1
|
Xu Z, Li Y, Xue L, Xu A, Yu G, Soteyome T, Yuan L, Li X, Liu J. Genomic-transcriptomic analysis of Staphylococcus aureus biofilm formation under sub-MIC antibiotic exposure. Food Res Int 2025; 211:116386. [PMID: 40356167 DOI: 10.1016/j.foodres.2025.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/23/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
Antibiotics are widely used in animal husbandry to ensure the health of livestock, leading to the exposure of microorganisms to accumulated sub-lethal concentrations (sub-MICs) of antibiotics in meats. This study aimed to investigate the effects and mechanisms of sub-MICs of commonly used antibiotics on the biofilm formation of a S. aureus strain Guangzhou-SAU071 which displays weak biofilm formation despite harboring biofilm-associated genes. CV and MTS assays were used to determine biofilm biomass and cell viability, respectively. Dual-omics sequencing combining genomics and transcriptomics was used to study the global expression changes. Expression of biofilm and two-component system associated genes was further verified by RT-qPCR. Biofilm formation of Guangzhou-SAU071 was enhanced under sub-MIC of ciprofloxacin (2 μg/mL) and streptomycin (128 μg/mL). Nearly half of the genes associated with biofilm formation, cell wall anchoring, and two-component systems exhibited significant differential expression under sub-MIC of ciprofloxacin and streptomycin. As concluded, sub-MIC of ciprofloxacin and streptomycin enhanced biofilm formation of S. aureus, possibly due to its regulation on biofilm and two-component system associated genes.
Collapse
Affiliation(s)
- Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China..
| | - Yaqin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Liang Xue
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Aijuan Xu
- Guangzhou Hybribio Medical Laboratory, Guangzhou 510730, China
| | - Guangchao Yu
- Center of Clinical Laboratory Medicine, First Affiliated Hospital of Jinan University, Guangzhou 510620, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Xuejie Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou, China.
| | - Junyan Liu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China.
| |
Collapse
|
2
|
Barman P, Sharma C, Joshi S, Sharma S, Maan M, Rishi P, Singla N, Saini A. In Vivo Acute Toxicity and Therapeutic Potential of a Synthetic Peptide, DP1 in a Staphylococcus aureus Infected Murine Wound Excision Model. Probiotics Antimicrob Proteins 2025; 17:843-856. [PMID: 37910332 DOI: 10.1007/s12602-023-10176-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 11/03/2023]
Abstract
Bacterial infections at the surgical sites are one of the most prevalent skin infections that impair the healing mechanism. They account for about 20% of all types of infections and lead to approximately 75% of surgical-site infection-associated mortality. Several antibiotics, such as cephalosporins, fluoroquinolones, quinolones, penicillin, sulfonamides, etc., that are used to treat such wound infections not only counter infections but also disrupt the normal flora. Moreover, antibiotics, when used for a prolonged duration, may impair the formation of new blood vessels, delay collagen production, or inhibit the migration of certain cells involved in wound repair, leading to an impaired healing process. Therefore, there is a dire need for alternate therapeutic approaches against such infections. Antimicrobial peptides have gained considerable attention as a promising strategy to counter these pathogens and prevent the spread of infection. Recently, we have reported a designed peptide, DP1, and its broad-spectrum in vitro antimicrobial activity against Gram-positive and Gram-negative bacteria. In the present study, in vivo acute toxicity of DP1 was evaluated and even at a high dose (20 mg/kg body weight) of DP1, a 100% survival of mice was observed. Subsequently, a Staphylococcus aureus-infected murine wound excision model was established to assess the wound healing efficacy of DP1. The study revealed significant wound healing vis-a-vis attenuated S. aureus bioburden at the wound site and also controlled the oxidative stress depicting anti-oxidant activity as well. Healing of the infected wounds was also verified by histopathological examination. Based on the results of this study, it can be concluded that DP1 improves wound resolution despite infections and promotes the healing mechanism. Hence, DP1 holds compelling potential as a novel antimicrobial drug that requires further explorations in clinical platforms.
Collapse
Affiliation(s)
- Panchali Barman
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Chandigarh, 160014, India
| | - Chakshu Sharma
- Department of Biophysics, Panjab University, Chandigarh, U.T, 160014, India
| | - Shubhi Joshi
- Department of Biophysics, Panjab University, Chandigarh, U.T, 160014, India
| | - Sheetal Sharma
- Department of Biophysics, Panjab University, Chandigarh, U.T, 160014, India
| | - Mayank Maan
- Department of Biophysics, Panjab University, Chandigarh, U.T, 160014, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, U.T, 160014, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, U.T, 160014, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Chandigarh, U.T, 160014, India.
| |
Collapse
|
3
|
Miao B, Wang D, Yu L, Meng X, Liu S, Gao M, Han J, Chen Z, Li P, Liu S. Mechanism and nanotechnological-based therapeutics for tolerance and resistance of bacterial biofilms. Microbiol Res 2025; 292:127987. [PMID: 39642765 DOI: 10.1016/j.micres.2024.127987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Bacterial biofilms are one of the most relevant drivers of chronic and recurrent infections and a significant healthcare problem. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure and low drug permeability, leading to tolerance and resistance of biofilms to antibiotics and to host responses. Within a biofilm, microbial cells show increased tolerance to both immune system defense mechanisms and antimicrobials than the same cells in the planktonic state. It is one of the key reasons for the failure of traditional clinical drug to treat infectious diseases. Currently, no drugs are available to attack bacterial biofilms in the clinical setting. The development of novel preventive and therapeutic strategies is urgently needed to allow an effective management of biofilm-associated infections. Based on the properties of nanomaterials and biocompatibility, nanotechnology had the advantages of specific targeting, intelligent delivery and low toxicity, which could realize efficient intervention and precise treatment of biofilm-associated infections. In this paper, the mechanisms of bacterial biofilm resistance to antibiotics and host response tolerance were elaborated. Meanwhile, This paper highlighted multiple strategies of biofilms eradication based on nanotechnology. Nanotechnology can interfere with biofilm formation by destroying mature biofilm, modulating biofilm heterogeneity, inhibiting bacterial metabolism, playing antimicrobial properties, activating immunity and enhancing biofilm penetration, which is an important new anti-biofilm preparation. In addition, we presented the key challenges still faced by nanotechnology in combating bacterial biofilm infections. Utilization of nanotechnology safely and effectively should be further strengthened to confirm the safety aspects of their clinical application.
Collapse
Affiliation(s)
- Beiliang Miao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Dianhong Wang
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Li Yu
- Graduate school of Tianjin Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiangfei Meng
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Shiyi Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mengqi Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Jiatong Han
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Zeliang Chen
- School of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110161, China
| | - Ping Li
- Department of Nephrology, Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China.
| |
Collapse
|
4
|
Jia K, Zhu H, Wang J, Qin X, Wang X, Dong Q. Fitness cost and compensatory evolution of penicillin-induced resistant Staphylococcus aureus. Food Res Int 2025; 203:115841. [PMID: 40022365 DOI: 10.1016/j.foodres.2025.115841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/06/2025] [Accepted: 01/23/2025] [Indexed: 03/03/2025]
Abstract
Staphylococcus aureus is a widespread pathogen in nature, with staphylococcal enterotoxins being a major cause of foodborne illness. The extensive use of antibiotics on farms has contributed to the spread of antibiotic-resistant S. aureus. Understanding the fitness cost and compensatory evolution of antibiotic-resistant isolates is crucial for assessing the consequences of resistance acquisition and predicting the potential spread of resistant mutants in various environments. In this study, penicillin (PEN) was used to induce resistance in antibiotic-sensitive S. aureus, resulting in PEN-resistant mutants. We evaluated and compared the growth and thermal inactivation characteristics at different temperatures, virulence potential, and relative fitness of S. aureus isolates before and after PEN exposure under various stress conditions. The results revealed that PEN induction led to the acquisition of multidrug resistance and cross-resistance in S. aureus. Compared to the parent sensitive isolates, PEN-resistant S. aureus exhibited altered biological characteristics, including reduced phenotypes related to invasion (hemolysis activity, serum resistance) and toxin production (staphyloxanthin formation), but increased characteristics linked to colonization (biofilm formation) and gene transfer (autolytic activity). Fitness advantages were either maintained or enhanced in resistant isolates, with PEN serial passaging showing a more pronounced effect in improving fitness and driving compensatory evolution. These findings underscore the importance of investigating fitness costs and compensatory evolution following resistance acquisition to better understand the risks posed by resistant S. aureus to the food chain and human health.
