1
|
Yang Q, Lu X, Chen W, Chen Y, Gu C, Jie S, Lei P, Gan M, Yin H, Zhu J. Geochip 5.0 insights into the association between bioleaching of heavy metals from contaminated sediment and functional genes expressed in consortiums. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49575-49588. [PMID: 39080164 DOI: 10.1007/s11356-024-34506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
The heavy metal contamination in river and lake sediments endangers aquatic ecosystems. Herein, the feasibility of applying different exogenous mesophile consortiums in bioleaching multiple heavy metal-contaminated sediments from Xiangjiang River was investigated, and a comprehensive functional gene array (GeoChip 5.0) was used to analyze the functional gene expression to reveal the intrinsic association between metal solubilization efficiency and consortium structure. Among four consortiums, the Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans consortium had the highest solubilization efficiencies of Cu, Pb, Zn, and Cd after 15 days, reaching 50.33, 29.93, 47.49, and 79.65%, while Cu, Pb, and Hg had the highest solubilization efficiencies after 30 days, reaching 63.67, 45.33, and 52.07%. Geochip analysis revealed that 31,346 genes involved in different biogeochemical processes had been detected, and the systems of 15 days had lower proportions of unique genes than those of 30 days. Samples from the same stage had more genes overlapping with each other than those from different stages. Plentiful metal-resistant and organic remediation genes were also detected, which means the metal detoxification and organic pollutant degradation had happened with the bioleaching process. The Mantel test revealed that Pb, Zn, As, Cd, and Hg solubilized from sediment influenced the structure of expressed microbial functional genes during bioleaching. This work employed GeoChip to demonstrate the intrinsic association between functional gene expression of mesophile consortiums and the bioleaching efficiency of heavy metal-contaminated sediment, and it provides a good reference for future microbial consortium design and remediation of river and lake sediments.
Collapse
Affiliation(s)
- Quanliu Yang
- Guizhou Academy of Tobacco Sciences, Guiyang, 550011, China
| | - Xianren Lu
- Guizhou Academy of Tobacco Sciences, Guiyang, 550011, China
| | - Wei Chen
- Guizhou Academy of Tobacco Sciences, Guiyang, 550011, China
| | - Yi Chen
- Guizhou Academy of Tobacco Sciences, Guiyang, 550011, China
| | - Chunyao Gu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, South Lushan Road 932, Changsha, 410083, China
| | - Shiqi Jie
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, South Lushan Road 932, Changsha, 410083, China
| | - Pan Lei
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, South Lushan Road 932, Changsha, 410083, China
| | - Min Gan
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, South Lushan Road 932, Changsha, 410083, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, South Lushan Road 932, Changsha, 410083, China
- Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, OK, 73019, USA
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, South Lushan Road 932, Changsha, 410083, China.
| |
Collapse
|
2
|
Liu S, Huang X, Mu H, Zheng M, Kuang S, Chen H, Xu Y, Wang D, Liu H, Li X. Biogeography and diversity patterns of functional genes associated with C, N, P, S cycling processes across China classical sea sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167678. [PMID: 37820797 DOI: 10.1016/j.scitotenv.2023.167678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Microbial activities influence the ecological functions of marine ecosystems and play an essential role in biogeochemical cycling. However, there are more studies on microbial diversity and community structure, and few reports have explored nutrient cycling processes by microbial functional gene abundance and diversity. Given these limitations, in order to investigate the variability of nutrient cycling among different sea areas and its influencing factors, the sediments of the Bohai Sea, Yellow Sea, East China Sea and South China Sea were used in this study. The number of average copies of each functional gene was obtained by the quantitative microbial element cycling (QMEC) smart chip. A total of 65 functional genes related to C, N, P and S cycling were identified, and the results showed that all functional genes decreased in the order of magnitude from the Bohai Sea to the East China Sea, Yellow Sea and South China Sea, and the abundance of functional genes was significantly higher at the sampling sites near the land side, which related to human activities. Additionally, NH4+, organic carbon, total carbon and geographical factor were the main driving factors of functional gene composition changes (p < 0.05), and all functional genes were significantly correlated with total carbon and geographical distance (p < 0.01). These findings further expand the understanding of marine ecosystems and provide robust support for global biogeochemical cycles.
Collapse
Affiliation(s)
- Shuai Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xin Huang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, China; School of Environment Science and Engineering, Shandong University, Qingdao, Shandong Province 266237, China
| | - Hongyu Mu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Minggang Zheng
- Research Center for Marine Ecology, First Institute of Oceanography, State Oceanic Administration, Qingdao, Shandong 266061, China
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Hui Chen
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, China.
