF Centre of Excellence for Biomedical Tuberculosis (TB) Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Karl L. Ocius
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Alexis J. Apostolos
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | | | - Neeraj Dhar
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bavesh D. Kana
- DSI/NRF Centre of Excellence for Biomedical Tuberculosis (TB) Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
3
|
MoaE Is Involved in Response to Oxidative Stress in Deinococcus radiodurans. Int J Mol Sci 2023; 24:ijms24032441. [PMID: 36768763 PMCID: PMC9916421 DOI: 10.3390/ijms24032441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Molybdenum ions are covalently bound to molybdenum pterin (MPT) to produce molybdenum cofactor (Moco), a compound essential for the catalytic activity of molybdenum enzymes, which is involved in a variety of biological functions. MoaE is the large subunit of MPT synthase and plays a key role in Moco synthesis. Here, we investigated the function of MoaE in Deinococcus radiodurans (DrMoaE) in vitro and in vivo, demonstrating that the protein contributed to the extreme resistance of D. radiodurans. The crystal structure of DrMoaE was determined by 1.9 Å resolution. DrMoaE was shown to be a dimer and the dimerization disappeared after Arg110 had been mutated. The deletion of drmoaE resulted in sensitivity to DNA damage stress and a slower growth rate in D. radiodurans. The increase in drmoaE transcript levels the and accumulation of intracellular reactive oxygen species levels under oxidative stress suggested that it was involved in the antioxidant process in D. radiodurans. In addition, treatment with the base analog 6-hydroxyaminopurine decreased survival and increased intracellular mutation rates in drmoaE deletion mutant strains. Our results reveal that MoaE plays a role in response to external stress mainly through oxidative stress resistance mechanisms in D. radiodurans.
Collapse
|
4
|
Cai J, Pan C, Zhao Y, Xu H, Tian B, Wang L, Hua Y. DRJAMM Is Involved in the Oxidative Resistance in Deinococcus radiodurans. Front Microbiol 2022; 12:756867. [PMID: 35154022 PMCID: PMC8832034 DOI: 10.3389/fmicb.2021.756867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Proteins containing JAB1/MPN/MOV34 metalloenzyme (JAMM/MPN+) domains that have Zn2+-dependent deubiquitinase (DUB) activity are ubiquitous across among all domains of life. Recently, a homolog in Deinococcus radiodurans, DRJAMM, was reported to possess the ability to cleave DRMoaD-MoaE. However, the detailed biochemical characteristics of DRJAMM in vitro and its biological mechanism in vivo remain unclear. Here, we show that DRJAMM has an efficient in vitro catalytic activity in the presence of Mn2+, Ca2+, Mg2+, and Ni2+ in addition to the well-reported Zn2+, and strong adaptability at a wide range of temperatures. Disruption of drJAMM led to elevated sensitivity in response to H2O2in vivo compared to the wild-type R1. In particular, the expression level of MoaE, a product of DRJAMM cleavage, was also increased under H2O2 stress, indicating that DRJAMM is needed in the antioxidant process. Moreover, DRJAMM was also demonstrated to be necessary for dimethyl sulfoxide respiratory system in D. radiodurans. These data suggest that DRJAMM plays key roles in the process of oxidative resistance in D. radiodurans with multiple-choice of metal ions and temperatures.
