1
|
Meshram RJ, Kathwate GH, Gacche RN. Progress, evolving therapeutic/diagnostic approaches, and challenges in the management of hepatitis C virus infections. Arch Virol 2022; 167:717-736. [PMID: 35089390 PMCID: PMC8795940 DOI: 10.1007/s00705-022-05375-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) infections are emerging as one of the foremost challenges in healthcare owing to its chronicity and the virus's quasispecies nature. Worldwide, over 170 million people are chronically infected with HCV, with an annual mortality of over 500,000 people across the world. The emerging pathophysiological evidence links HCV infections to a risk of developing liver diseases such as cirrhosis and hepatocellular carcinoma. Despite the great strides that have been made towards understanding the pathophysiology of disease progression, the tailored treatments of HCV infection remain to be established. The present review provides an update of the literature pertaining to evolving therapeutic approaches and prophylactic measures for the effective management of HCV infections. An extensive discussion of established and experimental immune prophylactic measures also sheds light on current developments in the design of vaccination strategies against HCV infection. We have also attempted to address the application of nanotechnology in formulating effective therapeutic interventions against HCV. Pointing out the limitations of the existing diagnostic methods and therapeutic approaches against HCV might inspire the design and development of novel, efficient, reliable, and cost-effective diagnostic technologies as well as novel therapeutic and immune prophylactic interventions for the effective management of HCV.
Collapse
Affiliation(s)
| | | | - Rajesh Nivarti Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, MS, 411007, India.
| |
Collapse
|
2
|
Echeverría N, Comas V, Aldunate F, Perbolianachis P, Moreno P, Cristina J. In the era of rapid mRNA-based vaccines: Why is there no effective hepatitis C virus vaccine yet? World J Hepatol 2021; 13:1234-1268. [PMID: 34786164 PMCID: PMC8568586 DOI: 10.4254/wjh.v13.i10.1234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is responsible for no less than 71 million people chronically infected and is one of the most frequent indications for liver transplantation worldwide. Despite direct-acting antiviral therapies fuel optimism in controlling HCV infections, there are several obstacles regarding treatment accessibility and reinfection continues to remain a possibility. Indeed, the majority of new HCV infections in developed countries occur in people who inject drugs and are more plausible to get reinfected. To achieve global epidemic control of this virus the development of an effective prophylactic or therapeutic vaccine becomes a must. The coronavirus disease 19 (COVID-19) pandemic led to auspicious vaccine development against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, which has renewed interest on fighting HCV epidemic with vaccination. The aim of this review is to highlight the current situation of HCV vaccine candidates designed to prevent and/or to reduce HCV infectious cases and their complications. We will emphasize on some of the crossroads encountered during vaccine development against this insidious virus, together with some key aspects of HCV immunology which have, so far, hampered the progress in this area. The main focus will be on nucleic acid-based as well as recombinant viral vector-based vaccine candidates as the most novel vaccine approaches, some of which have been recently and successfully employed for SARS-CoV-2 vaccines. Finally, some ideas will be presented on which methods to explore for the design of live-attenuated vaccines against HCV.
Collapse
Affiliation(s)
- Natalia Echeverría
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Victoria Comas
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Fabián Aldunate
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Paula Perbolianachis
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| |
Collapse
|
3
|
Li J, Zhou Q, Rong L, Rong D, Yang Y, Hao J, Zhang Z, Ma L, Rao G, Zhou Y, Xiao F, Li C, Wang H, Li YP. Development of cell culture infectious clones for hepatitis C virus genotype 1b and transcription analysis of 1b-infected hepatoma cells. Antiviral Res 2021; 193:105136. [PMID: 34252495 DOI: 10.1016/j.antiviral.2021.105136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023]
Abstract
Globally, hepatitis C virus (HCV) genotype 1b is the most prevalent, and its infection has been found to associate with a higher risk of hepatocellular carcinoma (HCC) than other genotype viruses. However, an efficient infectious HCV genotype 1b culture system is unavailable, which has largely hampered the study of this important genotype virus. In this study, by using a systematic approach combining the sequences of infectious 1a TNcc clone and adaptive mutations, we succeeded in culture adaption of two full-length 1b clones for the reference strain Con1 and a clinical isolate A6, and designated as Con1cc and A6cc, respectively. Con1cc and A6cc replicated efficiently in hepatoma Huh7.5.1 cells, released HCV infectivity titers of 104.1 and 103.72 focus forming units per milliliter, respectively, and maintained the engineered mutations after passages. Both viruses responded to sofosbuvir and velpatasvir in a dose-dependent manner. With culture infectious 1b clones, we characterized the transcriptomes of 1b Con1cc-infected cells, in comparison with 2a-infected and uninfected cells. In conclusion, we have developed two infectious clones for genotype 1b and shown a novel strategy for culture adaptation of HCV isolates by using a genetically close backbone sequence. Furthermore, this study provides transcriptional landscape of HCV 1b-infected hepatoma cells facilitating the study of genotype 1b infection.