| | - Yan Xu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Dong Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, China; Shandong Mokerui new material Technology Co., LTD, Zibo, China
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
3
|
Hagh-Doust N, Mikryukov V, Anslan S, Bahram M, Puusepp R, Dulya O, Tedersoo L. Effects of nitrogen deposition on carbon and nutrient cycling along a natural soil acidity gradient as revealed by metagenomics. THE NEW PHYTOLOGIST 2023; 238:2607-2620. [PMID: 36949609 DOI: 10.1111/nph.18897] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 05/19/2023]
Abstract
Nitrogen (N) deposition and soil acidification are environmental challenges affecting ecosystem functioning, health, and biodiversity, but their effects on functional genes are poorly understood. Here, we utilized metabarcoding and metagenomics to investigate the responses of soil functional genes to N deposition along a natural soil pH gradient. Soil N content was uncorrelated with pH, enabling us to investigate their effects separately. Soil acidity strongly and negatively affected the relative abundances of most cluster of orthologous gene categories of the metabolism supercategory. Similarly, soil acidity negatively affected the diversity of functional genes related to carbon and N but not phosphorus cycling. Multivariate analyses showed that soil pH was the most important factor affecting microbial and functional gene composition, while the effects of N deposition were less important. Relative abundance of KEGG functional modules related to different parts of the studied cycles showed variable responses to soil acidity and N deposition. Furthermore, our results suggested that the diversity-function relationship reported for other organisms also applies to soil microbiomes. Since N deposition and soil pH affected microbial taxonomic and functional composition to a different extent, we conclude that N deposition effects might be primarily mediated through soil acidification in forest ecosystems.
Collapse
Affiliation(s)
- Niloufar Hagh-Doust
- Institute of Ecology and Earth Sciences, University of Tartu, Juhan Liivi 2, 50409, Tartu, Estonia
- Mycology and Microbiology Center, University of Tartu, Juhan Liivi 2, 50409, Tartu, Estonia
| | - Vladimir Mikryukov
- Institute of Ecology and Earth Sciences, University of Tartu, Juhan Liivi 2, 50409, Tartu, Estonia
- Mycology and Microbiology Center, University of Tartu, Juhan Liivi 2, 50409, Tartu, Estonia
| | - Sten Anslan
- Institute of Ecology and Earth Sciences, University of Tartu, Juhan Liivi 2, 50409, Tartu, Estonia
- Mycology and Microbiology Center, University of Tartu, Juhan Liivi 2, 50409, Tartu, Estonia
| | - Mohammad Bahram
- Institute of Ecology and Earth Sciences, University of Tartu, Juhan Liivi 2, 50409, Tartu, Estonia
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls Väg 16, 75651, Uppsala, Sweden
| | - Rasmus Puusepp
- Institute of Ecology and Earth Sciences, University of Tartu, Juhan Liivi 2, 50409, Tartu, Estonia
| | - Olesya Dulya
- Institute of Ecology and Earth Sciences, University of Tartu, Juhan Liivi 2, 50409, Tartu, Estonia
- Mycology and Microbiology Center, University of Tartu, Juhan Liivi 2, 50409, Tartu, Estonia
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Juhan Liivi 2, 50409, Tartu, Estonia
| |
Collapse
|
4
|
Wen X, Wang X, Ye M, Liu H, He W, Wang Y, Li T, Zhao K, Hou G, Chen G, Li X, Fan C. Response strategies of fine root morphology of Cupressus funebris to the different soil environment. FRONTIERS IN PLANT SCIENCE 2022; 13:1077090. [PMID: 36618632 PMCID: PMC9811150 DOI: 10.3389/fpls.2022.1077090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Understanding fine root morphology is crucial to uncover water and nutrient acquisition and transposition of fine roots. However, there is still a lack of knowledge regarding how the soil environment affects the fine root morphology of various root orders in the stable forest ecosystem. Therefore, this experiment assessed the response strategies of fine root morphology (first- to fifth -order fine roots) in four different soil environments. The results showed that fine root morphology was related to soil environment, and there were significant differences in specific root length (SRL), specific surface area (SRA), diameter (D), and root tissue density (RTD) of first- and second -order fine roots. Soil total nitrogen (TN), alkaline nitrogen (AN) and available phosphorus (AP) were positively correlated with SRL and SRA and negatively correlated with D and RTD. Soil moisture (SW) was positively correlated with the D and RTD of first- and second-order fine roots and negatively correlated with the SRL and SRA. Soil temperature (ST), organic carbon (OC), soil bulk density (SBD) and soil porosity (SP) were not significantly correlated with the D, SRL, SRA, and RTD of the first- and second -order fine roots. AN was positively correlated with SRL and SRA and negatively correlated with both D and RTD in the first- and second -order fine roots, and the correlation coefficient was very significant. Therefore, we finally concluded that soil AN was the most critical factor affecting root D, SRL, SRA and RTD of fine roots, and mainly affected the morphology of first- and second -order fine roots. In conclusion, our research provides support for understanding the relationship between fine root morphology and soil environment, and indicates that soil nutrient gradient forms good root morphology at intraspecific scale.