Collapse
|
5
|
Comín J, Monforte ML, Samper S, Otal I. Analysis of Mycobacterium africanum in the last 17 years in Aragon identifies a specific location of IS6110 in Lineage 6. Sci Rep 2021; 11:10359. [PMID: 33990628 PMCID: PMC8121931 DOI: 10.1038/s41598-021-89511-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/23/2021] [Indexed: 11/12/2022] Open
Abstract
The purpose of this study was to increase our knowledge about Mycobacterium africanum and report the incidence and characteristics of tuberculosis (TB) due to their lineages in Aragon, Spain, over the period 2003-2019. The study includes all the cases in our region, where all the M. tuberculosis complex isolates are systematically characterised. We detected 31 cases of M. africanum among 2598 cases of TB in the period studied. TB caused by M. africanum is rare (1.19%) in our population, and it affects mainly men of economically productive age coming from West African countries. Among the isolates, Lineage (L) 6 was more frequent than L5. The genotyping of these strains identified five clusters and 13 strains with a unique pattern. The isolates' characterisation identified a copy of IS6110 within the moaX gene, which turned out to be specific for L6. It will allow the differentiation of this lineage from the rest of MTBC with a simple PCR reaction. It remains to be established whether this polymorphism may limit M. africanum transmission. Furthermore, a mutation in the mutT2 promoter was found as specific for L6 strains, which could be related to the high variability found for L6 compared to L5.
Collapse
Affiliation(s)
- Jessica Comín
- Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
- Fundación IIS Aragón, Zaragoza, Spain
| | | | - Sofía Samper
- Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain.
- Fundación IIS Aragón, Zaragoza, Spain.
- CIBER de Enfermedades Respiratorias, Zaragoza, Spain.
- Laboratorio de Investigación Molecular-UIT, Hospital Universitario Miguel Servet, Pº Isabel la Católica 1-3, planta calle, 50009, Zaragoza, Aragón, Spain.
| | - Isabel Otal
- Fundación IIS Aragón, Zaragoza, Spain
- CIBER de Enfermedades Respiratorias, Zaragoza, Spain
- Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
6
|
Mycobacterium smegmatis does not display functional redundancy in nitrate reductase enzymes. PLoS One 2021; 16:e0245745. [PMID: 33471823 PMCID: PMC7816997 DOI: 10.1371/journal.pone.0245745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/06/2021] [Indexed: 12/04/2022] Open
Abstract
Reduction of nitrate to nitrite in bacteria is an essential step in the nitrogen cycle, catalysed by a variety of nitrate reductase (NR) enzymes. The soil dweller, Mycobacterium smegmatis is able to assimilate nitrate and herein we set out to confirm the genetic basis for this by probing NR activity in mutants defective for putative nitrate reductase (NR) encoding genes. In addition to the annotated narB and narGHJI, bioinformatics identified three other putative NR-encoding genes: MSMEG_4206, MSMEG_2237 and MSMEG_6816. To assess the relative contribution of each, the corresponding gene loci were deleted using two-step allelic replacement, individually and in combination. The resulting strains were tested for their ability to assimilate nitrate and reduce nitrate under aerobic and anaerobic conditions, using nitrate assimilation and modified Griess assays. We demonstrated that narB, narGHJI, MSMEG_2237 and MSMEG_6816 were individually dispensable for nitrate assimilation and for nitrate reductase activity under aerobic and anaerobic conditions. Only deletion of MSMEG_4206 resulted in significant reduction in nitrate assimilation under aerobic conditions. These data confirm that in M. smegmatis, narB, narGHJI, MSMEG_2237 and MSMEG_6816 are not required for nitrate reduction as MSMEG_4206 serves as the sole assimilatory NR.