Collapse
Affiliation(s)
- Kai Jia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jun Gong Rd., Shanghai 200093 China
| | - Huajian Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jun Gong Rd., Shanghai 200093 China
| | - Jun Wang
- College of Food Science and Technology, Guangdong Ocean University, No. 1, Haida Road, Mazhang District, Zhanjiang, Guangdong 524088, China
| | - Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jun Gong Rd., Shanghai 200093 China
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jun Gong Rd., Shanghai 200093 China.
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jun Gong Rd., Shanghai 200093 China.
| |
Collapse
|
5
|
Elawady R, Aboulela AG, Gaballah A, Ghazal AA, Amer AN. Antimicrobial Sub-MIC induces Staphylococcus aureus biofilm formation without affecting the bacterial count. BMC Infect Dis 2024; 24:1065. [PMID: 39342123 PMCID: PMC11438285 DOI: 10.1186/s12879-024-09790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Biofilm formation is an essential virulence factor that creates a highly protected growth mode for Staphylococcus aureus (S. aureus) to survive in any hostile environment. Antibiotic sub-minimal inhibitory concentration (sub-MIC) may modulate the biofilm formation ability of bacterial pathogens, thereby affecting bacterial pathogenesis and infection outcomes. Intense antimicrobial therapy to treat biofilm-associated infections can control the pathogenic infection aggravation but cannot guarantee its complete eradication. OBJECTIVE This study aimed to assess the sub-MICs effect of 5 different antimicrobial classes on biofilm-forming capacity among Staphylococcus aureus clinical isolates using three different biofilm quantitation techniques. METHODS In this study, the effects of 5 different antimicrobial agents, namely, azithromycin, gentamicin, ciprofloxacin, doxycycline, and imipenem, at sub-MICs of 12.5%, 25%, and 50% were tested on 5 different clinical isolates of S. aureus. The biofilms formed in the absence and presence of different antimicrobial sub-MICs were then assessed using the following three different techniques: the crystal violet (CV) staining method, the quantitative PCR (qPCR) method, and the spread plate method (SPM). RESULTS Biofilm formation was significantly induced in 64% of the tested conditions using the CV technique. On the other hand, the qPCR quantifying the total bacterial count and the SPM quantifying the viable bacterial count showed significant induction only in 24% and 17.3%, respectively (Fig. 1). The difference between CV and the other techniques indicates an increase in biofilm biomass without an increase in bacterial growth. As expected, sub-MICs did not reduce the viable cell count, as shown by the SPM. The CV staining method revealed that sub-MICs of imipenem and ciprofloxacin had the highest significance rate (80%) showing an inductive effect on the biofilm development. On the other hand, doxycycline, azithromycin, and gentamicin displayed lower significance rates of 73%, 53%, and 47%, respectively. CONCLUSION Exposure to sub-MIC doses of antimicrobial agents induces the biofilm-forming capacity of S. aureus via increasing the total biomass without significantly affecting the bacterial growth of viable count.
Collapse
Affiliation(s)
- Raghda Elawady
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Aliaa G Aboulela
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ahmed Gaballah
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Abeer A Ghazal
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ahmed N Amer
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy and Drug Manufacturing, Pharos University, Alexandria, Egypt
| |
Collapse
|
6
|
Hao L, Zhou J, Yang H, He C, Shu W, Song H, Liu Q. Anti-virulence potential of iclaprim, a novel folic acid synthesis inhibitor, against Staphylococcus aureus. Appl Microbiol Biotechnol 2024; 108:432. [PMID: 39102054 PMCID: PMC11300511 DOI: 10.1007/s00253-024-13268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Infections caused by Staphylococcus aureus pose a significant global public problem. Therefore, new antibiotics and therapeutic strategies are needed to combat this pathogen. This investigation delves into the effects of iclaprim, a newly discovered inhibitor of folic acid synthesis, on S. aureus virulence. The phenotypic and genotypic effects of iclaprim were thoroughly examined in relation to virulence factors, biofilm formation, and dispersal, as well as partial virulence-encoding genes associated with exoproteins, adherence, and regulation in S. aureus MW2, N315, and ATCC 25923. Then, the in vivo effectiveness of iclaprim on S. aureus pathogenicity was explored by a Galleria mellonella larvae infection model. The use of iclaprim at sub-inhibitory concentrations (sub-MICs) resulted in a reduction of α-hemolysin (Hla) production and a differential effect on the activity of coagulase in S. aureus strains. The results of biofilm formation and eradication assay showed that iclaprim was highly effective in depolymerizing the mature biofilm of S. aureus strains at concentrations of 1 MIC or greater, however, inhibited the biofilm-forming ability of only strains N315 and ATCC 25923 at sub-MICs. Interestingly, treatment of strains with sub-MICs of iclaprim resulted in significant stimulation or suppression of most virulence-encoding genes expression. Iclaprim did not affect the production of δ-hemolysin or staphylococcal protein A (SpA), nor did it impact the total activity of proteases, nucleases, and lipases. In vivo testing showed that sub-MICs of iclaprim significantly improves infected larvae survival. The present study offered valuable insights towards a better understating of the influence of iclaprim on different strains of S. aureus. The findings suggest that iclaprim may have potential as an anti-virulence and antibiofilm agent, thus potentially mitigating the pathogenicity of S. aureus and improving clinical outcomes associated with infections caused by this pathogen. KEY POINTS: • Iclaprim effectively inhibits α-hemolysin production and biofilm formation in a strain-dependent manner and was an excellent depolymerizing agent of mature biofilm • Iclaprim affected the mRNA expression of virulence-encoding genes associated with exoproteins, adherence, and regulation • In vivo study in G. mellonella larvae challenged with S. aureus exhibited that iclaprim improves larvae survival.
Collapse
Affiliation(s)
- Lingyun Hao
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingwen Zhou
- Department of Clinical Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Rd., Shanghai, 200071, China
| | - Han Yang
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chunyan He
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wen Shu
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haoyue Song
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qingzhong Liu
- Department of Clinical Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Rd., Shanghai, 200071, China.