Collapse
Affiliation(s)
- Xiaochen Wen
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xiao Wang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Mengting Ye
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Hai Liu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Wenchun He
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yu Wang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tianyi Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Kuangji Zhao
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Guirong Hou
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Gang Chen
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Xianwei Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Chuan Fan
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
5
|
Huang S, Cui X, Xu Z, Zhang Z, Wang X. Nitrogen addition exerts a stronger effect than elevated temperature on soil available nitrogen and relation to soil microbial properties in the rhizosphere of Camellia sinensis L. seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35179-35192. [PMID: 35050478 DOI: 10.1007/s11356-022-18748-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
As the global climate changes, elevated atmospheric temperature and nitrogen (N) deposition co-occur in natural ecosystems, which affects rhizosphere soil nutrient by altering allocation of roots and its availability to soil microorganism. Elevated temperature in combination with N deposition is expected to affect soil available N and its relation to microbial properties, but this issue has not been extensively examined. Here, we investigated soil available N and its relation to microbial properties in rhizosphere of Camellia sinensis L. seedlings exposed to elevated temperature using a passive warming device in combination with N-added soil. Elevated temperature did not significantly affect soil pH, total organic carbon (TOC), total nitrogen (TN), the ratio of carbon and nitrogen (C:N ratio), total phosphorus (TP), available N ((N in ammonium (NH4+-N) and N in nitrate (NO3--N)) (NH4+-N + NO3--N)/TN, α-glucosidase (αG), β-glucosidase (βG), cellobiohydrolase (CBH), N-acetyl-glucosaminidase (NAG), and phenol oxidase (PPO) activities, while significantly stimulated root total length of tea seedlings (3.9%), root dry biomass (10.2%), soil microbial biomass carbon (MBC) (7.4%), microbial biomass nitrogen (MBN) (8.6%), and acid phosphatase (ACP) (8.8%). While N addition significantly (p < 0.05) stimulated root dry biomass of tea seedlings (14.1%), root total length (6.2%), root average diameter (6.7%), soil TN, available N, (NH4+-N + NO3--N)/TN, and MBN under elevated temperature. Soil aG, βG, CBH, and ACP activity increase significantly (p < 0.05) under elevated temperature + N relative to elevated temperature alone. Generally, N addition led to increased available nitrogen and microbial properties in rhizosphere soil of tea seedlings exposed to elevated temperature by stimulating root properties, soil nitrogen, microbial biomass N, and enzyme activity. Redundancy analysis and Pearson correlation analysis suggested that N addition lead to higher correlation between soil available N and microbial properties exposed to elevated temperature. Our results indicated nitrogen addition exerts a stronger effect than elevated temperature on soil fertility and microbiological cycle in the rhizosphere of Camellia sinensis L. seedlings. The conclusion helps us understand the response mechanism of soil rhizosphere microenvironment to N deposition under global warming scenarios.
Collapse
Affiliation(s)
- Shuping Huang
- School of Geographic Sciences, Xinyang Normal University, Xinyang, 464000, People's Republic of China.
- Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, Xinyang, 464000, People's Republic of China.
| | - Xiangchao Cui
- School of Geographic Sciences, Xinyang Normal University, Xinyang, 464000, People's Republic of China
- Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Zhiheng Xu
- School of Geographic Sciences, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Zhongshuai Zhang
- School of Geographic Sciences, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Xiaoman Wang
- School of Geographic Sciences, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| |
Collapse
|
6
|
Xiao J, Dong S, Shen H, Li S, Wessell K, Liu S, Li W, Zhi Y, Mu Z, Li H. N Addition Overwhelmed the Effects of P Addition on the Soil C, N, and P Cycling Genes in Alpine Meadow of the Qinghai-Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2022; 13:860590. [PMID: 35557731 PMCID: PMC9087854 DOI: 10.3389/fpls.2022.860590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/09/2022] [Indexed: 05/06/2023]
Abstract
Although human activities have greatly increased nitrogen (N) and phosphorus (P) inputs to the alpine grassland ecosystems, how soil microbial functional genes involved in nutrient cycling respond to N and P input remains unknown. Based on a fertilization experiment established in an alpine meadow of the Qinghai-Tibetan Plateau, we investigated the response of the abundance of soil carbon (C), N, and P cycling genes to N and P addition and evaluated soil and plant factors related to the observed effects. Our results indicated that the abundance of C, N, and P cycling genes were hardly affected by N addition, while P addition significantly increased most of them, suggesting that the availability of P plays a more important role for soil microorganisms than N in this alpine meadow ecosystem. Meanwhile, when N and P were added together, the abundance of C, N, and P cycling genes did not change significantly, indicating that the promoting effects of P addition on microbial functional genes abundances were overwhelmed by N addition. The Mantel analysis and the variation partitioning analysis revealed the major role of shoot P concentration in regulating the abundance of C, N, and P cycling genes. These results suggest that soil P availability and plant traits are key in governing C, N, and P cycling genes at the functional gene level in the alpine grassland ecosystem.
