1
|
Zuo H, Jiang W, Gao J, Ma Z, Li C, Peng Y, Jin J, Zhan X, Lv W, Liu X, Hu J, Zhang M, Jia Y, Xu Z, Tang J, Zheng R, Zuo B. SYISL Knockout Promotes Embryonic Muscle Development of Offspring by Modulating Maternal Gut Microbiota and Fetal Myogenic Cell Dynamics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410953. [PMID: 39680624 PMCID: PMC11809340 DOI: 10.1002/advs.202410953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Embryonic muscle fiber formation determines post-birth muscle fiber totals. The previous research shows SYISL knockout significantly increases muscle fiber numbers and mass in mice, but the mechanism remains unclear. This study confirms that the SYISL gene, maternal gut microbiota, and their interaction significantly affect the number of muscle fibers in mouse embryos through distinct mechanisms, as SYISL knockout alters maternal gut microbiota composition and boosts butyrate levels in embryonic serum. Both fecal microbiota transplantation and butyrate feeding significantly increase muscle fiber numbers in offspring, with butyrate inhibiting histone deacetylases and increasing histone acetylation in embryonic muscle. Combined analysis of RNA-seq between wild-type and SYISL knockout mice with ChIP-seq for H3K9ac and H3K27ac reveals that SYISL and maternal microbiota interaction regulates myogenesis via the butyrate-HDAC-H3K9ac/H3K27ac pathway. Furthermore, scRNA-seq analysis shows that SYISL knockout alone significantly increases the number and proportion of myogenic cells and their dynamics, independently of regulating histone acetylation levels. Cell communication analysis suggests that this may be due to the downregulation of signaling pathways such as MSTN and TGFβ. Overall, multiple pathways are highlighted through which SYISL influences embryonic muscle development, offering valuable insights for treating muscle diseases and improving livestock production.
Collapse
Affiliation(s)
- Hao Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Wei Jiang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Jianwei Gao
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Zhibo Ma
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Chen Li
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Yaxin Peng
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Jianjun Jin
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Xizhen Zhan
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Wei Lv
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Xiao Liu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Jingjing Hu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Mengdi Zhang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Yiming Jia
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Department of Basic Veterinary MedicineCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Junming Tang
- Hubei Key Laboratory of Embryonic Stem Cell ResearchSchool of Basic Medicine ScienceHubei University of MedicineShiyan442000China
| | - Rong Zheng
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| |
Collapse
|
2
|
Zha A, Qi M, Deng Y, Li H, Wang N, Wang C, Liao S, Wan D, Xiong X, Liao P, Wang J, Yin Y, Tan B. Gut Bifidobacterium pseudocatenulatum protects against fat deposition by enhancing secondary bile acid biosynthesis. IMETA 2024; 3:e261. [PMID: 39742294 PMCID: PMC11683477 DOI: 10.1002/imt2.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025]
Abstract
Gut microbiome is crucial for lipid metabolism in humans and animals. However, how specific gut microbiota and their associated metabolites impact fat deposition remains unclear. In this study, we demonstrated that the colonic microbiome of lean and obese pigs differentially contributes to fat deposition, as evidenced by colonic microbiota transplantation experiments. Notably, the higher abundance of Bifidobacterium pseudocatenulatum was significantly associated with lower backfat thickness in lean pigs. Microbial-derived lithocholic acid (LCA) species were also significantly enriched in lean pigs and positively correlated with the abundance of B. pseudocatenulatum. In a high-fat diet (HFD)-fed mice model, administration of live B. pseudocatenulatum decreased fat deposition and enhances colonic secondary bile acid biosynthesis. Importantly, pharmacological inhibition of the bile salt hydrolase (BSH), which mediates secondary bile acid biosynthesis, impaired the anti-fat deposition effect of B. pseudocatenulatum in antibiotic-pretreated, HFD-fed mice. Furthermore, dietary LCA also decreased fat deposition in HFD-fed rats and obese pig models. These findings provide mechanistic insights into the anti-fat deposition role of B. pseudocatenulatum and identify BSH as a potential target for preventing excessive fat deposition in humans and animals.
Collapse
Affiliation(s)
- Andong Zha
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
- School of Basic Medical Science, Central South UniversityChangshaChina
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Yuankun Deng
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Hao Li
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Nan Wang
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Chengming Wang
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Simeng Liao
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Xia Xiong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Peng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Jing Wang
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Yulong Yin
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Bi'e Tan
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| |
Collapse
|
3
|
Liu T, Lei C, Huang Q, Song W, Li C, Sun N, Liu Z. Hesperidin and Fecal Microbiota Transplantation Modulate the Composition of the Gut Microbiota and Reduce Obesity in High Fat Diet Mice. Diabetes Metab Syndr Obes 2024; 17:3643-3656. [PMID: 39398388 PMCID: PMC11468570 DOI: 10.2147/dmso.s474034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Obesity, which is associated with gut microbiota dysbiosis, low-grade chronic inflammation and intestinal barrier dysfunction, can cause a variety of chronic metabolic diseases. Phytochemical flavonoids have a variety of biological activities, among which there may be safe and effective anti-obesity solutions. Methods We tested a plant-derived flavonoid hesperidin and fecal microbiota transplantation (FMT) to alleviate diet-induced obesity. High-fat diet (HFD)-fed mice were treated with hesperidin (100 and 200 mg/kg BW) and FMT. Results Results indicated that hesperidin had the effects of reducing obesity as indicated by reduction of body weight, fat accumulation and blood lipids, reducing inflammation as indicated by reduction of pro-inflammation factors including TNFα, IL-6, IL-1βand iNOS, and improving gut integrity as indicated by increasing colon length, reducing plasma gut permeability indicators iFABP and LBP, increased mRNA expression of mucus protein Muc2, tight junction p Claudin 2, Occludin and ZO-1 in the HFD-fed mice. The anti-obesity effects of hesperidin treatment have a dose-dependent manner. In addition, 16S rRNA-based gut microbiota analysis revealed that hesperidin selectively promoted the growth of Lactobacillus salivarius, Staphylococcus sciuri and Desulfovibrio C21_c20 while inhibiting Bifidobacterium pseudolongum, Mucispirillum schaedleri, Helicobacter ganmani and Helicobacter hepaticus in the HFD-fed mice. Horizontal feces transfer from the normal diet (ND)-fed mice to the HFD-fed mice conferred anti-obesity effects and transmitted some of the HFD-modulated microbes. Conclusion We concluded that hesperidin and FMT both affect the reduction of body weight and improve HFD-related disorders in the HFD-fed mice possibly through modulating the composition of the gut microbiota.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510799, People’s Republic of China
| | - Chao Lei
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510799, People’s Republic of China
| | - Qinhong Huang
- The First Clinical College, Guangzhou Medical University, Guangzhou, 511400, People’s Republic of China
| | - Weiqi Song
- Department of Public Health, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Chen Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510799, People’s Republic of China
| | - Ning Sun
- Guangzhou 11th People’s Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, 510530, People’s Republic of China
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Zhihua Liu
- Department of Anorectal Surgery, the Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, People’s Republic of China
| |
Collapse
|
4
|
Li S, Liu Z, Zhang Q, Su D, Wang P, Li Y, Shi W, Zhang Q. The Antidiabetic Potential of Probiotics: A Review. Nutrients 2024; 16:2494. [PMID: 39125375 PMCID: PMC11313988 DOI: 10.3390/nu16152494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Diabetes has become one of the most prevalent global epidemics, significantly impacting both the economy and the health of individuals. Diabetes is associated with numerous complications, such as obesity; hyperglycemia; hypercholesterolemia; dyslipidemia; metabolic endotoxemia; intestinal barrier damage; insulin-secretion defects; increased oxidative stress; and low-grade, systemic, and chronic inflammation. Diabetes cannot be completely cured; therefore, current research has focused on developing various methods to control diabetes. A promising strategy is the use of probiotics for diabetes intervention. Probiotics are a class of live, non-toxic microorganisms that can colonize the human intestine and help improve the balance of intestinal microbiota. In this review, we summarize the current clinical studies on using probiotics to control diabetes in humans, along with mechanistic studies conducted in animal models. The primary mechanism by which probiotics regulate diabetes is improved intestinal barrier integrity, alleviated oxidative stress, enhanced immune response, increased short-chain fatty acid production, etc. Therefore, probiotic supplementation holds great potential for the prevention and management of diabetes.
Collapse
Affiliation(s)
- Shiming Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100193, China
| | - Zichao Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Qi Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Dan Su
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA;
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Yixuan Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Wenbiao Shi
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Qian Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| |
Collapse
|
5
|
Cai L, Wang X, Zhu X, Xu Y, Qin W, Ren J, Jiang Q, Yan X. Lactobacillus-derived protoporphyrin IX and SCFAs regulate the fiber size via glucose metabolism in the skeletal muscle of chickens. mSystems 2024; 9:e0021424. [PMID: 38780275 PMCID: PMC11237663 DOI: 10.1128/msystems.00214-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
The gut microbiota contributes to skeletal muscle energy metabolism and is an indirect factor affecting meat quality. However, the role of specific gut microbes in energy metabolism and fiber size of skeletal muscle in chickens remains largely unknown. In this study, we first performed cecal microbiota transplantation from Chinese indigenous Jingyuan chickens (JY) to Arbor Acres chickens (AA), to determine the effects of microbiota on skeletal muscle fiber and energy metabolism. Then, we used metagenomics, gas chromatography, and metabolomics analysis to identify functional microbes. Finally, we validated the role of these functional microbes in regulating the fiber size via glucose metabolism in the skeletal muscle of chickens through feeding experiments. The results showed that the skeletal muscle characteristics of AA after microbiota transplantation tended to be consistent with that of JY, as the fiber diameter was significantly increased, and glucose metabolism level was significantly enhanced in the pectoralis muscle. L. plantarum, L. ingluviei, L. salivarius, and their mixture could increase the production of the microbial metabolites protoporphyrin IX and short-chain fatty acids, therefore increasing the expression levels of genes related to the oxidative fiber type (MyHC SM and MyHC FRM), mitochondrial function (Tfam and CoxVa), and glucose metabolism (PFK, PK, PDH, IDH, and SDH), thereby increasing the fiber diameter and density. These three Lactobacillus species could be promising probiotics to improve the meat quality of chicken.IMPORTANCEThis study revealed that the L. plantarum, L. ingluviei, and L. salivarius could enhance the production of protoporphyrin IX and short-chain fatty acids in the cecum of chickens, improving glucose metabolism, and finally cause the increase in fiber diameter and density of skeletal muscle. These three microbes could be potential probiotic candidates to regulate glucose metabolism in skeletal muscle to improve the meat quality of chicken in broiler production.
Collapse
Affiliation(s)
- Liyuan Cai
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xinkai Wang
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Shandong Teamgene Technology Co. Ltd., Zibo, Shandong, China
| | - Xiaoyan Zhu
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yunzheng Xu
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wenxia Qin
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Ren
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qin Jiang
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xianghua Yan
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
6
|
A C, Zhang B, Chai J, Tu Z, Yan Z, Wu X, Wei M, Wu C, Zhang T, Wu P, Li M, Chen L. Multiomics Reveals the Microbiota and Metabolites Associated with Sperm Quality in Rongchang Boars. Microorganisms 2024; 12:1077. [PMID: 38930459 PMCID: PMC11205614 DOI: 10.3390/microorganisms12061077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we investigated the correlation between the composition and function of the gut microbiota and the semen quality of Rongchang boars. Significant differences in gut microbial composition between boars with high (group H) and low (group L) semen utilization rates were identified through 16S rRNA gene sequencing, with 18 differential microbes observed at the genus level. Boars with lower semen utilization rates exhibited a higher relative abundance of Treponema, suggesting its potential role in reducing semen quality. Conversely, boars with higher semen utilization rates showed increased relative abundances of Terrisporobacter, Turicibacter, Stenotrophomonas, Clostridium sensu stricto 3, and Bifidobacterium, with Stenotrophomonas and Clostridium sensu stricto 3 showing a significant positive correlation with semen utilization rates. The metabolomic analyses revealed higher levels of gluconolactone, D-ribose, and 4-pyridoxic acid in the H group, with 4 pyridoxic acid and D-ribose showing a significant positive correlation with Terrisporobacter and Clostridium sensu stricto 3, respectively. In contrast, the L group showed elevated levels of D-erythrose-4-phosphate, which correlated negatively with Bifidobacterium and Clostridium sensu stricto 3. These differential metabolites were enriched in the pentose phosphate pathway, vitamin B6 metabolism, and antifolate resistance, potentially influencing semen quality. These findings provide new insights into the complex interplay between the gut microbiota and boar reproductive health and may offer important information for the discovery of disease biomarkers and reproductive health management.