| |
Collapse
|
7
|
Cheema HS, Maurya A, Kumar S, Pandey VK, Singh RM. Antibiotic Potentiation Through Phytochemical-Based Efflux Pump Inhibitors to Combat Multidrug Resistance Bacteria. Med Chem 2024; 20:557-575. [PMID: 37907487 DOI: 10.2174/0115734064263586231022135644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Antimicrobial resistance development poses a significant danger to the efficacy of antibiotics, which were once believed to be the most efficient method for treating infections caused by bacteria. Antimicrobial resistance typically involves various mechanisms, such as drug inactivation or modification, drug target modification, drug uptake restriction, and drug efflux, resulting in decreased antibiotic concentrations within the cell. Antimicrobial resistance has been associated with efflux Pumps, known for their capacity to expel different antibiotics from the cell non-specifically. This makes EPs fascinating targets for creating drugs to combat antimicrobial resistance (AMR). The varied structures of secondary metabolites (phytomolecules) found in plants have positioned them as a promising reservoir of efflux pump inhibitors. These inhibitors act as modifiers of bacterial resistance and facilitate the reintroduction of antibiotics that have lost clinical effectiveness. Additionally, they may play a role in preventing the emergence of multidrug resistant strains. OBJECTIVE The objective of this review article is to discuss the latest studies on plant-based efflux pump inhibitors such as terpenoids, alkaloids, flavonoids, glycosides, and tetralones. It highlighted their potential in enhancing the effectiveness of antibiotics and combating the development of multidrug resistance. RESULTS Efflux pump inhibitors (EPIs) derived from botanical sources, including compounds like lysergol, chanaoclavine, niazrin, 4-hydroxy-α-tetralone, ursolic acid, phytol, etc., as well as their partially synthesized forms, have shown significant potential as practical therapeutic approaches in addressing antimicrobial resistance caused by efflux pumps. Further, several phyto-molecules and their analogs demonstrated superior potential for reversing drug resistance, surpassing established agents like reserpine, niaziridin, etc. Conclusion: This review found that while the phyto-molecules and their derivatives did not possess notable antimicrobial activity, their combination with established antibiotics significantly reduced their minimum inhibitory concentration (MIC). Specific molecules, such as chanaoclavine and niaziridin, exhibited noteworthy potential in reversing the effectiveness of drugs, resulting in a reduction of the MIC of tetracycline by up to 16 times against the tested strain of bacteria. These molecules inhibited the efflux pumps responsible for drug resistance and displayed a stronger affinity for membrane proteins. By employing powerful EPIs, these molecules can selectively target and obstruct drug efflux pumps. This targeted approach can significantly augment the strength and efficacy of older antibiotics against various drug resistant bacteria, given that active drug efflux poses a susceptibility for nearly all antibiotics.
Collapse
Affiliation(s)
| | - Anupam Maurya
- Chemistry Section, Pharmacopoeia Commission for Indian Medicine, and Homoeopathy (PCIM&H), Ministry of Ayush, Ghaziabad, 201002, (U.P.), India
| | - Sandeep Kumar
- Department of Botany, Meerut College, Meerut, 250003 (U.P.), India
| | - Vineet Kumar Pandey
- Chemistry Section, Pharmacopoeia Commission for Indian Medicine, and Homoeopathy (PCIM&H), Ministry of Ayush, Ghaziabad, 201002, (U.P.), India
| | - Raman Mohan Singh
- Chemistry Section, Pharmacopoeia Commission for Indian Medicine, and Homoeopathy (PCIM&H), Ministry of Ayush, Ghaziabad, 201002, (U.P.), India
| |
Collapse
|
8
|
Luo ZX, Li Y, Liu MF, Zhao R. Ciprofloxacin enhances the biofilm formation of Staphylococcus aureus via an agrC-dependent mechanism. Front Microbiol 2023; 14:1328947. [PMID: 38179460 PMCID: PMC10764545 DOI: 10.3389/fmicb.2023.1328947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Staphylococcus aureus readily forms biofilms on host tissues and medical devices, enabling its persistence in chronic infections and resistance to antibiotic therapy. The accessory gene regulator (Agr) quorum sensing system plays a key role in regulating S. aureus biofilm formation. This study reveals the widely used fluoroquinolone antibiotic, ciprofloxacin, strongly stimulates biofilm formation in methicillin-resistant S. aureus, methicillin-sensitive S. aureus, and clinical isolates with diverse genetic backgrounds. Crystal violet staining indicated that ciprofloxacin induced a remarkable 12.46- to 15.19-fold increase in biofilm biomass. Confocal laser scanning microscopy revealed that ciprofloxacin induced denser biofilms. Phenotypic assays suggest that ciprofloxacin may enhance polysaccharide intercellular adhesin production, inhibit autolysis, and reduce proteolysis during the biofilm development, thus promoting initial adhesion and enhancing biofilm stability. Mechanistically, ciprofloxacin significantly alters the expression of various biofilm-related genes (icaA, icaD, fnbA, fnbB, eap, emp) and regulators (agrA, saeR). Gene knockout experiments revealed that deletion of agrC, rather than saeRS, abolishes the ciprofloxacin-induced enhancement of biofilm formation, underscoring the key role of agrC. Thermal shift assays showed ciprofloxacin binds purified AgrC protein, thereby inhibiting the Agr system. Molecular docking results further support the potential interaction between ciprofloxacin and AgrC. In summary, subinhibitory concentrations of ciprofloxacin stimulate S. aureus biofilm formation via an agrC-dependent pathway. This inductive effect may facilitate local infection establishment and bacterial persistence, ultimately leading to therapeutic failure.
Collapse
Affiliation(s)
- Zhao-xia Luo
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Nanchang University, Nanchang, China
| | - Yuting Li
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Nanchang University, Nanchang, China
| | - Mei-fang Liu
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rui Zhao
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Liu J, Huang T, Xu Z, Mao Y, Soteyome T, Liu G, Qu C, Yuan L, Ma Q, Zhou F, Seneviratne G. Sub-MIC streptomycin and tetracycline enhanced Staphylococcus aureus Guangzhou-SAU749 biofilm formation, an in-depth study on transcriptomics. Biofilm 2023; 6:100156. [PMID: 37779859 PMCID: PMC10539642 DOI: 10.1016/j.bioflm.2023.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023] Open
Abstract
Staphylococcus aureus is a major human pathogen, a potential "Super-bug" and a typical biofilm forming bacteria. With usage of large amount of antibiotics, the residual antibiotics in clinical settings further complicate the colonization, pathogenesis and resistance of S. aureus. This study aimed at investigating the phenotypical and global gene expression changes on biofilm formation of a clinical S. aureus isolate treated under different types of antibiotics. Firstly, an isolate Guangzhou-SAU749 was selected from a large sale of previously identified S. aureus isolates, which exhibited weak biofilm formation in terms of biomass and viability. Secondly, 9 commonly prescribed antibiotics for S. aureus infections treatment, together with 10 concentrations ranging from 1/128 to 4 minimum inhibitory concentration (MIC) with 2-fold serial dilution, were used as different antibiotic stress conditions. Then, biofilm formation of S. aureus Guangzhou-SAU749 at different stages including 8 h, 16 h, 24 h, and 48 h, was tested by crystal violet and MTS assays. Thirdly, the whole genome of S. aureus Guangzhou-SAU749 was investigated by genome sequencing on PacBio platform. Fourthly, since enhancement of biofilm formation occurred when treated with 1/2 MIC tetracycline (TCY) and 1/4 MIC streptomycin (STR) since 5 h, the relevant biofilm samples were selected and subjected to RNA-seq and bioinformatics analysis. Last, expression of two component system (TCS) and biofilm associated genes in 4 h, 8 h, 16 h, 24 h, and 48 h sub-MIC TCY and STR treated biofilm samples were performed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Although most antibiotics lowered the biomass and cell viability of Guangzhou-SAU749 biofilm at concentrations higher than MIC, certain antibiotics including TCY and STR promoted biofilm formation at sub-MICs. Additionally, upon genome sequencing, RNA-seq and RT-qPCR on biofilm samples treated with sub-MIC of TCY and STR at key time points, genes lytR, arlR, hssR, tagA, clfB, atlA and cidA related to TCS and biofilm formation were identified to contribute to the enhanced biofilm formation, providing a theoretical basis for further controlling on S. aureus biofilm formation.