Collapse
Affiliation(s)
- Jiannan Xiao
- School of Environment, Beijing Normal University, Beijing, China
| | - Shikui Dong
- School of Grassland Sciences, Beijing Forestry University, Beijing, China
| | - Hao Shen
- School of Grassland Sciences, Beijing Forestry University, Beijing, China
| | - Shuai Li
- College of Resource and Environment, Shanxi Agricultural University, Taigu, China
| | - Kelly Wessell
- Tompkin Cortland Community College, Ithaca, NY, United States
| | - Shiliang Liu
- School of Environment, Beijing Normal University, Beijing, China
| | - Wei Li
- School of Environment, Beijing Normal University, Beijing, China
| | - Yangliu Zhi
- School of Environment, Beijing Normal University, Beijing, China
| | - Zhiyuan Mu
- School of Environment, Beijing Normal University, Beijing, China
| | - Hongbo Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Zhang K, Li M, Yan Z, Li M, Kang E, Yan L, Zhang X, Li Y, Wang J, Yang A, Niu Y, Kang X. Changes in precipitation regime lead to acceleration of the N cycle and dramatic N 2O emission. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152140. [PMID: 34864035 DOI: 10.1016/j.scitotenv.2021.152140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/03/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Alpine meadows on the Qinghai-Tibetan Plateau are sensitive to climate change. The precipitation regime in this region has undergone major changes, "repackaging" precipitation from more frequent, smaller events to less frequent, larger events. Nitrous oxide (N2O) is an important indicator of responses to global change in alpine meadow ecosystems. However, little information is available describing the mechanisms driving the response of N2O emissions to changes in the precipitation regime. In this study, a manipulative field experiment was conducted to investigate N2O flux, soil properties, enzyme activity, and gene abundance in response to severe and moderate changes in precipitation regime over two years. Severe changes in precipitation regime led to a 12.6-fold increase in N2O fluxes (0.0068 ± 0.0018 mg m-2 h-1) from Zoige alpine meadows relative to natural conditions (0.0005 ± 0.0029 mg m-2 h-1). In addition, severe changes in precipitation regime significantly suppressed the activities of leucine amino peptidase (LAP) and peroxidase (PEO), affected ecoenzymatic stoichiometry, and increased the abundances of gdhA, narI and nirK genes, which significantly promoted organic nitrogen (N) decomposition, denitrification, and anammox processes. The increase in abundance of these genes could be ascribed to changes in the abundance of several dominant bacterial taxa (i.e., Actinobacteria and Proteobacteria) as a result of the altered precipitation regime. Decreases in nitrate and soil moisture caused by severe changes in precipitation may exacerbate N limitation and water deficit, lead to a suppression of soil enzyme activity, and change the structure of microorganism community. The N cycle of the alpine meadow ecosystem may accelerate by increasing the abundance of key N functional genes. This would, in turn, lead to increased N2O emission. This study provided insights into how precipitation regimes changes affect N cycling, and may also improve prediction of N2O fluxes in response to changes in precipitation regime.
Collapse
Affiliation(s)
- Kerou Zhang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Mingxu Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongqing Yan
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Meng Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Enze Kang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Liang Yan
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Xiaodong Zhang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Yong Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Jinzhi Wang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Ao Yang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Yuechuan Niu
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoming Kang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China.
| |
Collapse
|
8
|
Liu X, Shi Y, Kong L, Tong L, Cao H, Zhou H, Lv Y. Long-Term Application of Bio-Compost Increased Soil Microbial Community Diversity and Altered Its Composition and Network. Microorganisms 2022; 10:microorganisms10020462. [PMID: 35208916 PMCID: PMC8878586 DOI: 10.3390/microorganisms10020462] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 01/10/2023] Open
Abstract
The influence of bio-compost on the diversity, composition and structure of soil microbial communities is less understood. Here, Illumina MiSeq sequencing and a network analysis were used to comprehensively characterize the effects of 25 years of bio-compost application on the microbial diversity of soil and community composition. High dosages of bio-compost significantly increased the bacterial and fungal richness. The compositions of bacterial and fungal communities were significantly altered by bio-compost addition. Bio-compost addition enriched the relative abundance of beneficial microorganisms (such as Sphingomonas, Acidibacter, Nocardioides, etc.) and reduced the relative abundance of harmful microorganisms (such as Stachybotrys and Aspergillus). Electrical conductivity, soil organic matter and total phosphorus were the key factors in shaping soil microbial community composition. The bacterial network was more complex than fungal network, and bacteria were more sensitive to changes in environmental factors than fungi. Positive interactions dominated both the bacterial and fungal networks, with stronger positive interactions found in the bacterial network. Functional prediction suggested that bio-composts altered the soil bacterial-community metabolic function with respect to carbon, nitrogen and phosphorus cycles and fungal community trophic modes. In conclusion, suitable bio-compost addition is beneficial to the improvement of soil health and crop quality and therefore the sustainability of agriculture.
Collapse
Affiliation(s)
- Xiayan Liu
- Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.); (L.K.); (H.C.)
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China;
| | - Lingyu Kong
- Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.); (L.K.); (H.C.)
| | - Lihong Tong
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China;
| | - Haoxuan Cao
- Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.); (L.K.); (H.C.)
| | - Hu Zhou
- Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.); (L.K.); (H.C.)