Collapse
Affiliation(s)
- Chao A
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625041, China
| | - Bin Zhang
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
| | - Jie Chai
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| | - Zhi Tu
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| | - Zhiqiang Yan
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| | - Xiaoqian Wu
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| | - Minghong Wei
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| | - Chuanyi Wu
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| | - Tinghuan Zhang
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| | - Pingxian Wu
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625041, China
| | - Li Chen
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| |
Collapse
|
7
|
Reveles KR, Hickmott AJ, Strey KA, Mustoe AC, Arroyo JP, Power ML, Ridenhour BJ, Amato KR, Ross CN. Developing the Common Marmoset as a Translational Geroscience Model to Study the Microbiome and Healthy Aging. Microorganisms 2024; 12:852. [PMID: 38792682 PMCID: PMC11123169 DOI: 10.3390/microorganisms12050852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Emerging data support associations between the depletion of the healthy gut microbiome and aging-related physiological decline and disease. In humans, fecal microbiota transplantation (FMT) has been used successfully to restore gut microbiome structure and function and to treat C. difficile infections, but its application to healthy aging has been scarcely investigated. The marmoset is an excellent model for evaluating microbiome-mediated changes with age and interventional treatments due to their relatively shorter lifespan and many social, behavioral, and physiological functions that mimic human aging. Prior work indicates that FMT is safe in marmosets and may successfully mediate gut microbiome function and host health. This narrative review (1) provides an overview of the rationale for FMT to support healthy aging using the marmoset as a translational geroscience model, (2) summarizes the prior use of FMT in marmosets, (3) outlines a protocol synthesized from prior literature for studying FMT in aging marmosets, and (4) describes limitations, knowledge gaps, and future research needs in this field.
Collapse
Affiliation(s)
- Kelly R. Reveles
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA;
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (A.J.H.); (A.C.M.); (J.P.A.); (C.N.R.)
| | - Alexana J. Hickmott
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (A.J.H.); (A.C.M.); (J.P.A.); (C.N.R.)
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Kelsey A. Strey
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA;
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (A.J.H.); (A.C.M.); (J.P.A.); (C.N.R.)
| | - Aaryn C. Mustoe
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (A.J.H.); (A.C.M.); (J.P.A.); (C.N.R.)
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Juan Pablo Arroyo
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (A.J.H.); (A.C.M.); (J.P.A.); (C.N.R.)
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Michael L. Power
- Center for Species Survival, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC 20008, USA;
| | - Benjamin J. Ridenhour
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID 83844, USA;
| | - Katherine R. Amato
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA;
| | - Corinna N. Ross
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (A.J.H.); (A.C.M.); (J.P.A.); (C.N.R.)
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
8
|
Zhao H, Sun L, Liu J, Shi B, Zhang Y, Qu-Zong CR, Dorji T, Wang T, Yuan H, Yang J. Meta-analysis identifying gut microbial biomarkers of Qinghai-Tibet Plateau populations and the functionality of microbiota-derived butyrate in high-altitude adaptation. Gut Microbes 2024; 16:2350151. [PMID: 38715346 PMCID: PMC11086029 DOI: 10.1080/19490976.2024.2350151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
The extreme environmental conditions of a plateau seriously threaten human health. The relationship between gut microbiota and human health at high altitudes has been extensively investigated. However, no universal gut microbiota biomarkers have been identified in the plateau population, limiting research into gut microbiota and high-altitude adaptation. 668 16s rRNA samples were analyzed using meta-analysis to reduce batch effects and uncover microbiota biomarkers in the plateau population. Furthermore, the robustness of these biomarkers was validated. Mendelian randomization (MR) results indicated that Tibetan gut microbiota may mediate a reduced erythropoietic response. Functional analysis and qPCR revealed that butyrate may be a functional metabolite in high-altitude adaptation. A high-altitude rat model showed that butyrate reduced intestinal damage caused by high altitudes. According to cell experiments, butyrate may downregulate hypoxia-inducible factor-1α (HIF-1α) expression and blunt cellular responses to hypoxic stress. Our research found universally applicable biomarkers and investigated their potential roles in promoting human health at high altitudes.
Collapse
Affiliation(s)
- Hongwen Zhao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Longjie Sun
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yaopeng Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ci-Ren Qu-Zong
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- College of Ecology and Environment, Tibet University, Tibet, China
| | - Tsechoe Dorji
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
| | - Hongli Yuan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinshui Yang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
He H, Gou Y, Zeng B, Wang R, Yang J, Wang K, Jing Y, Yang Y, Liang Y, Yang Y, Lv X, He Z, Tang Q, Gu Y. Comparative evaluation of the fecal microbiota of adult hybrid pigs and Tibetan pigs, and dynamic changes in the fecal microbiota of hybrid pigs. Front Immunol 2023; 14:1329590. [PMID: 38155960 PMCID: PMC10752980 DOI: 10.3389/fimmu.2023.1329590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/01/2023] [Indexed: 12/30/2023] Open
Abstract
The breed of pig can affect the diversity and composition of fecal microbiota, but there is a lack of research on the fecal microbiota of hybrid pigs. In this study, feces samples from Chuanxiang black pigs (a hybrid of Tibetan and Duroc pigs) aged 3 days (n = 24), 70 days (n = 31), 10 months (n = 13) and 2 years (n = 30) and Tibetan pigs aged 10 months (n = 14) and 2 years (n = 15) were collected and sequenced by 16S rRNA gene sequencing technology. We also measured the weight of all the tested pigs and found that the 10-month-old and two-year-old Chuanxiang black pigs weighed about three times the weight of Tibetan pigs of the same age. After comparing the genus-level microbiota composition of Tibetan pigs and Chuanxiang black pigs at 10 months and two years of age, we found that Treponema and Streptococcus were the two most abundant bacteria in Chuanxiang black pigs, while Treponema and Chirstensenellaceae_R.7_group were the two most abundant bacteria in Tibetan pigs. Prediction of microbial community function in adult Chuanxiang black pigs and Tibetan pigs showed changes in nutrient absorption, disease resistance, and coarse feeding tolerance. In addition, we also studied the changes in fecal microbiota in Chuanxiang black pigs at 3 days, 70 days, 10 months, and 2 years of age. We found that the ecologically dominant bacteria in fecal microbiota of Chuanxiang black pigs changed across developmental stages. For example, the highest relative abundance of 70-day-old Chuanxiang black pigs at the genus level was Prevotella. We identified specific microbiota with high abundance at different ages for Chuanxiang black pigs, and revealed that the potential functions of these specific microbiota were related to the dominant phenotype such as fast growth rate and strong disease resistance. Our findings help to expand the understanding of the fecal microbiota of hybrid pigs and provide a reference for future breeding and management of hybrid pigs.
Collapse
Affiliation(s)
- Hengdong He
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuwei Gou
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Rui Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kai Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunhan Jing
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuan Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Liang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Yuekui Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Xuebin Lv
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Zhiping He
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Qianzi Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yiren Gu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Long CX, Wu JQ, Tan ZJ. Intestinal microbiota disturbance affects the occurrence of African swine fever. Anim Biotechnol 2023; 34:1040-1049. [PMID: 34874229 DOI: 10.1080/10495398.2021.2010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Intestinal microbiota not only participates in the digestion and absorption of nutrients, but also plays an important role in regulating host metabolism and health. The current study aimed to explore the intestinal microbiota characteristics in pigs infected with African swine fever. Below the same term, fresh fecal samples of sick and healthy pigs were collected. Primers were designed and PCR was extracted based on the 16S rDNA gene of bacteria by Illumina NovaSeq sequencing platform. The results showed that the bacterial alpha diversity index of healthy pigs was significantly higher than that of sick pigs (p < 0.05). On the phylum taxa, dominant bacteria more than 98.5% in the two groups are composed of Firmicutes, Spirobacteria, and Bacteroides, of which the abundance of Firmicutes and Bacteroidetes decreased and Spiricobacteria increased extremely significant in sick pigs (p < 0.01). On the genus taxa, the relative abundance of Oscillospira, Streptococcus and Roseburia decreased significantly (p < 0.05). Most notably, Treponema performed excellently in distinguishing pigs infected with African swine fever with the abundance increased extremely significantly (p < 0.01). In conclusion, African swine fever could alter the abundance of dominant bacteria in pigs, and Treponema may be one of the important inducers for swine pathogenicity. HighlightsThe bacterial population composition in sick pigs and healthy pigs was basically similar, but the relative abundance of dominant bacteria was significantly difference.ASF could alter the abundance of dominant bacteria in pigs, and Treponema may be one of the important inducers for swine pathogenicity.These results will provide further evidence for the ASF infection in local pig farms and provide reference for their microecological control, which has important practical significance and social value for effective control of ASF, stability of pig production and guarantee of market supply.
Collapse
Affiliation(s)
- Cheng-Xing Long
- College of Mathematics and Finance, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Jie-Qi Wu
- Loudi Fisheries Science Research Institute, Loudi, China
| | - Zhou-Jin Tan
- College of Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
11
|
Xiao X, Wang J, Zhu Y, Deng B, Liu Y, Wang S, Hou T, Song T. Phytosterols Protect against Osteoporosis by Regulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14539-14549. [PMID: 37756430 DOI: 10.1021/acs.jafc.3c01489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Osteoporosis is increasingly prevalent worldwide, representing a major health burden. However, there is a lack of nutritional strategies for osteoporotic therapy. Phytosterols, as natural bioactive compounds, have the potential to alleviate osteoporosis. In this study, a glucocorticoid-induced osteoporosis mouse model and treatment with low and high concentrations of phytosterols for 4 weeks were established. The results demonstrated that compared to the control group, low-concentration phytosterols (LP) (0.3 mg/mL) increased bone mass, improved trabecular microstructure, reduced serum levels of cross-linked C-telopeptide of type I collagen (CTX-1), and elevated serum levels of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). Conversely, high-concentration phytosterols (0.5 mg/mL) showed no effect. Additionally, we validated the effect of LP in ameliorating osteoporosis using an ovariectomized (OVX)-induced osteoporosis mouse model. Mechanistically, phytosterols altered the microbial composition to counteract glucocorticoid-induced gut microbiota disorder and improve the length and morphology of the small intestine. Particularly, based on selection strategy and correlation analysis, phytosterols increased the relative abundance of Ruminococcus and decreased the relative abundance of Bilophila, which were significantly associated with glucocorticoid-induced osteoporosis indications. Overall, these findings suggest that phytosterols regulate gut microbiota to increase bone mass, thereby exerting an antiosteoporotic effect.
Collapse
Affiliation(s)
- Xiangyu Xiao
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Jiaojiao Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yucheng Zhu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bohua Deng
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yucheng Liu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaoshuai Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| |
Collapse
|
12
|
Xie Z, Gan M, Du J, Du G, Luo Y, Liu B, Zhu K, Cheng W, Chen L, Zhao Y, Niu L, Wang Y, Wang J, Zhu L, Shen L. Comparison of Growth Performance and Plasma Metabolomics between Two Sire-Breeds of Pigs in China. Genes (Basel) 2023; 14:1706. [PMID: 37761845 PMCID: PMC10531030 DOI: 10.3390/genes14091706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The Yorkshire pigs, renowned for their remarkable growth rate, low feed conversion ratio (FCR), and high meat production, emerge as a novel preference for paternal breeding. In this study, we found that purebred paternal Yorkshire pigs (PY) surpass the purebred Duroc breed in terms of growth rate. Specifically, purebred PY attain a weight of 100 kg at an earlier age compared to purebred Duroc (Male, 145.07 vs. 162.91; Female, 145.91 vs. 167.57; p-value < 0.01). Furthermore, different hybrid combinations suggest that offspring involving purebred PY exhibit superior growth performance. Compared with purebred Duroc, the offspring of purebred PY have an earlier age in days (173.23 vs. 183.54; p-value < 0.05) at the same slaughter weight. The changes of plasma metabolites of 60-day-old purebred boars in the two sire-breeds showed that 1335 metabolites in plasma were detected. Compared with Duroc, 28 metabolites were down-regulated and 49 metabolites were up-regulated in PY. Principal component analysis (PCA) discerned notable dissimilarities in plasma metabolites between the two sire-breeds of pigs. The levels of glycerol 3-phosphate choline, cytidine, guanine, and arachidonic acid increased significantly (p-value < 0.05), exerting an impact on their growth and development. According to our results, PY could be a new paternal option as a terminal sire in three-way cross system.