Collapse
Affiliation(s)
- Junyan Liu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhenbo Xu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yuzhu Mao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Gongliang Liu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Chunyun Qu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Qin Ma
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture /Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Fang Zhou
- The First Affiliated Hospital, Sun Yan-Sen University, Guangzhou, 510080, China
| | - Gamini Seneviratne
- National Institute of Fundamental Studies, Hantana road, Kandy, Sri Lanka
| |
Collapse
|
10
|
Feng J, Zheng Y, Ma W, Ihsan A, Hao H, Cheng G, Wang X. Multitarget antibacterial drugs: An effective strategy to combat bacterial resistance. Pharmacol Ther 2023; 252:108550. [PMID: 39492518 DOI: 10.1016/j.pharmthera.2023.108550] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
The rise of antibiotic resistance and the decrease in the discovery of new antibiotics have caused a global health crisis. Of particular concern is the fact that despite efforts to develop new antibiotics, drug discovery is unable to keep up with the rapid development of resistance. This ongoing crisis highlights the fact that single-target drugs may not always exhibit satisfactory therapeutic effects and are prone to target mutations and resistance due to the complexity of bacterial mechanisms. Retrospective studies have shown that most successful antibiotics have multiple targets. Compared with single-target drugs, successfully designed multitarget drugs can simultaneously regulate multiple targets to reduce resistance caused by single-target mutations or expression changes. In addition to a lower risk of drug-drug interactions, multitarget drugs show superior pharmacokinetics and higher patient compliance compared with combination therapies. Therefore, to reduce resistance, many efforts have been made to discover and design multitarget drugs with different chemical structures and functions. Although there have been numerous studies on how to develop drugs and slow down the development of drug resistance, the reduction of bacterial resistance by multitarget antibacterial drugs has not received widespread attention and is rarely mentioned in the peer-reviewed literature. This review summarises the development of antibiotic resistance and the mechanisms proposed for its emergence, examines the potential of multitarget drugs as an effective strategy to slow the development of resistance, and discusses the rationale for multitarget drug therapy. We also describe multitarget antibacterial compounds with the potential to reduce drug resistance and the available strategies to develop multitarget drugs.
Collapse
Affiliation(s)
- Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Youle Zheng
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wanqing Ma
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Islamabad 45550, Pakistan
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
11
|
van der Mee-Marquet N, Dos Santos S, Diene SM, Duflot I, Mereghetti L, Valentin AS, François P, on behalf of the SPIADI Collaborative Group. Strong Biofilm Formation and Low Cloxacillin Susceptibility in Biofilm-Growing CC398 Staphylococcus aureus Responsible for Bacteremia in French Intensive Care Units, 2021. Microorganisms 2022; 10:microorganisms10091857. [PMID: 36144459 PMCID: PMC9504214 DOI: 10.3390/microorganisms10091857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
A prospective 3-month study carried out in 267 ICUs revealed an S. aureus nosocomial bacteremia in one admitted patient out of 110 in adult and pediatric sectors, and in one out of 230 newborns; 242 S. aureus bacteremias occurred during the study, including 7.9% MRSA-bacteremias. In one ICU out of ten, the molecular characteristics, antimicrobial susceptibility profiles and biofilm production of the strains responsible for S. aureus bacteremia were studied. Of the 53 strains studied, 9.4% were MRSA and 52.8% were resistant to erythromycin. MLST showed the predominance of CC398 (37.7% of the strains) followed by CC8 (17.0%), CC45 (13.2%) and CC30 (9.4%). The lukF/S genes were absent from our isolates and tst-1 was found in 9.4% of the strains. Under static conditions and without exposure to glucose, biofilm production was rare (9.4% of the strains, without any CC398). The percentage increased to 62.3% for strains grown in broth supplemented with 1% glucose (including 7 out of 9 CC8 and 17 out of the 20 CC398). Further study of the CC398, including whole genome sequencing, revealed (1) highly frequent patient death within seven days after CC398 bacteremia diagnosis (47.4%), (2) 95.0% of the strains producing biofilm when exposed to sub-inhibitory concentrations of cloxacillin, (3) a stronger biofilm production following exposure to cloxacillin than that observed in broth supplemented with glucose only (p < 0.001), (4) a high minimum biofilm eradication concentration of cloxacillin (128 mg/L) indicating a low cloxacillin susceptibility of biofilm-growing CC398, (5) 95.0% of the strains carrying a ϕSa-3 like prophage and its particular evasion cluster (i.e., yielding chp and scin genes), and (6) 30.0% of the strains carrying a ϕMR11-like prophage and yielding a higher ability to produce biofilm. Our results provide evidence that active surveillance is required to avoid spreading of this virulent staphylococcal clone.
Collapse
Affiliation(s)
- Nathalie van der Mee-Marquet
- Centre d’Appui pour la Prévention des Infections Associées aux Soins (CPias) de la Région Centre Val de Loire, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire, 37044 Tours, France
- Correspondence:
| | - Sandra Dos Santos
- Centre d’Appui pour la Prévention des Infections Associées aux Soins (CPias) de la Région Centre Val de Loire, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire, 37044 Tours, France
| | - Seydina M. Diene
- Faculté de Pharmacie, Microbes Evolution Phylogeny and Infections, IHU-Méditerranée Infection, Aix-Marseille Université, 13005 Marseille, France
| | - Isabelle Duflot
- Centre d’Appui pour la Prévention des Infections Associées aux Soins (CPias) de la Région Centre Val de Loire, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire, 37044 Tours, France
| | - Laurent Mereghetti
- Service de Bactériologie, Virologie et Hygiène, Hôpital Trousseau, Centre Hospitalier Régional Universitaire, 37044 Tours, France
| | - Anne-Sophie Valentin
- Centre d’Appui pour la Prévention des Infections Associées aux Soins (CPias) de la Région Centre Val de Loire, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire, 37044 Tours, France
| | - Patrice François
- Department of Medicine, University of Geneva Hospitals, 1205 Geneva, Switzerland
| | | |
Collapse
|
12
|
Antioxidant, Protoscolicidal, Hemocompatibility, and Antibacterial Activity of Nickel Oxide Nanoparticles Synthesized by Ziziphus spina-christi. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Abstract
Over the past several years, the greener fabrication of metal oxide nanoparticles has attracted significant attention due to their simplicity, eco-friendliness, availability, and nontoxicity. This paper focused on the fabrication of nickel oxide nanoparticles (NiO-NPs) using the leaf extract of Ziziphus spina-christi L. and evaluating its potential biological activities. The characterization of synthesized NiO-NPs was confirmed using ultraviolet–visible spectroscopy, field emission-scanning electron microscope, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Furthermore, protoscolicidal, antibacterial, and antioxidant activities and hemocompatibility of NiO-NPs were investigated. The findings revealed that the NiO-NPs were crystalline on nanoscale between 50- and 90-nm particle sizes. The NiO-NPs showed high scolicidal activity against Echinococcus granulosus. The viability of the treated protoscoleces exponentially decreased with an increase in the concentration of NiO-NPs. The NiO-NPs exhibited effective antibacterial activity against Escherichia coli and Staphylococcus aureus. NiO-NPs also possess a H2O2 scavenging activity in a dose-dependent manner. This study revealed that the Z. spina-christi L. leaf extract is an effective reducing and capping agent for the production of NiO-NPs; it showed critical biological properties. Moreover, NiO-NPs have a potent antioxidant activity and low toxicity on the erythrocytes and appear hemocompatible.