- Correspondence: (H.Z.); (Y.L.); Tel.: +86-010-62731890 (H.Z.); +86-010-62731431 (Y.L.)
| | - Yizhong Lv
- Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.); (L.K.); (H.C.)
- Correspondence: (H.Z.); (Y.L.); Tel.: +86-010-62731890 (H.Z.); +86-010-62731431 (Y.L.)
| |
Collapse
|
9
|
Shang J, Liu B. Application of a microbial consortium improves the growth of Camellia sinensis and influences the indigenous rhizosphere bacterial communities. J Appl Microbiol 2020; 130:2029-2040. [PMID: 33170985 DOI: 10.1111/jam.14927] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/25/2020] [Accepted: 11/03/2020] [Indexed: 12/01/2022]
Abstract
AIMS To investigate the role of a microbial consortium in influencing of Camellia sinensis growth and rhizosphere bacteria microbial community structure. METHODS AND RESULTS Based on glasshouse trials, the microbial consortium TCM was selected for a field trial. TCM significantly increased bud density (67·53%), leaf area (31·15%) and hundred-bud weight (22·5%) compared with the control treatment (P < 0·01) during 180 days. Furthermore, TCM-treated soil showed a significant increase (P < 0·05) in organic matter (60·89%), total nitrogen (66·22%), total phosphorus (3·34%), available phosphorus (3·82%), available potassium (9·24%) and 2-3 mm water-stable aggregates (77·93%). Molecular ecological network analysis of the rhizobacteria indicated an increase in modularity and the number of community, connection and nodes after TCM application. Several plant growth-promoting bacteria were categorized as hubs or indicators, such as Haliangium, Catenulispora and Gemmatimonas, and showed intensive connections with other bacteria. CONCLUSIONS The TCM consortium enhances the effectiveness of soil mineral nutrition, influences the indigenous rhizobacterial community, alters the rhizobacterial network structure in the rhizosphere and promotes the growth of C. sinensis. SIGNIFICANCE AND IMPACT OF THE STUDY The TCM growth-promoting mechanism was closely related to rhizosphere bacterial diversity; therefore, strengthening rhizobacterial interactions may help promote C. sinensis growth, which could be a sustainable approach for improving C. sinensis growth and health in tea plantations.
Collapse
Affiliation(s)
- J Shang
- Tea Research Institute of Chongqing Academy of Agricultural Science, Chongqing, China
| | - B Liu
- Vegetable Technical Extension Station, Qingpu District Shanghai, Shanghai, China
| |
Collapse
|
10
|
Zhang L, Fang W, Li X, Lu W, Li J. Strong linkages between dissolved organic matter and the aquatic bacterial community in an urban river. WATER RESEARCH 2020; 184:116089. [PMID: 32693265 DOI: 10.1016/j.watres.2020.116089] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Aquatic bacterial communities play an important role in biogeochemical cycling in river ecosystems; however, knowledge of the linkages between bacterial communities and dissolved organic matter (DOM) in urban rivers is limited. Here, 16S rRNA amplicon sequencing and parallel factor (PARAFAC) modeling of excitation-emission fluorescence spectroscopy were used to analyze the compositions, co-occurrence patterns, and interactions with chromophoric DOM (CDOM) of bacterial communities in urban river water samples influenced by different human activities. The results revealed that two protein-like components accounted for 65.2 ± 9.56% of the total variability in all three fluorescence components, which suggests that CDOM in urban rivers is mainly a microbial source. In addition to pH and DO, CDOM is also an important factor affecting bacterial community structure, and the main classes (Gammaproteobacteria and Clostridia) and genera (Limnohabitans and Alpinimonas) showed strong positive correlations with terrestrial humic-like C1 and tryptophan-like C2, respectively. When autotrophic and heterotrophic bacteria coexist in urban rivers, the production and degradation of CDOM will occur simultaneously. Furthermore, the riverine bacterial co-occurrence network had a nonrandom modular structure, which was mainly driven by classification correlation and bacterial function. The high abundance of genes related to xenobiotic metabolism, carbon metabolism and nitrogen metabolism in the urban river indicated that anthropogenic activity may be the dominant selective force altering the bacterial communities. Overall, our results provide a novel view for the assembly of bacterial communities in urban river ecosystems under the influence of different human activities.
Collapse
Affiliation(s)
- Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China.