Collapse
Affiliation(s)
- Zhongwei Xie
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Z.X.); (M.G.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Z.X.); (M.G.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Junhua Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Z.X.); (M.G.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Gao Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Z.X.); (M.G.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Luo
- Sichuan Dekon Livestock Foodstuff Group, Chengdu 610200, China
| | - Bin Liu
- Sichuan Dekon Livestock Foodstuff Group, Chengdu 610200, China
| | - Kangping Zhu
- Sichuan Dekon Livestock Foodstuff Group, Chengdu 610200, China
| | - Wenqiang Cheng
- National Animal Husbandry Service, Beijing 100125, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Z.X.); (M.G.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Z.X.); (M.G.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Z.X.); (M.G.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Z.X.); (M.G.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingyong Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Z.X.); (M.G.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Z.X.); (M.G.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
13
|
Liu Z, Ling Y, Peng Y, Han S, Ren Y, Jing Y, Fan W, Su Y, Mu C, Zhu W. Regulation of serotonin production by specific microbes from piglet gut. J Anim Sci Biotechnol 2023; 14:111. [PMID: 37542282 PMCID: PMC10403853 DOI: 10.1186/s40104-023-00903-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/04/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Serotonin is an important signaling molecule that regulates secretory and sensory functions in the gut. Gut microbiota has been demonstrated to affect serotonin synthesis in rodent models. However, how gut microbes regulate intestinal serotonin production in piglets remains vague. To investigate the relationship between microbiota and serotonin specifically in the colon, microbial composition and serotonin concentration were analyzed in ileum-cannulated piglets subjected to antibiotic infusion from the ileum when comparing with saline infusion. Microbes that correlated positively with serotonin production were isolated from piglet colon and were further used to investigate the regulation mechanisms on serotonin production in IPEC-J2 and a putative enterochromaffin cell line RIN-14B cells. RESULTS Antibiotic infusion increased quantities of Lactobacillus amylovorus (LA) that positively correlated with increased serotonin concentrations in the colon, while no effects observed for Limosilactobacillus reuteri (LR). To understand how microbes regulate serotonin, representative strains of LA, LR, and Streptococcus alactolyticus (SA, enriched in feces from prior observation) were selected for cell culture studies. Compared to the control group, LA, LR and SA supernatants significantly up-regulated tryptophan hydroxylase 1 (TPH1) expression and promoted serotonin production in IPEC-J2 cells, while in RIN-14B cells only LA exerted similar action. To investigate potential mechanisms mediated by microbe-derived molecules, microbial metabolites including lactate, acetate, glutamine, and γ-aminobutyric acid were selected for cell treatment based on computational and metabolite profiling in bacterial supernatant. Among these metabolites, acetate upregulated the expression of free fatty acid receptor 3 and TPH1 while downregulated indoleamine 2,3-dioxygenase 1. Similar effects were also recapitulated when treating the cells with AR420626, an agonist targeting free fatty acid receptor 3. CONCLUSIONS Overall, these results suggest that Lactobacillus amylovorus showed a positive correlation with serotonin production in the pig gut and exhibited a remarkable ability to regulate serotonin production in cell cultures. These findings provide evidence that microbial metabolites mediate the dialogue between microbes and host, which reveals a potential approach using microbial manipulation to regulate intestinal serotonin biosynthesis.
Collapse
Affiliation(s)
- Ziyu Liu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yidan Ling
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yu Peng
- Hubei CAT Biological Technology Co., Ltd., Wuhan, China
| | - Shuibing Han
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yuting Ren
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yujia Jing
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Wenlu Fan
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Chunlong Mu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
14
|
Rutjens S, Vereecke N, Sauer J, Croubels S, Devreese M. Cefquinome shows a higher impact on the pig gut microbiome and resistome compared to ceftiofur. Vet Res 2023; 54:45. [PMID: 37280708 DOI: 10.1186/s13567-023-01176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Cephalosporins are licensed for treatment of severe bacterial infections in different species. However, the effect of these antimicrobials on the fecal microbiome and potential spread of resistance-associated genes causes great concern. This highlights the need to understand the impact of cephalosporins on the porcine fecal microbiome and resistome. A combination of long-read 16S rRNA gene and shotgun metagenomic sequencing was applied to investigate the effect of conventional treatment with either ceftiofur (3 mg.kg-1 intramuscular, 3 consecutive days) or cefquinome (2 mg.kg-1 intramuscular, 5 consecutive days) on the porcine microbiome and resistome. Fecal samples were collected from 17 pigs (6 ceftiofur treated, 6 cefquinome treated, 5 control pigs) at four different timepoints. Treatment with ceftiofur resulted in an increase in Proteobacteria members on microbiome level, while on resistome level selection in TetQ containing Bacteroides, CfxA6 containing Prevotella and blaTEM-1 containing Escherichia coli was observed. Cefquinome treatment resulted in a decline in overall species richness (α-diversity) and increase in Proteobacteria members. On genus level, administration of cefquinome significantly affected more genera than ceftiofur (18 vs 8). On resistome level, cefquinome resulted in a significant increase of six antimicrobial resistance genes, with no clear correlation with certain genera. For both antimicrobials, the resistome levels returned back to the control levels 21 days post-treatment. Overall, our study provides novel insights on the effect of specific cephalosporins on the porcine gut microbiome and resistome after conventional intramuscular treatment. These results might contribute to better tailoring of the most ideal treatment strategy for some bacterial infections.
Collapse
Affiliation(s)
- Sofie Rutjens
- Department of Pathobiology, Pharmacology and Zoological Medicine, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Nick Vereecke
- PathoSense BV, 2500, Lier, Belgium
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | | | - Siska Croubels
- Department of Pathobiology, Pharmacology and Zoological Medicine, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Mathias Devreese
- Department of Pathobiology, Pharmacology and Zoological Medicine, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| |
Collapse
|
15
|
Pottenger S, Watts A, Wedley A, Jopson S, Darby AC, Wigley P. Timing and delivery route effects of cecal microbiome transplants on Salmonella Typhimurium infections in chickens: potential for in-hatchery delivery of microbial interventions. Anim Microbiome 2023; 5:11. [PMID: 36788638 PMCID: PMC9926694 DOI: 10.1186/s42523-023-00232-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Exposure to microbes early in life has long-lasting effects on microbial community structure and function of the microbiome. However, in commercial poultry settings chicks are reared as a single-age cohort with no exposure to adult birds which can have profound effects on microbiota development and subsequent pathogen challenge. Microbiota manipulation is a proven and promising strategy to help reduce pathogen load and transmission within broiler flocks. However, administration of microbiota transplant products in a hatchery setting may prove challenging. Effective administration strategies are dependent on key factors, such as; the age of chicks receiving interventions and mode of delivery. This study aimed to assess these two aspects to provide supporting evidence towards microbiome manipulation strategies for use in commercial hatcheries. RESULTS Manipulation of the microbiota between 4 and 72 h of hatch markedly reduced faecal shedding and colonisation with the foodborne pathogen Salmonella enterica serovar Typhimurium (ST4/74). Administration of transplant material via spray or gel drop delivery systems had minimal effect on the protection conferred with fewer birds in transplant groups shown to shed ST4/74 in the faeces compared to PBS-gavaged control birds. Analysis of the microbiome following transplantation demonstrated that all transplant groups had higher diversity and species richness than non-transplant groups during the first week of life and the early stages of infection with ST47/4.The relative abundance of the bacterium Faecalibacterium prausnitzii was significantly higher in CMT groups compared to PBS controls. The presence of F. prausnitzii was also shown to increase in PBS-challenged birds compared to unchallenged birds potentially indicating a role of this bacterium in limiting Salmonella infections. CONCLUSIONS This study demonstrated that administration of microbiome transplants, using methods that would align with hatchery practices, effectively reduced colonisation and shedding of Salmonella in chickens. Age of chicks at microbiome administration had limited effect on the diversity and composition of the microbiome and conferred protection against Salmonella infections. Traditional hatchery delivery systems, such as spray or gel-drop, are sufficient to transfer donor material, alter the microbiome and confer protection against Salmonella. This study helps highlight the opportunity for use of microbiome modification methods within the hatchery.
Collapse
Affiliation(s)
- Sian Pottenger
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| | - Amyleigh Watts
- grid.10025.360000 0004 1936 8470Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Amy Wedley
- grid.10025.360000 0004 1936 8470Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Sue Jopson
- grid.10025.360000 0004 1936 8470Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Alistair C. Darby
- grid.10025.360000 0004 1936 8470Centre for Genomic Research, University of Liverpool, Liverpool, UK
| | - Paul Wigley
- grid.10025.360000 0004 1936 8470Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK ,grid.5337.20000 0004 1936 7603School of Veterinary Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
16
|
Exploring variation in the fecal microbial communities of Kasaragod Dwarf and Holstein crossbred cattle. Antonie Van Leeuwenhoek 2023; 116:53-65. [PMID: 36450879 DOI: 10.1007/s10482-022-01791-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/30/2022] [Indexed: 12/02/2022]
Abstract
The gut microbiota and its impact on health and nutrition in animals, including cattle has been of intense interest in recent times. Cattle, in particular indigenous varieties like Kasaragod Dwarf cow, have not received the due consideration given to other non-native cattle breeds, and the composition of their fecal microbiome is yet to be established. This study applied 16S rRNA high-throughput sequencing of fecal samples and compared the Kasaragod Dwarf with the highly prevalent Holstein crossbred cattle. Variation in their microbial composition was confirmed by marker gene-based taxonomic analysis. Principle Coordinate Analysis (PCoA) showed the distinct microbial architecture of the two cattle types. While the two cattle types possess unique signature taxa, in Kasaragod Dwarf cattle, many of the identified genera, including Anaerovibrio, Succinivibrio, Roseburia, Coprococcus, Paludibacter, Sutterella, Coprobacillus, and Ruminobacter, have previously been shown to be present in higher abundance in animals with higher feed efficiency. This is the first report of Kasaragod Dwarf cattle fecal microbiome profiling. Our findings highlight the predominance of specific taxa potentially associated with different fermentation products and feed efficiency phenotypes in Kasaragod Dwarf cattle compared to Holstein crossbred cattle.
Collapse
|
17
|
Upadhaya SD, Kim IH. Maintenance of gut microbiome stability for optimum intestinal health in pigs - a review. J Anim Sci Biotechnol 2022; 13:140. [PMID: 36474259 PMCID: PMC9727896 DOI: 10.1186/s40104-022-00790-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/03/2022] [Indexed: 12/12/2022] Open
Abstract
Pigs are exposed to various challenges such as weaning, environmental stressors, unhealthy diet, diseases and infections during their lifetime which adversely affects the gut microbiome. The inability of the pig microbiome to return to the pre-challenge baseline may lead to dysbiosis resulting in the outbreak of diseases. Therefore, the maintenance of gut microbiome diversity, robustness and stability has been influential for optimum intestinal health after perturbations. Nowadays human and animal researches have focused on more holistic approaches to obtain a robust gut microbiota that provides protection against pathogens and improves the digestive physiology and the immune system. In this review, we present an overview of the swine gut microbiota, factors affecting the gut microbiome and the importance of microbial stability in promoting optimal intestinal health. Additionally, we discussed the current understanding of nutritional interventions using fibers and pre/probiotics supplementation as non-antibiotic alternatives to maintain microbiota resilience to replace diminished species.