Collapse
|
7
|
Wang H, Chen X, Zhang W, Zhou W, Liu X, Rao Z. Structural analysis of molybdopterin synthases from two mycobacterial pathogens. Biochem Biophys Res Commun 2019; 511:21-27. [PMID: 30765225 DOI: 10.1016/j.bbrc.2019.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 11/25/2022]
Abstract
The molybdenum cofactor, composed of molybdopterin and molybdenum, is a necessary compound for the catalytic activity of molybdenum enzymes. Molybdenum cofactor biosynthesis is a conserved multi-step process involving several enzymes. Molybdopterin synthase, a hetero-tetrameric enzyme composed of a pair of MoaE-MoaD subunits, catalyzes the generation of the cis-dithiolene group of molybdopterin in the second step of the process. The cis-dithiolene group can covalently bind molybdenum. Most mycobacterial species possess several genes encoding the full pathway of molybdenum cofactor biosynthesis. In M. smegmatis, the moaD2 and moaE2 genes encode the functional molybdopterin synthase. However, M. tuberculosis has genes encoding several molybdopterin synthase subunit homologs, including moaD1, moaD2, moaE1, moaE2, and moaX, which encodes a MoaD-MoaE fusion protein. Previous studies have shown that moaD2 and moaE2 encode functional molybdopterin synthase. Here, we report the crystal structures of two substrate-free molybdopterin synthases from two different mycobacterial pathogens, M. tuberculosis and M. smegmatis, at 2.1 Å and 2.6 Å resolutions, respectively. The overall structure of both molybdopterin synthases was hetero-tetrameric, consisting of a MoaE2 dimer flanked on either side by single MoaD2 subunits. The carboxyl-terminal domain of MoaD2 inserted into MoaE2, forming the active pocket. A comparison with previously reported molybdopterin synthase structures showed that substrate-binding and catalytic residues were conserved, despite low sequence similarity among these enzymes. The low sequence identity at the MoaE-MoaD heterodimer interface may provide the structural basis to explore mycobacterial inhibitors.
Collapse
Affiliation(s)
- Huiying Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China; College of Life Science, Nankai University, Tianjin, China
| | - Xiaobo Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China; College of Life Science, Nankai University, Tianjin, China
| | - Wei Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China; College of Life Science, Nankai University, Tianjin, China
| | - Weihong Zhou
- College of Life Science, Nankai University, Tianjin, China
| | - Xiang Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China; College of Life Science, Nankai University, Tianjin, China; Laboratory of Structural Biology, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Yang YM, Won YB, Ji CJ, Kim JH, Ryu SH, Ok YH, Lee JW. Cleavage of molybdopterin synthase MoaD-MoaE linear fusion by JAMM/MPN + domain containing metalloprotease DR0402 from Deinococcus radiodurans. Biochem Biophys Res Commun 2018; 502:48-54. [PMID: 29777693 DOI: 10.1016/j.bbrc.2018.05.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
Abstract
Molybdenum cofactor (Moco), molybdopterin (MPT) complexed with molybdenum, is an essential cofactor required for the catalytic center of diverse enzymes in all domains of life. Since Moco cannot be taken up as a nutrient unlike many other cofactors, Moco requires de novo biosynthesis. During the synthesis of MPT, the sulfur atom on the C-terminus of MoaD is transferred to cyclic pyranopterin monophosphate (cPMP) which is bound in the substrate pocket of MoaE. MoaD is a ubiquitin-like (Ubl) protein and has a C-terminal di-Gly motif which is a common feature of Ubl proteins. Despite the importance of free C terminal di-Gly motif of MoaD as a sulfur carrier, some bacteria encode a fused MPT synthase in which MoaD- and MoaE-like domains are located on a single peptide. Although it has recently been reported that the fused MPT synthase MoaX from Mycobacterium tuberculosis is posttranslationally cleaved into functional MoaD and MoaE in M. smegmatis, the protease responsible for the cleavage of MoaD-MoaE fusion protein has remained unknown to date. Here we report that the JAMM/MPN+ domain containing metalloprotease DR0402 (JAMMDR) from Deinococcus radiodurans can cleave the MoaD-MoaE fusion protein DR2607, the sole MPT synthase in D. radiodurans, generating the MoaD having a C-terminal di-Gly motif. Furthermore, JAMMDR can also cleave off the MoaD from MoaD-eGFP fusion protein suggesting that JAMMDR recognizes the MoaD region rather than MoaE region in the cleaving process of MoaD-MoaE fusion protein.
Collapse
Affiliation(s)
- Yoon-Mo Yang
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Young-Bin Won
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Chang-Jun Ji
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jung-Hoon Kim
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Su-Hyun Ryu
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Youn-Ha Ok
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jin-Won Lee
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|