| | - Wangkai Fang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China
| | - Xingchen Li
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China
| | - Wenxuan Lu
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230036, China
| | - Jing Li
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230036, China
| |
Collapse
|
11
|
Successional Variation in the Soil Microbial Community in Odaesan National Park, Korea. SUSTAINABILITY 2020. [DOI: 10.3390/su12114795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Succession is defined as variation in ecological communities caused by environmental changes. Environmental succession can be caused by rapid environmental changes, but in many cases, it is slowly caused by climate change or constant low-intensity disturbances. Odaesan National Park is a well-preserved forest located in the Taebaek mountain range in South Korea. The forest in this national park is progressing from a mixed-wood forest to a broad-leaved forest. In this study, microbial community composition was investigated using 454 sequencing of soil samples collected from 13 different locations in Odaesan National Park. We assessed whether microbial communities are affected by changes in environmental factors such as water content (WC), nutrient availability (total carbon (TC) and total nitrogen (TN)) and pH caused by forest succession. WC, TC, TN and pH significantly differed between the successional stages of the forest. The WC, TC and TN of the forest soils tended to increase as succession progressed, while pH tended to decrease. In both successional stages, the bacterial genus Pseudolabrys was the most abundant, followed by Afipia and Bradyrhizobium. In addition, the fungal genus Saitozyma showed the highest abundance in the forest soils. Microbial community composition changed according to forest successional stage and soil properties (WC, TC, TN, and pH). Furthermore, network analysis of both bacterial and fungal taxa revealed strong relationships of the microbial community depending on the soil properties affected by forest succession.
Collapse
|
12
|
Feng K, Wang S, Wei Z, Wang Z, Zhang Z, Wu Y, Zhang Y, Deng Y. Niche width of above- and below-ground organisms varied in predicting biodiversity profiling along a latitudinal gradient. Mol Ecol 2020; 29:1890-1902. [PMID: 32299139 DOI: 10.1111/mec.15441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/29/2022]
Abstract
Biodiversity is the foundation of all ecosystems across the planet, and having a better understanding of its global distribution mechanism could be important for biodiversity conservation under global change. A niche width model, combined with metabolic theory, has successfully predicted the increase of α-diversity and decrease of β-diversity in the below-ground microbial community along an altitudinal mountain gradient. In this study, we evaluated this niche width model of above-ground plants (mainly trees and shrubs) and below-ground bulk soil microbial communities (i.e., bacteria and archaea) along a latitudinal gradient of forests in China. The niche widths of both plants and microbes increased with increasing temperature and precipitation, and with proximity to circumneutral pH. However, the α- and β-diversities (observed richness and Bray-Curtis dissimilarity, respectively) could not be accurately predicted by a single niche width model alone, either temperature, precipitation or pH. Considering the interactions among different niche width models, all three niche width models were combined to predict biodiversity at the community level using structural equation modelling. The results showed that the niche width model of circumneutral pH was most important in predicting diversity profiling (i.e., α- and β-diversity) for both plants and microbes, while niche width of precipitation and temperature showed both direct and indirect importance for microbe and plant biodiversity, respectively. Because the current niche width model neglects several scenarios related to taxon and environmental attributes, it still needs to be treated with caution in predicting biodiversity trends.
Collapse
Affiliation(s)
- Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shang Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ziyan Wei
- Institute for Marine Science and Technology, Shandong University, Qingdao, China
| | - Zhujun Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhaojing Zhang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,Institute for Marine Science and Technology, Shandong University, Qingdao, China
| | - Yueni Wu
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuguang Zhang
- The Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.,Institute for Marine Science and Technology, Shandong University, Qingdao, China
| |
Collapse
|
13
|
Feng K, Zhang Y, He Z, Ning D, Deng Y. Interdomain ecological networks between plants and microbes. Mol Ecol Resour 2019; 19:1565-1577. [PMID: 31479575 DOI: 10.1111/1755-0998.13081] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022]
Abstract
While macroscopic interkingdom relationships have been intensively investigated in various ecosystems, the above-belowground ecology in natural ecosystems has been poorly understood, especially for the plant-microbe associations at a regional scale. In this study, we proposed a workflow to construct interdomain ecological networks (IDEN) between multiple plants and various microbes (bacteria and archaea in this study). Across 30 latitudinal forests in China, the regional IDEN showed particular topological features, including high connectance, nested structure, asymmetric specialization and modularity. Also, plant species exhibited strong preference to specific microbial groups, and the observed network was significantly different from randomly rewired networks. Network module analysis indicated that a majority of microbes associated with plants within modules rather than across modules, suggesting specialized associations between plants and microorganisms. Consistent plant-microbe associations were captured via IDENs constructed within individual forest locations, which reinforced the validity of IDEN analysis. In addition, the plant-forest link distribution showed the geographical distribution of plants had higher endemicity than that of microorganisms. With cautious experimental design and data processing, this study shows interdomain species associations between plants and microbes in natural forest ecosystems and provides new insights into our understanding of meta-communities across different domain species.