Collapse
Affiliation(s)
- Santi Devi Upadhaya
- grid.411982.70000 0001 0705 4288Department of Animal Resource and Science, Dankook University, No.29 Anseodong, Cheonan, 31116 Choongnam South Korea
| | - In Ho Kim
- grid.411982.70000 0001 0705 4288Department of Animal Resource and Science, Dankook University, No.29 Anseodong, Cheonan, 31116 Choongnam South Korea
| |
Collapse
|
18
|
Gan B, Sun N, Lai J, Wan Z, Li L, Wang Y, Zeng Y, Zeng D, Pan K, Fang J, Shu G, Wang H, Xin J, Ni X. Dynamic Monitoring of Changes in Fecal Flora of Giant Pandas in Mice: Co-Occurrence Network Reconstruction. Microbiol Spectr 2022; 11:e0199122. [PMID: 36472469 PMCID: PMC10100740 DOI: 10.1128/spectrum.01991-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Giant pandas are uniquely vulnerable mammals in western China. It is important to develop an animal model to explore the intestinal flora of giant pandas to understand the relationship between digestive diseases and flora. Existing animal models of intestinal flora focus on human flora-associated animals, such as mice, and there is a very limited amount of knowledge regarding giant panda flora-associated animals. To fill this gap, fecal microorganisms from giant pandas were transplanted into pseudosterile and germfree mice using single and multiple gavages. Fecal samples were collected from mice at four time points after transplantation for microbial community analysis. We determined that compared to pseudosterile mice, the characteristics of intestinal flora in pandas were better reproduced in germfree mice. There was no significant difference in microbial diversity between germfree mice and giant panda gut microbes from day 3 to day 21. Germfree mice at the phylum level possessed large amounts of Firmicutes and Proteobacteria, and at the genus level, Escherichia-Shigella, Clostridium sensu stricto 1, and Streptococcus dominated the intestinal flora structure. The microbial community co-occurrence network based on indicator species indicated that germfree mice transplanted with fecal bacteria tended to form a microbial community co-occurrence network similar to that of giant pandas, while pseudosterile mice tended to restore the microbial community co-occurrence network originally present in these mice. Our data are helpful for the study of giant panda flora-associated animals and provide new insights for the in vitro study of giant panda intestinal flora. IMPORTANCE The giant panda is a unique vulnerable mammal in western China, and its main cause of death is digestive system diseases regardless of whether these animals are in the wild or in captivity. The relationship between the intestinal flora and the host exerts a significant impact on the nutrition and health of the giant pandas. However, the protected status of the giant panda has made in vivo, repeatable, and large-sample sampling studies of their intestinal flora difficult. This greatly hinders the research depth of the giant panda intestinal flora from the source. The development and utilization of specific animal models to simulate the structure and characteristics of the intestinal flora provide another means to deal with these research limitations. However, current research examining giant panda flora-associated animals is limited. This study is the first to reveal dynamic changes in the fecal flora of giant pandas in mice after transplantation.
Collapse
Affiliation(s)
- Baoxing Gan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Lai
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhiqiang Wan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lianxin Li
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanyan Wang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Fang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hesong Wang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinge Xin
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Liu TH, Zhao L, Zhang CY, Li XY, Wu TL, Dai YY, Sheng YY, Ren YL, Xue YZ. Gut microbial evidence chain in high-salt diet exacerbates intestinal aging process. Front Nutr 2022; 9:1046833. [PMID: 36386919 PMCID: PMC9650087 DOI: 10.3389/fnut.2022.1046833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
Although excessive salt consumption appears to hasten intestinal aging and increases susceptibility to cardiovascular disease, the molecular mechanism is unknown. In this study, mutual validation of high salt (HS) and aging fecal microbiota transplantation (FMT) in C56BL/6 mice was used to clarify the molecular mechanism by which excessive salt consumption causes intestinal aging. Firstly, we observed HS causes vascular endothelial damage and can accelerate intestinal aging associated with decreased colon and serum expression of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and increased malondialdehyde (MDA); after transplantation with HS fecal microbiota in mice, vascular endothelial damage and intestinal aging can also occur. Secondly, we also found intestinal aging and vascular endothelial damage in older mice aged 14 months; and after transplantation of the older mice fecal microbiota, the same effect was observed in mice aged 6–8 weeks. Meanwhile, HS and aging significantly changed gut microbial diversity and composition, which was transferable by FMT. Eventually, based on the core genera both in HS and the aging gut microbiota network, a machine learning model was constructed which could predict HS susceptibility to intestinal aging. Further investigation revealed that the process of HS-related intestinal aging was highly linked to the signal transduction mediated by various bacteria. In conclusion, the present study provides an experimental basis of potential microbial evidence in the process of HS related intestinal aging. Even, avoiding excessive salt consumption and actively intervening in gut microbiota alteration may assist to delay the aging state that drives HS-related intestinal aging in clinical practice.
Collapse
Affiliation(s)
- Tian-hao Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lin Zhao
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Chen-yang Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiao-ya Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Tie-long Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuan-yuan Dai
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Ying-yue Sheng
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yi-lin Ren
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yu-zheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Yu-zheng Xue
| |
Collapse
|
20
|
Trans-Species Fecal Transplant Revealed the Role of the Gut Microbiome as a Contributor to Energy Metabolism and Development of Skeletal Muscle. Metabolites 2022; 12:metabo12080769. [PMID: 36005641 PMCID: PMC9415505 DOI: 10.3390/metabo12080769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to investigate the influence of the exogenous gut microbiome at early life stages on the development of mice skeletal muscle in adulthood. First, the characteristics of skeletal muscle and the gut microbiota composition of the gut microbiota donors—Erhualian (EH) pigs (a native Chinese breed)—were studied. EH pigs had significantly higher fiber densities and thinner fiber diameters than Duroc × Landrace × Yorkshire crossed (DLY) pigs (p < 0.05). The expression levels of genes related to oxidized muscle fibers, mitochondrial function, and glucose metabolism in the skeletal muscle of EH pigs were significantly higher than those in DLY pigs (p < 0.05). Moreover, the abundances of 8 gut microbial phyla and 35 genera correlated with the skeletal muscle fiber diameters and densities exhibited significant differences (p < 0.05) between EH and DLY pigs. Subsequently, newborn mice were treated with saline (CG) and fecal microbiota suspensions collected from EH pigs (AG), respectively, for 15 days, starting from the day of birth. In adulthood (60 days), the relative abundances of Parabacteroides, Sutterella, and Dehalobacterium were significantly higher in the feces of the AG mice than those of the CG mice. The microbes contribute to improved functions related to lipid and carbohydrate metabolism. The weight, density, and gene expression related to the oxidized muscle fibers, mitochondrial function, and glucose metabolism of the AG group were significantly higher than those of the CG group (p < 0.05), whereas the fiber diameters in the skeletal muscle of the AG mice were significantly lower (p < 0.05) than those of the CG mice. These results suggested that intervention with exogenous microbiota at early stages of life can affect the fiber size and energy metabolism of their skeletal muscle.
Collapse
|
21
|
Shang Z, Tan Z, Kong Q, Shang P, Wang H, Zhaxi W, Zhaxi C, Liu S. Characterization of fungal microbial diversity in Tibetan sheep, Tibetan gazelle and Tibetan antelope in the Qiangtang region of Tibet. MYCOSCIENCE 2022; 63:156-164. [PMID: 37090471 PMCID: PMC10042320 DOI: 10.47371/mycosci.2022.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022]
Abstract
Due to the high crude fiber content, straw of various crops is difficult to become a high quality forage resource. The degradation of cellulose in nature mainly depends on the cellulase secreted by microbes, which degrade cellulose into small molecular substances through chemical action, and the microbes that secrete cellulase mainly include some bacteria, fungi and actinomycetes, etc. The large and diverse microbial population contained in the mammalian gastrointestinal tract plays an important role in nutrient digestion. At present, many cellulose-degrading strains have been screened and obtained from animal digestive system and feces, such as Bacillus subtilis from the feces of Panda, Bacillus amyloliquefaciens from the cecum of goose. In this study, the fungal diversity was analysed in the fresh faeces of Tibetan sheep, Tibetan gazelle and Tibetan antelope in Qiangtang, Tibet. Results showed that the structure and species of gut fungi are different in three animals, which may be related to the different physiological functions among different animals, e.g., Tibetan antelope and Tibetan gazelle have stronger tolerance to rough feeding than Tibetan sheep. This study will lay a foundation for cellulose-degrading fungal development and provides technical support for improving rough feeding tolerance of Tibetan sheep.
Collapse
Affiliation(s)
- Zhenda Shang
- College of Animal Science, Tibet Agricultural & Animal Husbandry University
| | - Zhankun Tan
- College of Animal Science, Tibet Agricultural & Animal Husbandry University
| | - Qinghui Kong
- College of Animal Science, Tibet Agricultural & Animal Husbandry University
| | - Peng Shang
- College of Animal Science, Tibet Agricultural & Animal Husbandry University
| | - Honghui Wang
- College of Animal Science, Tibet Agricultural & Animal Husbandry University
| | - Wangjie Zhaxi
- Baingoin County Agricultural Science and Technology Service station
| | - Ciren Zhaxi
- Baingoin County Agricultural Science and Technology Service station
| | - Suozhu Liu
- College of Animal Science, Tibet Agricultural & Animal Husbandry University
| |
Collapse
|
22
|
Li X, Wu Y, Xie G, Tan Z. Effects of chronic cadmium exposure on the structure and function of intestinal mucosal flora in mice. TOXIN REV 2022; 41:904-917. [DOI: 10.1080/15569543.2021.1955712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Xiaoya Li
- College of traditional Chinese medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yi Wu
- College of traditional Chinese medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Guozhen Xie
- College of traditional Chinese medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhoujin Tan
- College of traditional Chinese medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
23
|
Wang L, Nong Q, Zhou Y, Sun Y, Chen W, Xie J, Zhu X, Shan T. Changes in Serum Fatty Acid Composition and Metabolome-Microbiome Responses of Heigai Pigs Induced by Dietary N-6/n-3 Polyunsaturated Fatty Acid Ratio. Front Microbiol 2022; 13:917558. [PMID: 35814644 PMCID: PMC9257074 DOI: 10.3389/fmicb.2022.917558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
Changing fatty acid composition is a potential nutritional strategy to shape microbial communities in pigs. However, the effect of different n-6/n-3 polyunsaturated fatty acid (PUFA) ratios on serum fatty acid composition, microbiota, and their metabolites in the intestine of pigs remains unclear. Our study investigated the changes in serum fatty acid composition and metabolome–microbiome responses induced by dietary n-6/n-3 PUFA ratio based on a Heigai-pig model. A total of 54 Heigai finishing pigs (body weight: 71.59 ± 2.16 kg) fed with 3 types of diets (n-6/n-3 PUFA ratios are 8:1, 5:1, and 3:1) were randomly divided into 3 treatments with 6 replications (3 pigs per replication) for 75 days. Results showed that dietary n-6/n-3 PUFA ratio significantly affected biochemical immune indexes including glucose (Glu), triglycerides (TG), total cholesterol (TChol), non-esterified fatty acid (NEFA), high-density lipoprotein (HDL), low-density lipoprotein (LDL), and total thyroxine (TT4), and medium- and long-chain fatty acid composition, especially n-3 PUFA and n-6/n-3 PUFA ratio in the serum. However, no significant effects were found in the SCFAs composition and overall composition of the gut microbiota community. In the low dietary n-6/n-3 PUFA ratio group, the relative abundance of Cellulosilyticum, Bacteroides, and Alloprevotella decreased, Slackia and Sporobacter increased. Based on the metabolomic analysis, dietary n-6/n-3 PUFA ratio altered the metabolome profiles in the colon. Moreover, Pearson’s correlation analysis indicated that differential microbial genera and metabolites induced by different n-6/n-3 PUFA ratio had tight correlations and were correlated with the n-6 PUFA and n-3 PUFA content in longissimus dorsi muscle (LDM) and subcutaneous adipose tissue (SAT). Taken together, these results showed that lower dietary n-6/n-3 PUFA ratio improved serum fatty acid composition and metabolome–microbiome responses of Heigai pigs and may provide a new insight into regulating the metabolism of pigs and further better understanding the crosstalk with host and microbes in pigs.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Qiuyun Nong
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yanbing Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Ye Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Wentao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Jintang Xie
- Shandong Chunteng Food Co. Ltd., Zaozhuang, China
| | - Xiaodong Zhu
- Shandong Chunteng Food Co. Ltd., Zaozhuang, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- *Correspondence: Tizhong Shan,
| |
Collapse
|
24
|
Hu H, Li Y, Yang Y, Xu K, Yang L, Qiao S, Pan H. Effect of a Plateau Environment on the Oxidation State of the Heart and Liver through AMPK/p38 MAPK/Nrf2-ARE Signaling Pathways in Tibetan and DLY Pigs. Animals (Basel) 2022; 12:1219. [PMID: 35565644 PMCID: PMC9104009 DOI: 10.3390/ani12091219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 12/13/2022] Open
Abstract
This study evaluated the effect of a plateau environment on the heart and liver oxidation state of Tibetan pigs (TPs) and DLY pigs through analyzing AMPK, p38 MAPK, and Nrf2 signaling pathways. Twelve 120-day-old TPs and twelve 120-day-old DLY pigs were randomly divided into two groups in a plateau environment for three weeks. Exposed to a plateau environment, TPs exhibited a lower (p < 0.05) malondialdehyde level but higher (p < 0.05) glutathione, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC) activities in the liver and heart than those observed in DLY pigs. TPs also showed higher (p < 0.05) mRNA levels of SOD and GSH-Px in the liver and heart compared with those of DLY pigs. The TPs showed higher (p < 0.05) mRNA and protein levels of AMPK and Nrf2 in the liver and heart compared with those of DLY pigs. Furthermore, TPs showed higher (p < 0.05) mRNA and protein levels of p38 MAPK in the heart and higher mRNA levels of p38 MAPK in the liver compared with those of DLY pigs under a plateau environment. In summary, TPs possess a stronger antioxidant capacity in the heart and liver than that of DLY pigs in a plateau environment through AMPK/p38 MAPK/Nrf2-ARE signaling pathways.