Collapse
Affiliation(s)
- Jinqian Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Zhou
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liang Rong
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Dade Rong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yang Yang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiawei Hao
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhenzhen Zhang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ling Ma
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guirong Rao
- Key Laboratory of Liver Diseases, Center of Infectious Diseases, PLA 458 Hospital, Guangzhou, 510602, China
| | - Yuanping Zhou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fei Xiao
- Department of Infectious Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yi-Ping Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China; Department of Infectious Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China.
| |
Collapse
|
4
|
Ramirez S, Bukh J. Current status and future development of infectious cell-culture models for the major genotypes of hepatitis C virus: Essential tools in testing of antivirals and emerging vaccine strategies. Antiviral Res 2018; 158:264-287. [PMID: 30059723 DOI: 10.1016/j.antiviral.2018.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 02/08/2023]
Abstract
In this review, we summarize the relevant scientific advances that led to the development of infectious cell culture systems for hepatitis C virus (HCV) with the corresponding challenges and successes. We also provide an overview of how these systems have contributed to the study of antiviral compounds and their relevance for the development of a much-needed vaccine against this major human pathogen. An efficient infectious system to study HCV in vitro, using human hepatoma derived cells, has only been available since 2005, and was limited to a single isolate, named JFH1, until 2012. Successive developments have been slow and cumbersome, as each available system has been the result of a systematic effort for discovering adaptive mutations conferring culture replication and propagation to patient consensus clones that are inherently non-viable in vitro. High genetic heterogeneity is a paramount characteristic of this virus, and as such, it should preferably be reflected in basic, translational, and clinical studies. The limited number of efficient viral culture systems, in the context of the vast genetic diversity of HCV, continues to represent a major hindrance for the study of this virus, posing a significant barrier towards studies of antivirals (particularly of resistance) and for advancing vaccine development. Intensive research efforts, driven by isolate-specific culture adaptation, have only led to efficient full-length infectious culture systems for a few strains of HCV genotypes 1, 2, 3, and 6. Hence research aimed at identifying novel strategies that will permit universal culture of HCV will be needed to further our understanding of this unique virus causing 400 thousand deaths annually.
Collapse
Affiliation(s)
- Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
5
|
Humes D, Ramirez S, Jensen TB, Li YP, Gottwein JM, Bukh J. Recombinant hepatitis C virus genotype 5a infectious cell culture systems expressing minimal JFH1 NS5B sequences permit polymerase inhibitor studies. Virology 2018; 522:177-192. [PMID: 30032031 DOI: 10.1016/j.virol.2018.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023]
Abstract
The six major epidemiologically important hepatitis C virus (HCV) genotypes differ in global distribution and antiviral responses. Full-length infectious cell-culture adapted clones, the gold standard for HCV studies in vitro, are missing for genotypes 4 and 5. To address this challenge for genotype 5, we constructed a consensus full-length clone of strain SA13 (SA13fl), which was found non-viable in Huh7.5 cells. Step-wise adaptation of SA13fl-based recombinants, beginning with a virus encoding the NS5B-thumb domain and 3´UTR of JFH1 (SA13/JF372-X), resulted in a high-titer SA13 virus with only 41 JFH1-encoded NS5B-thumb residues (SA13/JF470-510cc); this required sixteen cell-culture adaptive substitutions within the SA13fl polyprotein and two 3´UTR-changes. SA13/JF372-X and SA13/JF470-510cc were equally sensitive to nucleoside polymerase inhibitors, including sofosbuvir, but showed differential sensitivity to inhibitors targeting the NS5B palm or thumb. SA13/JF470-510cc represents a model to elucidate the influence of HCV RNA elements on viral replication and map determinants of sensitivity to polymerase inhibitors.
Collapse
Affiliation(s)
- Daryl Humes
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Tanja B Jensen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Yi-Ping Li
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
6
|
Pham LV, Ramirez S, Carlsen THR, Li YP, Gottwein JM, Bukh J. Efficient Hepatitis C Virus Genotype 1b Core-NS5A Recombinants Permit Efficacy Testing of Protease and NS5A Inhibitors. Antimicrob Agents Chemother 2017; 61:e00037-17. [PMID: 28348150 PMCID: PMC5444172 DOI: 10.1128/aac.00037-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/15/2017] [Indexed: 12/25/2022] Open
Abstract
Hepatitis C virus (HCV) strains belong to seven genotypes with numerous subtypes that respond differently to antiviral therapies. Genotype 1, and primarily subtype 1b, is the most prevalent genotype worldwide. The development of recombinant HCV infectious cell culture systems for different variants, permitted by the high replication capacity of strain JFH1 (genotype 2a), has advanced efficacy and resistance testing of antivirals. However, efficient infectious JFH1-based cell cultures of subtype 1b are limited and comprise only the 5' untranslated region (5'UTR)-NS2, NS4A, or NS5A regions. Importantly, it has not been possible to develop efficient 1b infectious systems expressing the NS3/4A protease, an important target of direct-acting antivirals. We developed efficient infectious JFH1-based cultures with genotype 1b core-NS5A sequences of strains DH1, Con1, and J4 by using previously identified HCV cell culture adaptive substitutions A1226G, R1496L, and Q1773H. These viruses spread efficiently in Huh7.5 cells by acquiring additional adaptive substitutions, and final recombinants yielded peak supernatant infectivity titers of 4 to 5 log10 focus-forming units (FFU)/ml. We subsequently succeeded in adapting a JFH1-based 5'UTR-NS5A DH1 recombinant to efficient growth in cell culture. We evaluated the efficacy of clinically relevant NS3/4A protease and NS5A inhibitors against the novel genotype 1b viruses, as well as against previously developed 1a viruses. The inhibitors were efficient against all tested genotype 1 viruses, with NS5A inhibitors showing half-maximal effective concentrations several orders of magnitude lower than NS3/4A protease inhibitors. In summary, the developed HCV genotype 1b culture systems represent valuable tools for assessing the efficacy of various classes of antivirals and for other virological studies requiring genotype 1b infectious viruses.
Collapse
Affiliation(s)
- Long V Pham
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas H R Carlsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yi-Ping Li
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|