Collapse
|
13
|
Chawla M, Verma J, Gupta R, Das B. Antibiotic Potentiators Against Multidrug-Resistant Bacteria: Discovery, Development, and Clinical Relevance. Front Microbiol 2022; 13:887251. [PMID: 35847117 PMCID: PMC9284026 DOI: 10.3389/fmicb.2022.887251] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/09/2022] [Indexed: 01/07/2023] Open
Abstract
Antimicrobial resistance in clinically important microbes has emerged as an unmet challenge in global health. Extensively drug-resistant bacterial pathogens have cropped up lately defying the action of even the last resort of antibiotics. This has led to a huge burden in the health sectors and increased morbidity and mortality rate across the world. The dwindling antibiotic discovery pipeline and rampant usage of antibiotics has set the alarming bells necessitating immediate actions to combat this looming threat. Various alternatives to discovery of new antibiotics are gaining attention such as reversing the antibiotic resistance and hence reviving the arsenal of antibiotics in hand. Antibiotic resistance reversal is mainly targeted against the antibiotic resistance mechanisms, which potentiates the effective action of the antibiotic. Such compounds are referred to as resistance breakers or antibiotic adjuvants/potentiators that work in conjunction with antibiotics. Many studies have been conducted for the identification of compounds, which decrease the permeability barrier, expression of efflux pumps and the resistance encoding enzymes. Compounds targeting the stability, inheritance and dissemination of the mobile genetic elements linked with the resistance genes are also potential candidates to curb antibiotic resistance. In pursuit of such compounds various natural sources and synthetic compounds have been harnessed. The activities of a considerable number of compounds seem promising and are currently at various phases of clinical trials. This review recapitulates all the studies pertaining to the use of antibiotic potentiators for the reversal of antibiotic resistance and what the future beholds for their usage in clinical settings.
Collapse
Affiliation(s)
- Meenal Chawla
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Jyoti Verma
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Rashi Gupta
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Bhabatosh Das
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
14
|
Subinhibitory Cefotaxime and Levofloxacin Concentrations Contribute to Selection of Pseudomonas aeruginosa in Coculture with Staphylococcus aureus. Appl Environ Microbiol 2022; 88:e0059222. [PMID: 35638844 DOI: 10.1128/aem.00592-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacterial species in the polymicrobial community evolve interspecific interaction relationships to adapt to the survival stresses imposed by neighbors or environmental cues. Pseudomonas aeruginosa and Staphylococcus aureus are two common bacterial pathogens frequently coisolated from patients with burns and respiratory disease. Whether the application of commonly used antibiotics influences the interaction dynamics of the two species still remains largely unexplored. By performing a series of on-plate competition assays and RNA sequencing-based transcriptional profiling, we showed that the presence of the cephalosporin antibiotic cefotaxime or the quinolone antibiotic levofloxacin at subinhibitory concentration contributes to selecting P. aeruginosa from the coculture with S. aureus by modulating the quorum-sensing (QS) system of P. aeruginosa. Specifically, a subinhibitory concentration of cefotaxime promotes the growth suppression of S. aureus by P. aeruginosa in coculture. This process may be related to the increased production of the antistaphylococcal molecule pyocyanin and the expression of lasR, which is the central regulatory gene of the P. aeruginosa QS hierarchy. On the other hand, subinhibitory concentrations of levofloxacin decrease the competitive advantage of P. aeruginosa over S. aureus by inhibiting the growth and the las QS system of P. aeruginosa. However, pqs signaling of P. aeruginosa can be activated instead to overcome S. aureus. Therefore, this study contributes to understanding the interaction dynamics of P. aeruginosa and S. aureus during antibiotic treatment and provides an important basis for studying the pathogenesis of polymicrobial infections. IMPORTANCE Increasing evidence has demonstrated the polymicrobial characteristics of most chronic infections, and the frequent communications among bacterial pathogens result in many difficulties for clinical therapy. Exploring bacterial interspecific interaction during antibiotic treatment is an emerging endeavor that may facilitate the understanding of polymicrobial infections and the optimization of clinical therapies. Here, we investigated the interaction of cocultured P. aeruginosa and S. aureus with the intervention of commonly used antibiotics in clinic. We found that the application of subinhibitory concentrations of cefotaxime and levofloxacin can select P. aeruginosa in coculture with S. aureus by modulating P. aeruginosa QS regulation to enhance the production of antistaphylococcal metabolites in different ways. This study emphasizes the role of the QS system in the interaction of P. aeruginosa with other bacterial species and provides an explanation for the persistence and enrichment of P. aeruginosa in patients after antibiotic treatment and a reference for further clinical therapy.
Collapse
|
15
|
Oliva A, Stefani S, Venditti M, Di Domenico EG. Biofilm-Related Infections in Gram-Positive Bacteria and the Potential Role of the Long-Acting Agent Dalbavancin. Front Microbiol 2021; 12:749685. [PMID: 34745053 PMCID: PMC8569946 DOI: 10.3389/fmicb.2021.749685] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
Infections caused by Gram-positive bacteria are a major public health problem due to their increasing resistance to antibiotics. Staphylococcus and Enterococcus species' resistance and pathogenicity are enhanced by their ability to form biofilm. The biofilm lifestyle represents a significant obstacle to treatment because bacterial cells become highly tolerant to a wide range of antimicrobial compounds normally effective against their planktonic forms. Thus, novel therapeutic strategies targeting biofilms are urgently needed. The lipoglycopeptide dalbavancin is a long-acting agent for treating acute bacterial skin and skin structure infections caused by a broad range of Gram-positive pathogens. Recent studies have shown promising activity of dalbavancin against Gram-positive biofilms, including methicillin-resistant S. aureus (MRSA), methicillin-resistant S. epidermidis (MRSE), and vancomycin-susceptible enterococci. This review outlines the mechanisms regulating biofilm development in Staphylococcus and Enterococcus species and the clinical impact of biofilm-related infections. In addition, it discusses the clinical implications and potential therapeutic perspectives of the long-acting drug dalbavancin against biofilm-forming Gram-positive pathogens.
Collapse
Affiliation(s)
- Alessandra Oliva
- Department of Public Health and Infectious Diseases, “La Sapienza” University of Rome, Rome, Italy
| | - Stefania Stefani
- Laboratory of Molecular Medical Microbiology and Antimicrobial Resistance Research (Mmarl), Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Catania, Italy
| | - Mario Venditti
- Department of Public Health and Infectious Diseases, “La Sapienza” University of Rome, Rome, Italy
| | | |
Collapse
|
16
|
RNA-seq-based transcriptome analysis of a cefquinome-treated, highly resistant, and virulent MRSA strain. Microb Pathog 2021; 160:105201. [PMID: 34547409 DOI: 10.1016/j.micpath.2021.105201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022]
Abstract
The emergence and dissemination of methicillin-resistant Staphylococcus aureus (MRSA) strains of animal origin that are resistant to several antibiotics is of great concern. Cefquinome is a fourth-generation cephalosporin developed specifically for veterinary use. The mechanism of MRSA resistance to cefquinome is still not established. Therefore, we designed this study to evaluate the effect of cefquinome on the transcriptome of MRSA1679a, a strain that was isolated from a chicken. The transcriptome analysis indicated that multiple efflux pumps (QacA, NorB, Bcr, and ABCb) were upregulated in MRSA1679a as a resistance mechanism to expel cefquinome. Additionally, penicillin-binding protein 1A was overexpressed, which conferred resistance to cefquinome, a β-lactam antibiotic. Adhesion and the biofilm-forming capacity of the MRSA strain was also enhanced in addition to overexpression of many stress-related genes. Genes related to carbohydrate metabolism, secretion systems, and transport activity were also significantly upregulated in MRSA1679a. In conclusion, global transcription was triggered to overcome the stress induced by cefquinome, and the MRSA1679a showed a great genetic potential to survive in this challenging environment. This study provides a profound understanding of MRSA1679a as a potentially important pathogen and identifies key resistance characteristics of MRSA against cefquinome. Studies should be aimed to demonstrate multidrug resistance mechanisms of virulent strains by exposing to different antibiotic combinations.