Collapse
Affiliation(s)
- Hong Hu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (H.H.); (Y.L.)
| | - Yongxiang Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (H.H.); (Y.L.)
| | - Yuting Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Y.); (L.Y.)
| | - Kexing Xu
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China;
| | - Lijie Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Y.); (L.Y.)
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Y.); (L.Y.)
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (H.H.); (Y.L.)
| |
Collapse
|
25
|
Yang Y, Li Y, Xie Y, Qiao S, Yang L, Pan H. Comparative Study on Jejunal Immunity and Microbial Composition of Growing-Period Tibetan Pigs and Duroc × (Landrace × Yorkshire) Pigs. Front Vet Sci 2022; 9:890585. [PMID: 35548051 PMCID: PMC9085446 DOI: 10.3389/fvets.2022.890585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota plays vital roles in metabolizing nutrient, maintaining the intestinal epithelial barrier but also in modulating immunity. Host genetics and the pig breed are implicated in shaping gut microbiota. Tibetan pig is a unique native Chinese breed and has evolved to manifest a strong disease resistance. However, the immunity and microbiota of growing Tibetan (TP) pigs were still rarely understood. The jejunal immunity phenotype and microbial composition of TP and Duroc × (Landrace × Yorkshire) (DLY) pigs were explored through immunohistochemistry and 16S rRNA sequencing. Higher scores of clusters of differentiation 4 (CD4+) and Toll-like receptor 9 (TLR9) were observed in TP pigs than those of DLY pigs (p < 0.05), as were Interleukin 10 (IL-10) and zonular occludens 1 (ZO-1) (p < 0.01). Similar levels of bacterial richness and diversity were found in the jejunal microbiota of the TP and DLY pigs. However, the TP pigs showed a significantly different microbiome compared to DLY pigs at the genus level (ANOSIM; p < 0.05). Pseudomonas, Stenotrophomonas, Phenylobacterium, and Sandaracinobacter were enriched in DLY pigs (p < 0.05), while the Lactobacillus and Solibacillus had higher abundances in TP pigs than DLY pigs (p < 0.05). Tibetan pigs have “healthier” intestinal microbial communities than DLY pigs. Close relationships were found between jejunal immune performance and the differential bacteria, Lactobacillus can enhance porcine jejunal immunity, while Stenotrophomonas will have a negative impact on porcine gut immunity.
Collapse
Affiliation(s)
- Yuting Yang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China
| | - Yongxiang Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yanggang Xie
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China
| | - Lijie Yang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- *Correspondence: Hongbin Pan
| |
Collapse
|
26
|
Hu C, Patil Y, Gong D, Yu T, Li J, Wu L, Liu X, Yu Z, Ma X, Yong Y, Chen J, Gooneratne R, Ju X. Heat Stress-Induced Dysbiosis of Porcine Colon Microbiota Plays a Role in Intestinal Damage: A Fecal Microbiota Profile. Front Vet Sci 2022; 9:686902. [PMID: 35300220 PMCID: PMC8921775 DOI: 10.3389/fvets.2022.686902] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 01/24/2022] [Indexed: 12/30/2022] Open
Abstract
The pathological mechanisms of gastrointestinal disorders, including inflammatory bowel disease (IBD), in pigs are poorly understood. We report the induction of intestinal inflammation in heat-stressed (HS) pigs, fecal microbiota transplantation from pigs to mice, and explain the role of microorganisms in IBD. 24 adult pigs were subjected to HS (34 ± 1 °C; 75–85% relative humidity for 24h) while 24 control pigs (CP) were kept at 25 ± 3°C and the same humidity. Pigs were sacrificed on days 1, 7, 14, 21. Colonic content microbiome analyses were conducted. Pseudo-germ-free mice were fed by gavage with fecal microbiota from HS-pigs and CP to induce pig-like responses in mice. From 7 d, HS-pigs exhibited fever and diarrhea, and significantly lower colonic mucosal thickness, crypt depth/width, and goblet cell number. Compared with each control group, the concentration of cortisol in the peripheral blood of HS pigs gradually increased, significantly so on days 7, 14, and 21 (P < 0.01). While the concentration of LPS in HS pigs' peripheral blood was significantly higher on days 7, 14 (P < 0.01), and 21 (P < 0.05) compared with that of the control group. The colonic microbiome composition of HS-pigs was different to that of CP. By day 14, opportunistic pathogens (e.g., Campylobacterales) had increased in HS-pigs. The composition of the colonic microbiome in mice administered feces from HS-pigs was different from those receiving CP feces. Bacteroides were significantly diminished, Akkermansia were significantly increased, and intestinal damage and goblet cell numbers were higher in mice that received HS-pig feces. Moreover, we verified the relevance of differences in the microbiota of the colon among treatments. Heat stress promotes changes in gut microbiome composition, which can affect the colonic microbial structure of mice through fecal microbiota transplantation; the molecular mechanisms require further investigation. This study enhanced our understanding of stress-induced inflammation in the colon and the increase in diarrhea in mammals subjected to prolonged HS. Our results provide useful information for preventing or ameliorating deficits in pig production caused by prolonged exposure to high temperatures.
Collapse
Affiliation(s)
- Canying Hu
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Yadnyavalkya Patil
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Dongliang Gong
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
| | - Tianyue Yu
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
| | - Junyu Li
- Department of Veterinary Medicine, College of Agriculture, Guangdong Ocean University, Zhanjiang, China
| | - Lianyun Wu
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
| | - Xiaoxi Liu
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
| | - Zhichao Yu
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
| | - Xinbing Ma
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Agriculture, Guangdong Ocean University, Zhanjiang, China
| | - Jinjun Chen
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Xianghong Ju
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
- Department of Veterinary Medicine, College of Agriculture, Guangdong Ocean University, Zhanjiang, China
- *Correspondence: Xianghong Ju
| |
Collapse
|
27
|
Gut Microbiota Implications for Health and Welfare in Farm Animals: A Review. Animals (Basel) 2021; 12:ani12010093. [PMID: 35011199 PMCID: PMC8749645 DOI: 10.3390/ani12010093] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Farm animal health and welfare have been paid increasing concern in the world, which is generally assessed by the measurements of physical health, immune response, behavior, and physiological indicators, such as stress-related hormone, cortisone, and norepinephrine. Gut microbiota as a “forgotten organ” has been reported for its great influence on the host phenotypes through the immune, neural, and endocrine pathways to affect the host health and behavior. In addition, fecal microbiota transplantation as a novel approach is applied to regulating the composition and function of the recipient farm animals. In this review, we summarized recent studies that gut microbiota influenced health, immunity, behavior, and stress response, as well as the progress of fecal microbiota transplantation in farm animals. The review will provide new insights into the measurement of farm animal health and welfare concerning gut microbiota, and the implication of fecal microbiota transplantation to improve productivity, health, and welfare. Above all, this review suggests that gut microbiota is a promising field to evaluate and improve animal welfare. Abstract In the past few decades, farm animal health and welfare have been paid increasing concern worldwide. Farm animal health and welfare are generally assessed by the measurements of physical health, immune response, behavior, and physiological indicators. The gut microbiota has been reported to have a great influence on host phenotypes, possibly via the immune processes, neural functions, and endocrine pathways, thereby influencing host phenotypes. However, there are few reviews regarding farm animals’ health and welfare status concerning the gut microbiota. In this point of view, (1) we reviewed recent studies showing that gut microbiota (higher alpha diversity, beneficial composition, and positive functions) effectively influenced health characteristics, immunity, behaviors, and stress response in farm animals (such as pigs, chickens, and cows), which would provide a novel approach to measure and evaluate the health status and welfare of farm animals. In addition, fecal microbiota transplantation (FMT) as one of the methods can modulate the recipient individual’s gut microbiota to realize the expected phenotype. Further, (2) we highlighted the application of FMT on the improvement of the production performance, the reduction in disease and abnormal behavior, as well as the attenuation of stress in farm animals. It is concluded that the gut microbiota can be scientifically used to assess and improve the welfare of farm animals. Moreover, FMT may be a helpful strategy to reduce abnormal behavior and improve stress adaption, as well as the treatment of disease for farm animals. This review suggests that gut microbiota is a promising field to evaluate and improve animal welfare.
Collapse
|
28
|
Yu J, Zhou Y, Wen Q, Wang B, Gong H, Zhu L, Lan H, Wu B, Lang W, Zheng X, Wu M. Effects of faecal microbiota transplantation on the growth performance, intestinal microbiota, jejunum morphology and immune function of laying-type chicks. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an21093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Context Recent studies have indicated that the early stage of growth is a critical window for intestinal microbiota manipulation to optimise the immunity and body growth. Faecal microbiota transplantation (FMT) is often used to regulate intestinal microbiota colonisation. Aims The aim of this study was to explore the effect of FMT on the growth performance, intestinal microbiota, jejunum morphology and immune function of newly hatched laying-type chicks. Methods The chicks (Hy-line Brown) were randomly divided into the control group (CON) and FMT group (FMT), which were treated with sterile saline and faecal microbiota suspension of Hy-line Brown breeder hens on Days 1, 3 and 5 respectively. For each group, there were five replications of 12 birds each for 4 weeks. This study investigated the body weight, tibia length, intestinal microflora, jejunum morphology and immune indexes of the chicks. Key results The results showed that the body weight and tibia length of birds in the FMT group were significantly increased at 7, 14 and 21 days of age (P < 0.01). Furthermore, we found that FMT altered the intestinal microbiota community of the birds and improved the richness, evenness, diversity and stability of their intestinal microbiota (P < 0.05). The faecal microbiota of the donor hens and birds that received the transplantation were very similar. The villus height and the ratio of the villus to crypt of the birds in the FMT group were significantly (P < 0.0001) higher than those in the control group. In addition, Spearman’s correlation analysis showed that the villus height of the FMT group showed positive correlation with Bacteroides (P < 0.05), and the villus height and the ratio of the villus to crypt in the FMT group showed positive correlations with Megasphaera (P < 0.05). The birds in the FMT group had no significant difference in intestinal length, immune organ indexes, serum β-defensin and IgA concentrations. Conclusions In summary, FMT can promote the early growth performance and jejunum morphology of laying-type chicks and improve the intestinal microbiota. FMT has no significant effect on the immune function of chicks. Implications FMT may be a potential method to improve the health of chicks to enhance the poultry industry.
Collapse
|
29
|
Yan C, Xiao J, Li Z, Liu H, Zhao X, Liu J, Chen S, Zhao X. Exogenous Fecal Microbial Transplantation Alters Fearfulness, Intestinal Morphology, and Gut Microbiota in Broilers. Front Vet Sci 2021; 8:706987. [PMID: 34660756 PMCID: PMC8517117 DOI: 10.3389/fvets.2021.706987] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022] Open
Abstract
Fecal microbiota transplantation (FMT) documented transplanting a donor fecal sample to a receipt individual for a desired physiologic effect. However, whether the gut microbiota construction, intestinal maturation, and behavioral plasticity are modulated by FMT during the early life of broilers is waiting for verification. To evaluate the role of transfer of fecal microbiota from aged broilers donor (BD) to another individual, 96 birds were equally divided into a check (CK, control) group and a broiler recipient (BR) group. FMT was conducted daily from 5 to 12 days of age to determine the future impact on body weight, behavior, intestinal development, and gut microbiota. Results indicated that fearfulness in the CK group was higher than the BR group in both the behavioral tests (p < 0.05). The muscularis mucosa, thickness of muscle layer, and thickness of serous membrane layer in the BR group were higher compared with those of the CK group in the jejunum (p < 0.05). In the gut microbiota, Shannon diversity showed no difference, while beta diversity presented a difference in principal coordination analysis (PCoA) between the CK and BR groups. At the phylum level, the relative abundance of Lentisphaerae in the CK group was lower than the BR (p = 0.052) and BD (p = 0.054) groups. The relative abundance of Tenericutes in the BD group was higher than that in the CK and BR groups (p < 0.05). At the genus level, Megamonas in the CK group was higher than the BR (p = 0.06) and BD (p < 0.05) groups. In the BR group, the functional capabilities of microbial communities analyzed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were increased in the glutamatergic synapse and N-glycan biosynthesis pathways in comparison with the CK and BD groups (p < 0.05). Some characteristics of gut microbiota in the donor chickens could be transferred to recipient chickens by FMT. In conclusion, exogenous FMT as a probiotic-like administration might be an efficient way to improve the physiology and behavior of chickens. Notably, the role of microbiota for various individuals and periods remains undefined, and the mechanism of microbiota on behaviors still needs further investigation.