Collapse
Affiliation(s)
- Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuguang Zhang
- Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Beijing, China
| | - Zhili He
- Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Daliang Ning
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Sheng Y, Cong J, Lu H, Yang L, Liu Q, Li D, Zhang Y. Broad-leaved forest types affect soil fungal community structure and soil organic carbon contents. Microbiologyopen 2019; 8:e874. [PMID: 31215766 PMCID: PMC6813455 DOI: 10.1002/mbo3.874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 11/06/2022] Open
Abstract
Evergreen broad-leaved (EBF) and deciduous broad-leaved (DBF) forests are two important vegetation types in terrestrial ecosystems that play key roles in sustainable biodiversity and global carbon (C) cycling. However, little is known about their associated soil fungal community and the potential metabolic activities involved in biogeochemical processes. In this study, soil samples were collected from EBF and DBF in Shennongjia Mountain, China, and soil fungal community structure and functional gene diversity analyzed based on combined Illumina MiSeq sequencing with GeoChip technologies. The results showed that soil fungal species richness (p = 0.079) and fungal functional gene diversity (p < 0.01) were higher in DBF than EBF. Zygomycota was the most dominant phylum in both broad-leaved forests, and the most dominant genera found in each forest varied (Umbelopsis dominated in DBF, whereas Mortierella dominated in EBF). A total of 4, 439 soil fungi associated functional gene probes involved in C and nitrogen (N) cycling were detected. Interestingly, the relative abundance of functional genes related to labile C degradation (e.g., starch, pectin, hemicellulose, and cellulose) was significantly higher (p < 0.05) in DBF than EBF, and the functional gene relative abundance involved in C cycling was significantly negatively correlated with soil labile organic C (r = -0.720, p = 0.002). In conclusion, the soil fungal community structure and potential metabolic activity showed marked divergence in different broad-leaved forest types, and the higher relative abundance of functional genes involved in C cycling in DBF may be caused by release of loss of organic C in the soil.
Collapse
Affiliation(s)
- Yuyu Sheng
- Key Laboratory of Biological Conservation of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Jing Cong
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hui Lu
- Key Laboratory of Biological Conservation of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Linsen Yang
- Shennongjia National Park, Shennongjia, Hubei Province, China
| | - Qiang Liu
- Shennongjia National Park, Shennongjia, Hubei Province, China
| | - Diqiang Li
- Key Laboratory of Biological Conservation of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Yuguang Zhang
- Key Laboratory of Biological Conservation of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
15
|
He G, Wang X, Liu X, Xiao X, Huang S, Wu J. Nutrients Availability Shapes Fungal Community Composition and Diversity in the Rare Earth Mine Tailings of Southern Jiangxi, China. RUSS J ECOL+ 2019. [DOI: 10.1134/s1067413618660037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Berkelmann D, Schneider D, Engelhaupt M, Heinemann M, Christel S, Wijayanti M, Meryandini A, Daniel R. How Rainforest Conversion to Agricultural Systems in Sumatra (Indonesia) Affects Active Soil Bacterial Communities. Front Microbiol 2018; 9:2381. [PMID: 30364106 PMCID: PMC6191527 DOI: 10.3389/fmicb.2018.02381] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
Palm oil production in Indonesia increased constantly over the last decades, which led to massive deforestation, especially on Sumatra island. The ongoing conversion of rainforest to agricultural systems results in high biodiversity loss. Here, we present the first RNA-based study on the effects of rainforest transformation to rubber and oil palm plantations in Indonesia for the active soil bacterial communities. For this purpose, bacterial communities of three different converted systems (jungle rubber, rubber plantation, and oil palm plantation) were studied in two landscapes with rainforest as reference by RT-PCR amplicon-based analysis of 16S rRNA gene transcripts. Active soil bacterial communities were dominated by Frankiales (Actinobacteria), subgroup 2 of the Acidobacteria and Alphaproteobacteria (mainly Rhizobiales and Rhodospirillales). Community composition differed significantly between the converted land use systems and rainforest reference sites. Alphaproteobacteria decreased significantly in oil palm samples compared to rainforest samples. In contrast, relative abundances of taxa within the Acidobacteria increased. Most important abiotic drivers for shaping soil bacterial communities were pH, calcium concentration, base saturation and C:N ratio. Indicator species analysis showed distinct association patterns for the analyzed land use systems. Nitrogen-fixing taxa including members of Rhizobiales and Rhodospirillales were associated with rainforest soils while nitrifiers and heat-resistant taxa including members of Actinobacteria were associated with oil palm soils. Predicted metabolic profiles revealed that the relative abundances of genes associated with fixation of nitrogen significantly decreased in plantation soils. Furthermore, predicted gene abundances regarding motility, competition or gene transfer ability indicated rainforest conversion-induced changes as well.
Collapse
Affiliation(s)
- Dirk Berkelmann
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| | - Martin Engelhaupt
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| | - Melanie Heinemann
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| | - Stephan Christel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| | - Marini Wijayanti
- Department of Biology, Faculty of Mathematics and Natural Sciences IPB, Bogor Agricultural University, Bogor, Indonesia
| | - Anja Meryandini
- Department of Biology, Faculty of Mathematics and Natural Sciences IPB, Bogor Agricultural University, Bogor, Indonesia
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| |
Collapse
|
17
|
Siles JA, Margesin R. Seasonal soil microbial responses are limited to changes in functionality at two Alpine forest sites differing in altitude and vegetation. Sci Rep 2017; 7:2204. [PMID: 28526872 PMCID: PMC5438347 DOI: 10.1038/s41598-017-02363-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/10/2017] [Indexed: 12/29/2022] Open
Abstract
The study of soil microbial responses to environmental changes is useful to improve simulation models and mitigation strategies for climate change. We here investigated two Alpine forest sites (deciduous forest vs. coniferous forest) situated at different altitudes (altitudinal effect) in spring and autumn (seasonal effect) regarding: (i) bacterial and fungal abundances (qPCR); (ii) diversity and structure of bacterial and fungal communities (amplicon sequencing); and (iii) diversity and composition of microbial functional gene community (Geochip 5.0). Significant altitudinal changes were detected in microbial abundances as well as in diversity and composition of taxonomic and functional communities as a consequence of the differences in pH, soil organic matter (SOM) and nutrient contents and soil temperatures measured between both sites. A network analysis revealed that deciduous forest site (at lower altitude) presented a lower resistance to environmental changes than that of coniferous forest site (at higher altitude). Significant seasonal effects were detected only for the diversity (higher values in autumn) and composition of microbial functional gene community, which was related to the non-significant increased SOM and nutrient contents detected in autumn respect to spring and the presumable high capacity of soil microbial communities to respond in functional terms to discreet environmental changes.