Collapse
|
17
|
Li J, Chen X, Lin J, Yuan Y, Huang T, Du L, Prithiviraj B, Zhang A, Wang X, Chu Y, Zhao K. Antibiotic intervention redisposes bacterial interspecific interacting dynamics in competitive environments. Environ Microbiol 2021; 23:7432-7444. [PMID: 33723911 DOI: 10.1111/1462-2920.15461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 02/21/2021] [Accepted: 03/10/2021] [Indexed: 12/25/2022]
Abstract
Interspecific interaction happens frequently among bacterial species and can promote the colonization of polymicrobial community in various environments. However, it is not clear whether the intervention of antibiotics, which is a common therapeutic method for infectious disease, will influence the interacting dynamics of different pathogenic bacteria. By using the frequently co-isolated bacteria Pseudomonas aeruginosa and Staphylococcus aureus as models, here we identify an antibiotic-determined mutual invasion relationship between bacterial pathogens. We show that although P. aeruginosa has a significant intrinsic competitive advantage over S. aureus by producing the quorum-sensing (QS)-controlled anti-staphylococcal molecules, methicillin-resistant S. aureus (MRSA) can inhibit neighbouring P. aeruginosa in the presence of subinhibitory aminoglycoside antibiotics (e.g. streptomycin) to P. aeruginosa. Importantly, subinhibitory streptomycin decreases the expression of QS-regulated genes in P. aeruginosa and thus relieves the survival stress of MRSA brought by P. aeruginosa. On the other side, the iron-uptake systems and pathogenicity of MRSA can be enhanced by the extracellular products of streptomycin-treated P. aeruginosa. Therefore, this study provides an explanation for the substitution of dominant species and persistent coexistence of bacterial pathogens in the host with repeated antibiotic therapies and contributes to further understanding the pathogenesis of chronic polymicrobial infections.
Collapse
Affiliation(s)
- Jing Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| | - Xiaojie Chen
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jiafu Lin
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| | - Yang Yuan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| | - Ting Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| | - Lianming Du
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, China
| | - Balakrishnan Prithiviraj
- Marine Bio-products Research Laboratory, Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Aixue Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| | - Xinrong Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| | - Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Virulence alterations in staphylococcus aureus upon treatment with the sub-inhibitory concentrations of antibiotics. J Adv Res 2021; 31:165-175. [PMID: 34194840 PMCID: PMC8240104 DOI: 10.1016/j.jare.2021.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/24/2022] Open
Abstract
Background The treatment of patients with Staphylococcus aureus infections mainly relies on antistaphylococcal regimens that are established with effective antibiotics. In antibiotic therapy or while living in nature, pathogens often face the sub-inhibitory concentrations (sub-MICs) of antibiotics due to drug pharmacokinetics, diffusion barriers, waste emission, resistant organism formation, and farming application. Different categories of antibiotics at sub-MICs have diverse effects on the physiological and chemical properties of microorganisms. These effects can result in virulence alterations. However, the mechanisms underlying the actions of antibiotics at sub-MICs on S. aureus virulence are obscure. Aim of review In this review, we focus on the effects of sub-MICs of antibiotics on S. aureus virulence from the aspects of cell morphological change, virulence factor expression, bacterial adherence and invasion, staphylococcal biofilm formation, and small-colony variant (SCV) production. The possible mechanisms of antibiotic-induced S. aureus virulence alterations are also addressed. Key scientific concepts of review Five main aspects of bacterial virulence can be changed in S. aureus exposure to the sub-MIC levels of antibiotics, resulting in deformed bacterial cells to stimulate abnormal host immune responses, abnormally expressed virulence factors to alter disease development, changed bacterial adhesion and invasion abilities to affect colonization and diffusion, altered biofilm formation to potentate material-related infections, and increased SCV formation to achieve persistent infection and recurrence. These advanced findings expand our knowledge to rethink the molecular signaling roles of antibiotics beyond their actions as antimicrobial agents.
Collapse
|
19
|
The Role of Subinhibitory Concentrations of Daptomycin and Tigecycline in Modulating Virulence in Staphylococcus aureus. Antibiotics (Basel) 2021; 10:antibiotics10010039. [PMID: 33401579 PMCID: PMC7823975 DOI: 10.3390/antibiotics10010039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/06/2020] [Accepted: 12/17/2020] [Indexed: 11/28/2022] Open
Abstract
Staphylococcus aureus (S. aureus) infections are notoriously complicated by the ability of the organism to grow in biofilms and are difficult to eradicate with antimicrobial therapy. The purpose of the current study was to clarify the influence of sub-inhibitory concentrations (sub-MICs) of daptomycin and tigecycline antibiotics on biofilm adhesion factors and exoproteins expressions by S. aureus clinical isolates. Six clinical isolates representing positive biofilm S. aureus clones (3 methicillin-sensitive S. aureus (MSSA) and 3 methicillin-resistant S. aureus (MRSA)) were grown with sub-MICs (0.5 MIC) of two antibiotics (daptomycin and tigecycline) for 12 h of incubation. RNA extracted from culture pellets was used via relative quantitative real-time-PCR (qRT-PCR) to determine expression of specific adhesion (fnbA, fnbB, clfA, clfB, fib, ebps, cna, eno) and biofilm (icaADBC) genes. To examine the effect of sub-MIC of these antibiotics on the expression of extracellular proteins, samples from the culture supernatants of six isolates were collected after 12 h of treatment with or without tigecycline in order to profile protein production via 2D gel sodium dodecyl sulfate-polyacrylamide gel electrophoresis (2D gel-SDS-PAGE). Sub-MIC treatment of all clinical MRSA and MSSA strains with daptomycin or tigecycline dramatically induced or suppressed fnbA, fnbB, clfA, clfB, fib, ebps, cna, eno, and icaADBC gene expression. Furthermore, sub-MIC use of tigecycline significantly reduced the total number of separated protein spots across all the isolates, as well as decreasing production of certain individual proteins. Collectively, this study showed very different responses in terms of both gene expression and protein secretion across the various isolates. In addition, our results suggest that sub-MIC usage of daptomycin and tigecycline could signal virulence induction by S. aureus via the regulation of biofilm adhesion factor genes and exoproteins. If translating findings to the clinical treatment of S. aureus, the therapeutic regimen should be adapted depending on antibiotic, the virulence factor and strain type.
Collapse
|
20
|
Goneau LW, Delport J, Langlois L, Poutanen SM, Razvi H, Reid G, Burton JP. Issues beyond resistance: inadequate antibiotic therapy and bacterial hypervirulence. FEMS MICROBES 2020; 1:xtaa004. [PMID: 37333955 PMCID: PMC10117437 DOI: 10.1093/femsmc/xtaa004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/15/2020] [Indexed: 10/15/2023] Open
Abstract
The administration of antibiotics while critical for treatment, can be accompanied by potentially severe complications. These include toxicities associated with the drugs themselves, the selection of resistant organisms and depletion of endogenous host microbiota. In addition, antibiotics may be associated with less well-recognized complications arising through changes in the pathogens themselves. Growing evidence suggests that organisms exposed to antibiotics can respond by altering the expression of toxins, invasins and adhesins, as well as biofilm, resistance and persistence factors. The clinical significance of these changes continues to be explored; however, it is possible that treatment with antibiotics may inadvertently precipitate a worsening of the clinical course of disease. Efforts are needed to adjust or augment antibiotic therapy to prevent the transition of pathogens to hypervirulent states. Better understanding the role of antibiotic-microbe interactions and how these can influence disease course is critical given the implications on prescription guidelines and antimicrobial stewardship policies.