Collapse
Affiliation(s)
- Chao Yan
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| | - Jinlong Xiao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| | - Zhiwei Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xinjie Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian Liu
- Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| | - Siyu Chen
- Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xingbo Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
30
|
Li B, Ren S, Zhao W, Wang X, Tu F. Comparative analysis of the rectal
and caecal microbial community composition and function
in adult Erhualian and Sushan pigs. JOURNAL OF ANIMAL AND FEED SCIENCES 2021. [DOI: 10.22358/jafs/138777/2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Yang Y, Liu Y, Liu J, Wang H, Guo Y, Du M, Cai C, Zhao Y, Lu C, Guo X, Cao G, Duan Z, Li B, Gao P. Composition of the Fecal Microbiota of Piglets at Various Growth Stages. Front Vet Sci 2021; 8:661671. [PMID: 34336969 PMCID: PMC8319241 DOI: 10.3389/fvets.2021.661671] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/15/2021] [Indexed: 11/24/2022] Open
Abstract
Gastrointestinal (GI) microbiota play an important role in promoting growth in piglets. However, studies on microbiota composition at various growth stages are lacking. We measured body weights of Jinfen White and Mashen piglets every 7 days and collected their fecal samples by rectal swabbing at nine time points during suckling (1-28 days) and nursery (35-70 days) stages to gain insight into microbiota variability during piglet growth. The fecal microbiota were characterized via 16S rRNA gene sequencing to analyze the effects of microbial diversity on piglet growth and development preliminarily. The results showed that although the two breeds of piglets have similar body weights at birth, weaned Jinfen White piglets demonstrated a significantly greater body weight and daily weight gain than weaned Mashen piglets (P < 0.01). A total of 1,976 operational taxonomic units (OTUs) belonging to 27 phyla and 489 genera were uncovered, in which the highest numbers of OTUs belong to the phyla Firmicutes and Bacteroidetes. Lactobacillus, Bacteroides, and Prevotellaceae NK3B31 groups accounting for 12.4, 8.8, and 5.8% of OTUs, respectively, showed relatively high abundance at the genus level. Nine sampling time points were divided into three growth stages, namely, immediate postfarrowing (1 day old), suckling (7, 14, and 21 days old), and nursery (28, 35, 49, 63, and 70 days old), on the basis of the results of microbial diversity, principal coordinate, and co-occurrence network analyses. In addition, it identified 54 discriminative features in the microbiota between two breeds of piglets by LEfSe analysis, in which 17 genera enriched the microbiota community of Jinfen White piglets. Finally, abundances of 29 genera showed significant positive correlations with body weights and daily weight gain of piglets. Conversely, abundances of 12 genera demonstrated significant negative correlations with body weights of piglets. The results of our study will provide a theoretical basis for succession patterns in fecal microbiota of piglets and suggest the need for meticulous management of piglets in pig production.
Collapse
Affiliation(s)
- Yang Yang
- College of Animal Sciences, Shanxi Agricultural University, Taigu County, China
| | - Yadan Liu
- College of Animal Sciences, Shanxi Agricultural University, Taigu County, China
| | - Juan Liu
- College of Animal Sciences, Shanxi Agricultural University, Taigu County, China
| | - Haizhen Wang
- College of Animal Sciences, Shanxi Agricultural University, Taigu County, China
| | - Yulong Guo
- College of Animal Sciences, Shanxi Agricultural University, Taigu County, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Chunbo Cai
- College of Animal Sciences, Shanxi Agricultural University, Taigu County, China
| | - Yan Zhao
- College of Animal Sciences, Shanxi Agricultural University, Taigu County, China
| | - Chang Lu
- College of Animal Sciences, Shanxi Agricultural University, Taigu County, China
| | - Xiaohong Guo
- College of Animal Sciences, Shanxi Agricultural University, Taigu County, China
| | - Guoqing Cao
- College of Animal Sciences, Shanxi Agricultural University, Taigu County, China
| | - Zhibian Duan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu County, China
| | - Bugao Li
- College of Animal Sciences, Shanxi Agricultural University, Taigu County, China
| | - Pengfei Gao
- College of Animal Sciences, Shanxi Agricultural University, Taigu County, China
| |
Collapse
|
32
|
Moita VHC, Duarte ME, da Silva SN, Kim SW. Supplemental Effects of Functional Oils on the Modulation of Mucosa-Associated Microbiota, Intestinal Health, and Growth Performance of Nursery Pigs. Animals (Basel) 2021; 11:1591. [PMID: 34071448 PMCID: PMC8230055 DOI: 10.3390/ani11061591] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
This study aimed to investigate the effects of functional oils on modulation of mucosa-associated microbiota, intestinal health, and growth performance of nursery pigs. Forty newly weaned pigs (20 barrows and 20 gilts) with 7.0 ± 0.5 kg body weight (BW) were housed individually and randomly allotted in a randomized complete block design with sex and initial BW as blocks. The dietary treatments were a basal diet with increasing levels (0.00, 0.50, 0.75, 1.00, and 1.50 g/kg feed) of functional oils (a blend of castor oil and cashew nutshell liquid; Oligo Basics USA LLC, Cary, NC) fed to pigs for 34 days divided in two phases (P1 for 13 days and P2 for 21 days). Growth performance was analyzed weekly. On day 34, all pigs were euthanized to collect jejunal mucosa for analyzing the mucosa-associated microbiota and intestinal health, and ileal digesta for analyzing apparent ileal digestibility. Data were analyzed using SAS 9.4. Supplementation of functional oils did not affect the overall growth performance. Increasing supplementation of functional oils reduced (p < 0.05) the relative abundance of Helicobacteraceae, whereas it increased (p < 0.05) Lactobacillus kitasatonis. Supplementation of functional oils tended (p = 0.064) to decrease protein carbonyl and increase the villus height (p = 0.098) and crypt depth (p = 0.070). In conclusion, supplementation of functional oils enhanced intestinal health of nursery pigs by increasing beneficial and reducing harmful bacteria, potentially reducing oxidative stress and enhancing intestinal morphology, without affecting overall growth performance of pigs. Supplementation of functional oils at 0.75-1.50 g/kg feed was the most beneficial to the jejunal mucosa-associated microbiota and intestinal integrity of nursery pigs.
Collapse
Affiliation(s)
| | | | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (V.H.C.M.); (M.E.D.); (S.N.d.S.)
| |
Collapse
|
33
|
Real-time monitoring of ruminal microbiota reveals their roles in dairy goats during subacute ruminal acidosis. NPJ Biofilms Microbiomes 2021; 7:45. [PMID: 33990613 PMCID: PMC8121909 DOI: 10.1038/s41522-021-00215-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
Ruminal microbiota changes frequently with high grain diets and the occurrence of subacute ruminal acidosis (SARA). A grain-induced goat model of SARA, with durations of a significant decrease in the rumen pH value to less than 5.6 and an increase in the rumen lipopolysaccharides concentration, is constructed for real-time monitoring of bacteria alteration. Using 16 S rRNA gene sequencing, significant bacterial differences between goats from the SARA and healthy groups are identified at every hour for six continuous hours after feeding. Moreover, 29 common differential genera between two groups over 6 h after feeding are all related to the altered pH and lipopolysaccharides. Transplanting the microbiota from donor goats with SARA could induce colonic inflammation in antibiotic-pretreated mice. Overall, significant differences in the bacterial community and rumen fermentation pattern between the healthy and SARA dairy goats are real-time monitored, and then tested using ruminal microbe transplantation to antibiotic-treated mice.
Collapse
|
34
|
Gut Immunity and Microbiota Dysbiosis Are Associated with Altered Bile Acid Metabolism in LPS-Challenged Piglets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6634821. [PMID: 33833852 PMCID: PMC8018853 DOI: 10.1155/2021/6634821] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022]
Abstract
Bacterial infections are among the major factors that cause stress and intestinal diseases in piglets. Lipopolysaccharide (LPS), a major component of the Gram-negative bacteria outer membrane, is commonly employed for inducing an immune response in normal organisms for convenience. The association between LPS stimulation and gut immunity has been reported. However, the effects of gut immunity on microbial homeostasis and metabolism of host, especially bile acid and lipid metabolism in piglets, remain unclear. Hence, in the current study, we elucidated the effect of gut immunity on microbial balance and host metabolism. Twenty-one-day-old healthy piglets (male) were randomly assigned into the CON and LPS groups. After 4 hours of treatment, related tissues and cecal contents were obtained for further analysis. The obtained results showed that stimulated LPS considerably damaged the morphology of intestinal villi and enhanced the relative expression of proinflammatory cytokines. Besides, LPS partially changed the microbial structure as indicated by β-diversity and increased operational taxonomic units (OTUs) related to Oxalobacter and Ileibacterium. Furthermore, bile acid, a large class of gut microbiota metabolites, was also assessed by many proteins related to the enterohepatic circulation of bile acids. It was also revealed that LPS markedly inhibited the mRNA and protein expression of TGR5 and FXR (bile acid receptors) in the ileum, which expressed negative feedback on bile acid de novo synthesis. Additionally, results indicated upregulated mRNA of genes associated with the production of bile acid in the liver tissues. Moreover, LPS reduced the expression of bile acid transporters in the ileum and liver tissues and further disturbed the normal enterohepatic circulation. Taken together, gut immunity and microbial dysbiosis are associated with altered bile acid metabolism in LPS-challenged piglets, which provided theoretical basis for revealing the potential mechanism of intestinal inflammation in swine and seeking nutrients to resist intestinal damage.
Collapse
|
35
|
Chen C, Zhu J, Ren H, Deng Y, Zhang X, Liu Y, Cui Q, Hu X, Zuo J, Chen B, Zhang X, Wu M, Peng Y. Growth performance, carcass characteristics, meat quality and chemical composition of the Shaziling pig and its crossbreeds. Livest Sci 2021. [DOI: 10.1016/j.livsci.2020.104342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Diao H, Xiao Y, Yan HL, Yu B, He J, Zheng P, Yu J, Mao XB, Chen DW. Effects of Early Transplantation of the Faecal Microbiota from Tibetan Pigs on the Gut Development of DSS-Challenged Piglets. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9823969. [PMID: 33532501 PMCID: PMC7837763 DOI: 10.1155/2021/9823969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 12/20/2022]
Abstract
The present study was conducted to investigate the effects of early transplantation of the faecal microbiota from Tibetan pigs on the gut development of dextran sulphate sodium- (DSS-) challenged piglets. In total, 24 3-day-old DLY piglets were divided into four groups (n = 6 per group); a 2 × 2 factorial arrangement was used, which included faecal microbiota transplantation (FMT) (from Tibetan pigs) and DSS challenge. The whole trial lasted for 55 days. DSS infusion increased the intestinal density, serum diamine oxidase (DAO) activity, and colonic Escherichia coli count (P < 0.05), and decreased the Lactobacillus spp. count and mRNA abundances of epidermal growth factor (EGF), glucagon-like peptide-2 (GLP-2), insulin-like growth factor 1 (IGF-1), occludin, mucin 2 (MUC2), regeneration protein IIIγ (RegIIIγ), and interleukin-10 (IL-10) in the colon (P < 0.05). FMT increased the Lactobacillus spp. count and mRNA abundances of GLP-2, RegIIIγ, and IL-10 in the colon (P < 0.05), and decreased the intestinal density, serum DAO activity, and colonic E. coli number (P < 0.05). In addition, in DSS-challenged piglets, FMT decreased the disease activity index (P < 0.05) and attenuated the effect of DSS challenge on the intestinal density, serum DAO activity, and colonic E. coli number (P < 0.05). These data indicated that the faecal microbiota from Tibetan pigs could attenuate the negative effect of DSS challenge on the gut development of piglets.