Collapse
Affiliation(s)
- José A Siles
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, A-6020, Innsbruck, Austria.
| | - Rosa Margesin
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, A-6020, Innsbruck, Austria
| |
Collapse
|
18
|
Li L, Xing M, Lv J, Wang X, Chen X. Response of rhizosphere soil microbial to Deyeuxia angustifolia encroaching in two different vegetation communities in alpine tundra. Sci Rep 2017; 7:43150. [PMID: 28220873 PMCID: PMC5318906 DOI: 10.1038/srep43150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/20/2017] [Indexed: 11/13/2022] Open
Abstract
Deyeuxia angustifolia (Komarov) Y. L Chang is an herb species originating from the birch forests in the Changbai Mountain. Recently, this species has been found encroaching into large areas in the western slopes of the alpine tundra in the Changbai Mountain, threatening the tundra ecosystem. In this study, we systematically assessed the response of the rhizosphere soil microbial to D. angustifolia encroaching in alpine tundra by conducting experiments for two vegetation types (shrubs and herbs) by real-time PCR and Illumina Miseq sequencing methods. The treatments consisted of D. angustifolia sites (DA), native sites (NS, NH) and encroaching sites (ES, EH). Our results show that (1) Rhizosphere soil properties of the alpine tundra were significantly impacted by D. angustifolia encroaching; microbial nutrient cycling and soil bacterial communities were shaped to be suitable for D. angustifolia growth; (2) The two vegetation community rhizosphere soils responded differently to D. angustifolia encroaching; (3) By encroaching into both vegetation communities, D. angustifolia could effectively replace the native species by establishing positive plant-soil feedback. The strong adaptation and assimilative capacity contributed to D. angustifolia encroaching in the alpine tundra. Our research indicates that D. angustifolia significantly impacts the rhizosphere soil microbial of the alpine tundra.
Collapse
Affiliation(s)
- Lin Li
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, Jilin University, Changchun 130112, China
- School of Life Science, Jilin University, Changchun 130012, China
| | - Ming Xing
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, Jilin University, Changchun 130112, China
- School of Life Science, Jilin University, Changchun 130012, China
| | - Jiangwei Lv
- Huhhot Vocational college, Huhht, Inner Mongolia 010051, China
| | - Xiaolong Wang
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, Jilin University, Changchun 130112, China
- School of Life Science, Jilin University, Changchun 130012, China
| | - Xia Chen
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, Jilin University, Changchun 130112, China
- School of Life Science, Jilin University, Changchun 130012, China
| |
Collapse
|
19
|
Jie S, Li M, Gan M, Zhu J, Yin H, Liu X. Microbial functional genes enriched in the Xiangjiang River sediments with heavy metal contamination. BMC Microbiol 2016; 16:179. [PMID: 27502206 PMCID: PMC4976514 DOI: 10.1186/s12866-016-0800-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 08/04/2016] [Indexed: 11/10/2022] Open
Abstract
Background Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River. Results A total of 25595 functional genes involved in different biogeochemical processes have been detected in three sites, and different diversities and structures of microbial functional genes were observed. The analysis of gene overlapping, unique genes, and various diversity indices indicated a significant correlation between the level of heavy metal contamination and the functional diversity. Plentiful resistant genes related to various metal were detected, such as copper, arsenic, chromium and mercury. The results indicated a significantly higher abundance of genes involved in metal resistance including sulfate reduction genes (dsr) in studied site with most serious heavy metal contamination, such as cueo, mer, metc, merb, tehb and terc gene. With regard to the relationship between the environmental variables and microbial functional structure, S, Cu, Cd, Hg and Cr were the dominating factor shaping the microbial distribution pattern in three sites. Conclusions This study suggests that high level of heavy metal contamination resulted in higher functional diversity and the abundance of metal resistant genes. These variation therefore significantly contribute to the resistance, resilience and stability of the microbial community subjected to the gradient of heavy metals contaminant in Xiangjiang River. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0800-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiqi Jie
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Mingming Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Min Gan
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China. .,Department of Botany and Microbiology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA.
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| |
Collapse
|