Collapse
Affiliation(s)
- Lee W Goneau
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, 268 Grosvenor St, London, Ontario, N6A 4V2 Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto,1 King's College Cir, Toronto, ON M5S 1A8 Ontario, Canada
| | - Johannes Delport
- Department of Pathology, London Health Sciences Center - Victoria Hospital, 800 Commissioners Rd E, London, Ontario, Canada N6A 5W9
| | - Luana Langlois
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Susan M Poutanen
- Department of Laboratory Medicine and Pathobiology, University of Toronto,1 King's College Cir, Toronto, ON M5S 1A8 Ontario, Canada
- Department of Medicine, University of Toronto, 1 King's College Cir, Toronto, ON M5S 1A8 Toronto, Ontario, Canada
- Department of Microbiology, University Health Network and Sinai Health, 190 Elizabeth St. Toronto, ON M5G 2C4, Ontario, Canada
| | - Hassan Razvi
- Lawson Health Research Institute, 268 Grosvenor St, London, Ontario, N6A 4V2 Canada
- Division of Urology, Department of Surgery, Western University, 1151 Richmond St, London, Ontario, N6A 3K7 Canada
| | - Gregor Reid
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, 268 Grosvenor St, London, Ontario, N6A 4V2 Canada
- Division of Urology, Department of Surgery, Western University, 1151 Richmond St, London, Ontario, N6A 3K7 Canada
| | - Jeremy P Burton
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, 268 Grosvenor St, London, Ontario, N6A 4V2 Canada
- Division of Urology, Department of Surgery, Western University, 1151 Richmond St, London, Ontario, N6A 3K7 Canada
| |
Collapse
|
21
|
Bezerra Filho CM, da Silva LCN, da Silva MV, Løbner-Olesen A, Struve C, Krogfelt KA, Correia MTDS, Vilela Oliva ML. Antimicrobial and Antivirulence Action of Eugenia brejoensis Essential Oil in vitro and in vivo Invertebrate Models. Front Microbiol 2020; 11:424. [PMID: 32265869 PMCID: PMC7096383 DOI: 10.3389/fmicb.2020.00424] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/27/2020] [Indexed: 01/18/2023] Open
Abstract
Eugenia brejoensis L. (Myrtaceae) is an endemic plant from caatinga ecosystem (brazilian semi-arid) which have an E. brejoensis essential oil (EbEO) with reported antimicrobial activity. In this work, in vitro and in vivo models were used to characterize the inhibitory effects of EbEO in relation to Staphylococcus aureus. EbEO inhibited the growth of all tested S. aureus strains (including multidrug resistance isolates) with values ranging from 8 to 516 μg/mL. EbEO also synergistically increased the action of ampicillim, chloramphenicol, and kanamycin. The treatment with subinhibitory concentrations (Sub-MIC) of EbEO decreased S. aureus hemolytic activity and its ability to survive in human blood. EbEO strongly reduced the levels of staphyloxanthin (STX), an effect related to increased susceptibility of S. aureus to hydrogen peroxide. The efficacy of EbEO against S. aureus was further demonstrated using Caenorhabditis elegans and Galleria mellonella. EbEO increased the lifespan of both organisms infected by S. aureus, reducing the bacterial load. In addition, EbEO reduced the severity of S. aureus infection in G. mellonella, as shown by lower levels of melanin production in those larvae. In summary, our data suggest that EbEO is a potential source of lead molecules for development of new therapeutic alternatives against S. aureus.
Collapse
Affiliation(s)
- Clovis Macêdo Bezerra Filho
- Biochemistry Department, Federal University of Pernambuco, Recife, Brazil.,Biochemistry Department, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | - Carsten Struve
- Department of Bacteria, Parasites and Fungi, Staten Serum Institut, Copenhagen, Denmark
| | - Karen Angeliki Krogfelt
- Department of Bacteria, Parasites and Fungi, Staten Serum Institut, Copenhagen, Denmark.,Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | | |
Collapse
|
22
|
Espinoza J, Urzúa A, Sanhueza L, Walter M, Fincheira P, Muñoz P, Mendoza L, Wilkens M. Essential Oil, Extracts, and Sesquiterpenes Obtained From the Heartwood of Pilgerodendron uviferum Act as Potential Inhibitors of the Staphylococcus aureus NorA Multidrug Efflux Pump. Front Microbiol 2019; 10:337. [PMID: 30863385 PMCID: PMC6400098 DOI: 10.3389/fmicb.2019.00337] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is a serious human pathogen that is highly adaptive to environmental conditions and rapidly develops antibiotic resistance. The use of efflux pumps to reduce antibiotic concentrations at the intracellular level is one of the main mechanisms by which bacteria develop antibiotic resistance. The management of efflux pumps, specifically NorA, which is expressed by S. aureus strains, is a valuable strategy for restoring susceptibility in strains resistant to antibacterial agents. In recent years, many studies have focused on searching for natural substances that can reverse efflux pump-mediated resistance in S. aureus. Extracts and compounds obtained from plants can be efficient efflux pump inhibitors (EPIs) and represent a potentially patient-friendly strategy for controlling S. aureus. In the present study, we evaluated the ability of essential oils, petroleum ether extracts, dichloromethane extract (DCME) and six compounds isolated from the heartwood of Pilgerodendron uviferum (Cupressaceae) and two synthetic derivatives to inhibit efflux in NorA pumps in the following three S. aureus strains: K2378, which overexpressed the norA gene (norA++), K1902 (norA-deleted, ΔnorA) and the parental strain, NCTC 8325-4. Efflux activity was evaluated using a fluorometric method that measured the accumulation of the universal efflux pump substrate ethidium bromide (EtBr). Only DCME and the compounds 15-copaenol and epi-cubenol inhibited EtBr efflux by K2378. Even the lowest concentration of 15-copaenol exhibited a stronger inhibitory effect than carbonyl cyanide m-chlorophenyl hydrazone on EtBr efflux by K2378. 15-copaenal only showed inhibition of EtBr efflux in K2378 cells at 125 μg/mL, but not superior to the control inhibitor and 15-copaenyl acetate exerted no intrinsic EPI activity against K2378. Fractional inhibitory concentration index (FICI) values obtained in the checkerboard assays, indicated that all combinations between DCME, epi-cubenol and 15-copaenol, and tested antibiotics showed a synergistic effect in wild type, norA ++ and ΔnorA strains. Moreover, those were not toxic for the HeLa cell line at concentrations in which the synergistic effect and inhibitory activity of efflux pumps was determined. Other extracts and compounds obtained from P. uviferum did not display EtBr efflux-inhibiting activity against the evaluated S. aureus strains.
Collapse
Affiliation(s)
- Javier Espinoza
- Laboratorio de Ecología Química, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, Universidad de La Frontera, Temuco, Chile
| | - Alejandro Urzúa
- Laboratorio de Química Ecológica, Departamento de Ciencias del Ambiente, Universidad de Santiago de Chile, Santiago, Chile
| | - Loreto Sanhueza
- Nucleo de Química y Bioquímica, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - Mariana Walter
- Laboratorio de Bioinorgánica SMATC, Departamento de Química de los Materiales, Universidad de Santiago de Chile, Santiago, Chile
| | - Paola Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, Universidad de La Frontera, Temuco, Chile
- Laboratorios de Biotecnología y Nanobiotecnología Ambiental, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Patricia Muñoz
- Nucleo de Química y Bioquímica, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - Leonora Mendoza
- Laboratorio de Micología, Departamento de Química de los Materiales, Universidad de Santiago de Chile, Santiago, Chile
| | - Marcela Wilkens
- Laboratorio de Microbiología Básica y Aplicada, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
23
|
Abstract
Staphylococcus aureus is often involved in severe infections, in which the effects of bacterial virulence factors have great importance. Antistaphylococcal regimens should take into account the different effects of antibacterial agents on the expression of virulence factors and on the host's immune response. A PubMed literature search was performed to select relevant articles on the effects of antibiotics on staphylococcal toxin production and on the host immune response. Information was sorted according to the methods used for data acquisition (bacterial strains, growth models, and antibiotic concentrations) and the assays used for readout generation. The reported mechanisms underlying S. aureus virulence modulation by antibiotics were reviewed. The relevance of in vitro observations is discussed in relation to animal model data and to clinical evidence extracted from case reports and recommendations on the management of toxin-related staphylococcal diseases. Most in vitro data point to a decreased level of virulence expression upon treatment with ribosomally active antibiotics (linezolid and clindamycin), while cell wall-active antibiotics (beta-lactams) mainly increase exotoxin production. In vivo studies confirmed the suppressive effect of clindamycin and linezolid on virulence expression, supporting their utilization as a valuable management strategy to improve patient outcomes in cases of toxin-associated staphylococcal disease.