Collapse
Affiliation(s)
- H. Diao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, No. 46 Xinkang Road, Ya'an, Sichuan 625014, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Academy of Animal Science, No. 7 Niusha Road, Chengdu, Sichuan 610066, China
| | - Y. Xiao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, No. 46 Xinkang Road, Ya'an, Sichuan 625014, China
| | - H. L. Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, No. 46 Xinkang Road, Ya'an, Sichuan 625014, China
| | - B. Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, No. 46 Xinkang Road, Ya'an, Sichuan 625014, China
| | - J. He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, No. 46 Xinkang Road, Ya'an, Sichuan 625014, China
| | - P. Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, No. 46 Xinkang Road, Ya'an, Sichuan 625014, China
| | - J. Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, No. 46 Xinkang Road, Ya'an, Sichuan 625014, China
| | - X. B. Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, No. 46 Xinkang Road, Ya'an, Sichuan 625014, China
| | - D. W. Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, No. 46 Xinkang Road, Ya'an, Sichuan 625014, China
| |
Collapse
|
37
|
Wang H, Xu R, Zhang H, Su Y, Zhu W. Swine gut microbiota and its interaction with host nutrient metabolism. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2020; 6:410-420. [PMID: 33364457 PMCID: PMC7750828 DOI: 10.1016/j.aninu.2020.10.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/09/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Gut microbiota is generally recognized to play a crucial role in maintaining host health and metabolism. The correlation among gut microbiota, glycolipid metabolism, and metabolic diseases has been well reviewed in humans. However, the interplay between gut microbiota and host metabolism in swine remains incompletely understood. Given the limitation in conducting human experiments and the high similarity between swine and humans in terms of anatomy, physiology, polyphagy, habits, and metabolism and in terms of the composition of gut microbiota, there is a pressing need to summarize the knowledge gained regarding swine gut microbiota, its interplay with host metabolism, and the underlying mechanisms. This review aimed to outline the bidirectional regulation between gut microbiota and nutrient metabolism in swine and to emphasize the action mechanisms underlying the complex microbiome-host crosstalk via the gut microbiota-gut-brain axis. Moreover, it highlights the new advances in knowledge of the diurnal rhythmicity of gut microbiota. A better understanding of these aspects can not only shed light on healthy and efficient pork production but also promote our knowledge on the associations between gut microbiota and the microbiome-host crosstalk mechanism. More importantly, knowledge on microbiota, host health and metabolism facilitates the development of a precise intervention therapy targeting the gut microbiota.
Collapse
Affiliation(s)
- Hongyu Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongying Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - He Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
38
|
Li N, Zuo B, Huang S, Zeng B, Han D, Li T, Liu T, Wu Z, Wei H, Zhao J, Wang J. Spatial heterogeneity of bacterial colonization across different gut segments following inter-species microbiota transplantation. MICROBIOME 2020; 8:161. [PMID: 33208178 PMCID: PMC7677849 DOI: 10.1186/s40168-020-00917-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND The microbiota presents a compartmentalized distribution across different gut segments. Hence, the exogenous microbiota from a particular gut segment might only invade its homologous gut location during microbiota transplantation. Feces as the excreted residue contain most of the large-intestinal microbes but lack small-intestinal microbes. We speculated that whole-intestinal microbiota transplantation (WIMT), comprising jejunal, ileal, cecal, and colonic microbiota, would be more effective for reshaping the entire intestinal microbiota than conventional fecal microbiota transplantation fecal microbiota transplantation (FMT). RESULTS We modeled the compartmentalized colonization of the gut microbiota via transplanting the microbiota from jejunum, ileum, cecum, and colon, respectively, into the germ-free mice. Transplanting jejunal or ileal microbiota induced more exogenous microbes' colonization in the small intestine (SI) of germ-free mice rather than the large intestine (LI), primarily containing Proteobacteria, Lactobacillaceae, and Cyanobacteria. Conversely, more saccharolytic anaerobes from exogenous cecal or colonic microbiota, such as Bacteroidetes, Prevotellaceae, Lachnospiraceae, and Ruminococcaceae, established in the LI of germ-free mice that received corresponding intestinal segmented microbiota transplantation. Consistent compartmentalized colonization patterns of microbial functions in the intestine of germ-free mice were also observed. Genes related to nucleotide metabolism, genetic information processing, and replication and repair were primarily enriched in small-intestinal communities, whereas genes associated with the metabolism of essential nutrients such as carbohydrates, amino acids, cofactors, and vitamins were mainly enriched in large-intestinal communities of germ-free mice. Subsequently, we compared the difference in reshaping the community structure of germ-free mice between FMT and WIMT. FMT mainly transferred LI-derived microorganisms and gene functions into the recipient intestine with sparse SI-derived microbes successfully transplanted. However, WIMT introduced more SI-derived microbes and associated microbial functions to the recipient intestine than FMT. Besides, WIMT also improved intestinal morphological development as well as reduced systematic inflammation responses of recipients compared with FMT. CONCLUSIONS Segmented exogenous microbiota transplantation proved the spatial heterogeneity of bacterial colonization along the gastrointestinal tract, i.e., the microbiota from one specific location selectively colonizes its homologous gut region. Given the lack of exogenous small-intestinal microbes during FMT, WIMT may be a promising alternative for conventional FMT to reconstitute the microbiota across the entire intestinal tract. Video Abstract.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Bin Zuo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Benhua Zeng
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, 400038 China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Ting Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Hong Wei
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701 USA
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
39
|
Diao H, Jiao A, Yu B, He J, Zheng P, Yu J, Luo Y, Luo J, Mao X, Chen D. Beet Pulp: An Alternative to Improve the Gut Health of Growing Pigs. Animals (Basel) 2020; 10:ani10101860. [PMID: 33065992 PMCID: PMC7600662 DOI: 10.3390/ani10101860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to investigate the effects of dietary fiber on the gut health of growing pigs. In total, 30 growing pigs with an initial average body weight of 45.8 ± 2.78 kg were divided into three groups with 10 replicates per treatment, and one pig per replicate. The treatments included a corn-soybean meal-based diet (control group, 1.5% crude fiber (CF)), corn-soybean meal + beet pulp-based diet (beet pulp group, 5.74% CF) and corn-soybean meal-based diet (feed intake-pairing group (pairing group); the feed intake was equal to the beet pulp group, 1.5% CF). The whole trial lasted 28 days. The beet pulp group had a longer length of the large intestine, higher weight of the small intestine and whole intestine, greater density of the large intestine and whole intestine, and higher villus height in the jejunum and ileum than the control group (p < 0.05). The messenger RNA (mRNA) expression levels of epidermal growth factor (EGF), glucagon-like peptide 2 (GLP-2), and glucagon-like peptide 2 receptor (GLP-2R) in the duodenum, EGF and GLP-2 in the jejunum, EGF in the ileum, and GLP-2 in the colon were higher in the beet pulp group than in the control group (p < 0.05). Moreover, the apparent total tract digestibility of crude ash, energy, dry matter (DM), and crude protein (CP) was lower in the beet pulp group than in the control group (p < 0.05), while the apparent total tract digestibility of CF, the activity of jejunal lactase, and the mRNA abundance of duodenal GLP-2 were higher in the beet pulp group than in the control and pairing groups (p < 0.05). In addition, the beet pulp group had more goblet cells in the colon, more Bifidobacterium spp. in the cecal digesta, higher concentrations of acetic acid and butyric acid in the cecal digesta, and higher mRNA abundance of duodenal regeneration protein Ⅲγ (REG-Ⅲγ), jejunal mucin 2 (MUC-2), and ileal G protein-coupled receptor 43 (GPR-43) than the control group (p < 0.05). However, these parameters did not differ between the control and pairing groups (p > 0.05). These findings indicate feeding a high-fiber diet (5.74% CF, obtained from beet pulp) to pigs could modulate the gut microbiota composition, increase the short-chain fatty-acid (SCFA) content in the hindgut, and improve gut health, which is independent of the feed intake.
Collapse
Affiliation(s)
- Hui Diao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Xinkang Road 46#, Ya’an 625014, China; (H.D.); (A.J.); (B.Y.); (J.H.); (P.Z.); (J.Y.); (Y.L.); (J.L.)
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Academy of Animal Science, No.7 Niusha Road, Chengdu 610066, China
| | - Anran Jiao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Xinkang Road 46#, Ya’an 625014, China; (H.D.); (A.J.); (B.Y.); (J.H.); (P.Z.); (J.Y.); (Y.L.); (J.L.)
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Xinkang Road 46#, Ya’an 625014, China; (H.D.); (A.J.); (B.Y.); (J.H.); (P.Z.); (J.Y.); (Y.L.); (J.L.)
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Xinkang Road 46#, Ya’an 625014, China; (H.D.); (A.J.); (B.Y.); (J.H.); (P.Z.); (J.Y.); (Y.L.); (J.L.)
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Xinkang Road 46#, Ya’an 625014, China; (H.D.); (A.J.); (B.Y.); (J.H.); (P.Z.); (J.Y.); (Y.L.); (J.L.)
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Xinkang Road 46#, Ya’an 625014, China; (H.D.); (A.J.); (B.Y.); (J.H.); (P.Z.); (J.Y.); (Y.L.); (J.L.)
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Xinkang Road 46#, Ya’an 625014, China; (H.D.); (A.J.); (B.Y.); (J.H.); (P.Z.); (J.Y.); (Y.L.); (J.L.)
| | - Junqiu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Xinkang Road 46#, Ya’an 625014, China; (H.D.); (A.J.); (B.Y.); (J.H.); (P.Z.); (J.Y.); (Y.L.); (J.L.)
| | - Xiangbing Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Xinkang Road 46#, Ya’an 625014, China; (H.D.); (A.J.); (B.Y.); (J.H.); (P.Z.); (J.Y.); (Y.L.); (J.L.)
- Correspondence: (X.M.); (D.C.); Tel.: +86-0835-2885106 (D.C.)
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Xinkang Road 46#, Ya’an 625014, China; (H.D.); (A.J.); (B.Y.); (J.H.); (P.Z.); (J.Y.); (Y.L.); (J.L.)
- Correspondence: (X.M.); (D.C.); Tel.: +86-0835-2885106 (D.C.)
| |
Collapse
|
40
|
Tang W, Chen D, Yu B, He J, Huang Z, Zheng P, Mao X, Luo Y, Luo J, Wang Q, Wang H, Yu J. Capsulized faecal microbiota transplantation ameliorates post-weaning diarrhoea by modulating the gut microbiota in piglets. Vet Res 2020; 51:55. [PMID: 32299514 PMCID: PMC7164362 DOI: 10.1186/s13567-020-00779-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/20/2020] [Indexed: 12/18/2022] Open
Abstract
Early weaning-induced stress causes diarrhoea, thereby reducing the growth performance of piglets. Gut bacterial dysbiosis has emerged as a leading cause of post-weaning diarrhoea. The present study aimed to investigate the effect of capsulized faecal microbiota transplantation (FMT) on the gut bacterial community, immune response and gut barrier function of piglets. Thirty-two weaned barrows were randomly divided into two groups. The recipient group was inoculated orally with capsulized faecal microbiota of healthy Tibetan pigs during the whole period of the trial, while the control group was given an empty capsule. The feed-to-gain ratio, diarrhoea ratio, and histological damage score of recipient piglets were significantly decreased. FMT treatment significantly increased the colon length of piglets. Furthermore, the relative abundances of Firmicutes, Euryarchaeota, Tenericutes, Lactobacillus, and Methanobrevibacter in the colon of recipient piglets were increased, and the relative abundances of Campylobacter and Proteobacteria were significantly decreased compared with those in the control group. CD4+ lymphocytes and CD4+/CD8+ ratio in the peripheral blood of recipient piglets were significantly increased. FMT treatment increased the IL-4 and IL-10 levels and decreased the TNF-α and INF-γ levels in the colonic tissue of piglets. The recipient piglets’ mRNA expression of TLR2, TLR8, NF-κB, and iNOS was significantly regulated. In addition, FMT significantly enhanced the gene expression of ZO-1. Overall, treatment with capsulized FMT ameliorated diarrhoea in piglets, with significant effects on limiting colon inflammatory responses, downregulating the TLR signalling pathway and the gene expression of iNOS, and strengthening intestinal barrier function by modulating the constituents of the gut microbiota.
Collapse
Affiliation(s)
- Wenjie Tang
- Animal Nutrition Institute, Sichuan Agricultural University and Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University and Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China.