Collapse
|
24
|
Uddin MJ, Ahn J. Associations between resistance phenotype and gene expression in response to serial exposure to oxacillin and ciprofloxacin in Staphylococcus aureus. Lett Appl Microbiol 2017; 65:462-468. [PMID: 28977678 DOI: 10.1111/lam.12808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 12/17/2022]
Abstract
This study was designed to delineate the relationship between resistance phenotypes and gene expression in wild-type (SAWT ), oxacillin-induced (SAOXA ), ciprofloxacin-induced (SACIP ) and clinically acquired antibiotic-resistant Staphylococcus aureus (SACA ) exposed to oxacillin (β-lactam) and ciprofloxacin (fluoroquinolone). The phenotypic response and gene expression were varied with the antibiotic exposure. SAWT was highly resistant to oxacillin (MIC = 8 μg ml-1 ) after serial exposure to oxacillin, while the oxacillin susceptibility was not changed in SAWT when exposed to ciprofloxacin (MIC = 0·25 μg ml-1 ). The clinical isolate, SACA , was highly resistant to all classes of antibiotics used in this study. The increased resistance of SAOXA and SACIP to penicillinase-labile penicillins was attributed to the production of β-lactamase, which is in good agreement with the overexpression of blaZ (>2-fold). The overexpression of efflux pump-related genes (norA, norB, norC, mdeA, mepR, mgrA and lmrS) was associated with the increased resistance of SACIP and SACA to aminoglycosides and quinolones. This study confirmed that the linkage between resistance phenotypes and molecular genotypes highly varied depending on intrinsic resistance profile, response to antibiotic exposure and genes conferring resistance. This study provides useful information for understanding the mechanisms of methicillin resistance in S. aureus in association with phenotypic and genotypic resistance determinants. SIGNIFICANCE AND IMPACT OF THE STUDY The improvement in current standards is essential to accurately detect methicillin-resistant Staphylococcus aureus in consideration of various resistance phenotypes and genotypes. The varied and distinctive expression patterns of antibiotic resistance-related genes were observed in S. aureus exposed to oxacillin and ciprofloxacin. It is worth noting the relationship between resistance phenotype and resistance genotype in terms of MIC values and expression of antibiotic resistance determinants. This study provides useful information for understanding the mechanisms of methicillin resistance in S. aureus in association with phenotypic and genotypic resistance determinants.
Collapse
Affiliation(s)
- M J Uddin
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon, Gangwon, Korea
| | - J Ahn
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon, Gangwon, Korea.,Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Gangwon, Korea
| |
Collapse
|
25
|
Comparison of antibiotic resistance phenotypes in laboratory strains and clinical isolates of Staphylococcus aureus, Salmonella Typhimurium, and Klebsiella pneumoniae. Food Sci Biotechnol 2017; 26:1773-1779. [PMID: 30263717 DOI: 10.1007/s10068-017-0191-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/10/2017] [Accepted: 07/30/2017] [Indexed: 10/19/2022] Open
Abstract
This study was designed to evaluate the antibiotic resistance phenotypes in wild-type Staphylococcus aureus (WT-SA), oxacillin-induced S. aureus (OI-SA), clinically-acquired antibiotic-resistant S. aureus (CA-SA), wild-type Salmonella Typhimurium (WT-ST), ciprofloxacin-induced S. Typhimurium (CI-ST), clinically-acquired antibiotic-resistant S. Typhimurium (CA-ST), wild-type Klebsiella pneumoniae (WT-KP), ciprofloxacin-induced K. pneumoniae (CI-KP), and clinically-acquired antibiotic-resistant K. pneumoniae (CA-KP). The resistance of WT-SA, WT-ST, and WT-KP to ampicillin, ceftazidime, and cephalotin, penicillin was increased after induction by oxacillin OI-SA, ciprofloxacin CI-ST, and ciprofloxacin CI-KP, respectively. The highest β-lactamase activities were 12 and 36 μmol/min/ml, respectively, for CA-ST and CA-KP. The EtBr residues remained high in S. Typhimurium (>80%) and K. pneumoniae (>90%) when treated with CCCP. The distinct FT-IR spectra were observed in protein region (1700-1500 cm-1) and carbohydrate region (1200-900 cm-1). This study would provide useful information for better understating of specific resistance mechanisms in association with β-lactamase and efflux pump activities.
Collapse
|
26
|
Kim J, Ahn J. Characterization of Clinically Isolated Antibiotic-Resistant Salmonella Typhimurium Exposed to Subinhibitory Concentrations of Ceftriaxone and Ciprofloxacin. Microb Drug Resist 2017; 23:949-957. [PMID: 28486078 DOI: 10.1089/mdr.2016.0319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study was designed mainly to assess the phenotypic properties of clinically isolated Salmonella Typhimurium exposed to ceftriaxone and ciprofloxacin. The antibiotic susceptibility, β-lactamase activity, efflux activity, bacterial motility, biofilm-forming ability, and gene expression were determined in S. Typhimurium ATCC 19585 and S. Typhimurium CCARM 8009 when exposed to subinhibitory concentrations of ceftriaxone and ciprofloxacin. S. Typhimurium CCARM 8009 was highly resistant to ampicillin, kanamycin, penicillin G, and streptomycin, showing minimum inhibitory concentration values of more than 512 μg/ml, while S. Typhimurium ATCC 19585 showed resistance to erythromycin alone (64 μg/ml). The highest β-lactamase activity was observed in S. Typhimurium CCARM 8009 when exposed to ceftriaxone (8.2 μmol/min/ml), while the least β-lactamase activity was observed in S. Typhimurium ATCC 19585. Compared to S. Typhimurium CCARM 8009, the ethidium bromide (EtBr) accumulation was considerably increased in S. Typhimurium ATCC 19585 when treated with efflux pump inhibitors. S. Typhimurium ATCC 19585 and S. Typhimurium CCARM 8009 were highly susceptible to ciprofloxacin, erythromycin, levofloxacin, and sparfloxacin in the presence of phenylalanine-arginine-β-naphthylamide. The swimming motility of S. Typhimurium ATCC 19585 exposed to ceftriaxone was significantly reduced to 54% when compared to S. Typhimurium CCARM 8009 (93%). The numbers of attached S. Typhimurium CCARM 8009 cells were significantly increased by more than 1 log cfu/ml when exposed to ceftriaxone and ciprofloxacin. The relative gene expression was stable in S. Typhimurium CCARM 8009 in the presence of ceftriaxone and ciprofloxacin compared to the absence of antibiotics. These results suggest that the antibiotic susceptibility of S. Typhimurium having different antibiotic resistance profiles varied depending on the presence of ceftriaxone and ciprofloxacin.
Collapse
Affiliation(s)
- Jeongjin Kim
- Department of Medical Biomaterials Engineering and Institute of Bioscience and Biotechnology, Kangwon National University , Chuncheon, Republic of Korea
| | - Juhee Ahn
- Department of Medical Biomaterials Engineering and Institute of Bioscience and Biotechnology, Kangwon National University , Chuncheon, Republic of Korea
| |
Collapse
|