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University and Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China
| | - Jun He
- Animal Nutrition Institute, Sichuan Agricultural University and Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China
| | - Zhiqing Huang
- Animal Nutrition Institute, Sichuan Agricultural University and Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China
| | - Ping Zheng
- Animal Nutrition Institute, Sichuan Agricultural University and Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China
| | - Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University and Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China
| | - Yuheng Luo
- Animal Nutrition Institute, Sichuan Agricultural University and Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China
| | - Junqiu Luo
- Animal Nutrition Institute, Sichuan Agricultural University and Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China
| | - Quyuan Wang
- Animal Nutrition Institute, Sichuan Agricultural University and Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China
| | - Huifen Wang
- Animal Nutrition Institute, Sichuan Agricultural University and Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China
| | - Jie Yu
- Animal Nutrition Institute, Sichuan Agricultural University and Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China.
| |
Collapse
|
41
|
Li J, Chen D, Yu B, He J, Huang Z, Mao X, Zheng P, Yu J, Luo J, Tian G, Luo Y. The fungal community and its interaction with the concentration of short-chain fatty acids in the faeces of Chenghua, Yorkshire and Tibetan pigs. Microb Biotechnol 2019; 13:509-521. [PMID: 31691493 PMCID: PMC7017814 DOI: 10.1111/1751-7915.13507] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 10/08/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
Despite their important roles in host nutrition and metabolism, and potential to cause disease, our knowledge of the fungal community in the mammalian gut is quite limited. To date, diversity and composition of fungi in swine gut still remains unknown. Therefore, the first internal transcribed spacer of fungi in faecal samples from three breeds of pigs (10 pigs for each breed) was sequenced based on an Illumina HiSeq 2500 platform, and the relationship between the fungal community and the concentrations of main short‐chain fatty acids (SCFAs) was also analysed. Results indicated that Chenghua (local, higher body fat rate), Yorkshire (foreign, higher lean meat and growth rate) and Tibetan (plateau, stronger disease resistance) pigs harboured distinct fungal community. The Basidiomycota and Ascomycota presented as the two predominant phyla, with Loreleia, Russula and Candida as the top three genera in all samples. Network analysis revealed a total of 35 correlations among different fungal genera, with 27 (77.14%) positive and 8 (22.86%) negative pairwise interactions. Canonical correspondence analysis suggested that fungi in the faeces of pigs were more correlated to the concentration of acetate and butyrate rather than propionate. Spearman’s correlation further showed that Tomentella was positively correlated to both acetate and butyrate, and Loreleia was positively correlated to propionate (P < 0.05), while Nephroma and Taiwanofungus were negatively correlated to acetate and propionate (P < 0.05). These findings expanded our knowledge on the intestinal fungi in pigs with different genotypes and phenotypes, indicating that fungi may play an indispensable role during the metabolism of host and the maintenance of intestinal health. The cross‐feeding between fungi and other microorganisms may be crucial during the digestion of dietary carbohydrates and the associated physiological processes, which is worthy to be further studied.
Collapse
Affiliation(s)
- Jiayan Li
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture of China, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture of China, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture of China, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture of China, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture of China, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiangbing Mao
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture of China, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture of China, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture of China, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Junqiu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture of China, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture of China, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture of China, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
42
|
Improvement of Feed Efficiency in Pigs through Microbial Modulation via Fecal Microbiota Transplantation in Sows and Dietary Supplementation of Inulin in Offspring. Appl Environ Microbiol 2019; 85:AEM.01255-19. [PMID: 31519656 DOI: 10.1128/aem.01255-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
As previous studies have demonstrated a link between the porcine intestinal microbiome and feed efficiency (FE), microbiota manipulation may offer a means of improving FE in pigs. A fecal microbiota transplantation procedure (FMTp), using fecal extracts from highly feed-efficient pigs, was performed in pregnant sows (n = 11), with a control group (n = 11) receiving no FMTp. At weaning, offspring were allocated, within sow treatment, to (i) control (n = 67; no dietary supplement) or (ii) inulin (n = 65; 6-week dietary inulin supplementation) treatments. The sow FMTp, alone or in combination with inulin supplementation in offspring, reduced offspring body weight by 8.1 to 10.6 kg at ∼140 days of age, but there was no effect on feed intake. It resulted in better FE, greater bacterial diversity, and higher relative abundances of potentially beneficial bacterial taxa (Fibrobacter and Prevotella) in offspring. Due to the FMTp and/or inulin supplementation, relative abundances of potential pathogens (Chlamydia and Treponema) in the ileum and cecal concentrations of butyric acid were significantly lower. The maternal FMTp led to a greater number of jejunal goblet cells in offspring. Inulin supplementation alone did not affect growth or FE but upregulated duodenal genes linked to glucose and volatile fatty acid homeostasis and increased the mean platelet volume but reduced ileal propionic acid concentrations, granulocyte counts, and serum urea concentrations. Overall, the FMTp in pregnant sows, with or without dietary inulin supplementation in offspring, beneficially modulated offspring intestinal microbiota (albeit mostly low-relative-abundance taxa) and associated physiological parameters. Although FE was improved, the detrimental effect on growth limits the application of this FMTp-inulin strategy in commercial pig production.IMPORTANCE As previous research suggests a link between microbiota and FE, modulation of the intestinal microbiome may be effective in improving FE in pigs. The FMTp in gestating sows, alone or in combination with postweaning dietary inulin supplementation in offspring, achieved improvements in FE and resulted in a higher relative abundance of intestinal bacteria associated with fiber degradation and a lower relative abundance of potential pathogens. However, there was a detrimental effect on growth, although this may not be wholly attributable to microbiota transplantation, as antibiotic and other interventions were also part of the FMT regimen. Therefore, further work with additional control groups is needed to disentangle the effects of each component of the FMTp in order to develop a regimen with practical applications in pig production. Additional research based on findings from this study may also identify specific dietary supplements for the promotion/maintenance of the microbiota transferred via the maternal FMTp, thereby optimizing pig growth and FE.
Collapse
|
43
|
Effects of the Ratio of Insoluble Fiber to Soluble Fiber in Gestation Diets on Sow Performance and Offspring Intestinal Development. Animals (Basel) 2019; 9:ani9070422. [PMID: 31284518 PMCID: PMC6680925 DOI: 10.3390/ani9070422] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Gestating sows fed a diet rich in dietary fiber show improved performance. Dietary fiber is composed of insoluble fiber and soluble fiber. The ratio of insoluble to soluble fiber may affect overall diet utilization and influence sow performance. Maternal nutrition significantly affects offspring intestinal development; therefore, we investigated the effects of the ratio of insoluble to soluble fiber in gestation diets on sow performance and offspring intestinal development. Our results suggested that, when the dietary fiber levels were the same in gestation diets, the ratio of insoluble to soluble fiber affected the development of intestinal morphology and enzymatic activity related to nutrient digestion and absorption, and consequently affected the average daily gain during lactation and average piglet body weight at weaning. When the ratio of insoluble to soluble fiber was 3.89 in the gestation diet, higher average piglet body weight and litter weight at weaning were observed. These results may provide guidance for the application of fiber in pig production. Abstract To investigate the effects of the ratio of insoluble fiber to soluble fiber (ISF:SF) on sow performance and piglet intestinal development, we randomly assigned 64 gilts to four treatments comprising diets with the same level of dietary fiber, but different ISF:SF values of 3.89 (T1), 5.59 (T2), 9.12 (T3), and 12.81 (T4). At birth and weaning, six piglets per treatment at each phase were slaughtered for sampling. As ISF:SF increased, the mean piglet body weight (BW) at weaning and piglet BW gain, which were all significantly higher in T1 and T2 compared with T3 and T4 (p < 0.05), showed a linear decrease (p < 0.05); the crypt depth of the jejunum in weaned piglets linearly increased, whereas the duodenal weight, jejunal villus height, and villus height/crypt depth in newborn piglets and enzymatic activity of lactase, sucrase, and maltase linearly decreased (p < 0.05). No differences were observed in the yield and composition of milk (p > 0.05). Moreover, when the ISF:SF was 3.89 in gestation diets, higher piglet BW at weaning occurred, possibly because the ISF:SF affected development and enzymatic activity in the small intestine—effects related to digestion and absorption of nutrients—and consequently enhanced piglet BW gain.
Collapse
|
44
|
Jiang X, Chen B, Gu D, Rong Z, Su X, Yue M, Zhou H, Gu W. Gut Microbial Compositions in Four Age Groups of Tibetan Minipigs. Pol J Microbiol 2019; 67:383-388. [PMID: 30451456 PMCID: PMC7256833 DOI: 10.21307/pjm-2018-038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2018] [Indexed: 11/11/2022] Open
Abstract
In this study, the gut microbiota was characterized in four age strata of Tibetan minipigs. Results indicated that the fecal bacteria of 7-, 28-, 56-, and 180-day-old minipigs did not significantly differ in terms of phylogenetic diversity (i.e., PD whole tree) or the Shannon index (both, p > 0.05). Findings of a principal coordinate analysis demonstrated that fecal bacteria of 180-day-old minipigs were discernable from those of the other three age groups. From ages seven to 56 days, the abundance of Bacteroidetes or Firmicutes appeared to vary. Regarding genera, the populations of Bacteroides and Akkermansia decreased with increasing age.
Collapse
Affiliation(s)
- Xia Jiang
- Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Bangzhu Chen
- Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Dongshu Gu
- Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Zuhua Rong
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohua Su
- Laboratory Animal Center, Guangdong Medical University, Dongguan, China
| | - Min Yue
- Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Hongwei Zhou
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weiwang Gu
- Laboratory Animal Center, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
Xia GH, You C, Gao XX, Zeng XL, Zhu JJ, Xu KY, Tan CH, Xu RT, Wu QH, Zhou HW, He Y, Yin J. Stroke Dysbiosis Index (SDI) in Gut Microbiome Are Associated With Brain Injury and Prognosis of Stroke. Front Neurol 2019; 10:397. [PMID: 31068891 PMCID: PMC6491752 DOI: 10.3389/fneur.2019.00397] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/01/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Significant dysbiosis occurs in the gut microbiome of stroke patients. Condensing these broad, complex changes into one index would greatly facilitate the clinical usage of gut microbiome data. Here, we formulated a gut microbiota index in patients with acute ischemic stroke based on their gut microbiota dysbiosis patterns and tested whether the index was correlated with brain injury and early outcome. Methods: A total of 104 patients with acute ischemic stroke and 90 healthy individuals were recruited, and their gut microbiotas were compared and to model a Stroke Dysbiosis Index (SDI), which representing stroke-associated dysbiosis patterns overall. Another 83 patients and 70 controls were recruited for validation. The association of SDI with stroke severity (National Institutes of Health Stroke Scale [NIHSS] score) and outcome (modified Rankin scale [mRS] score: favorable, 0–2; unfavorable, >2) at discharge was also assessed. A middle cerebral artery occlusion (MCAO) model was used in human flora-associated (HFA) animals to explore the causal relationship between gut dysbiosis and stroke outcome. Results: Eighteen genera were significantly different between stroke patients and healthy individuals. The SDI formula was devised based on these microbiome differences; SDI was significantly higher in stroke patients than in healthy controls. SDI alone discriminated stroke patients from controls with AUCs of 74.9% in the training cohort and 84.3% in the validation cohort. SDI was significantly and positively correlated with NIHSS score on admission and mRS score at discharge. Logistic regression analysis showed that SDI was an independent predictor of severe stroke (NIHSS ≥8) and early unfavorable outcome (mRS >2). Mice receiving fecal transplants from high-SDI patients developed severe brain injury with elevated IL-17+ γδ T cells in gut compared to mice receiving transplants from low-SDI patients (all P < 0.05). Conclusions: We developed an index to measure gut microbiota dysbiosis in stroke patients; this index was significantly correlated with patients' outcome and was causally related to outcome in a mouse model of stroke. Our model facilitates the potential clinical application of gut microbiota data in stroke and adds quantitative evidence linking the gut microbiota to stroke.
Collapse
Affiliation(s)
- Geng-Hong Xia
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chao You
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurology, The First People's Hospital of Zunyi, Zunyi, China
| | - Xu-Xuan Gao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiu-Li Zeng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia-Jia Zhu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai-Yu Xu
- State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chu-Hong Tan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruo-Ting Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi-Heng Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong-Wei Zhou
- State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yan He
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jia Yin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
46
|
Diao H, Jiao AR, Yu B, Mao XB, Chen DW. Gastric infusion of short-chain fatty acids can improve intestinal barrier function in weaned piglets. GENES AND NUTRITION 2019; 14:4. [PMID: 30761185 PMCID: PMC6359775 DOI: 10.1186/s12263-019-0626-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/08/2019] [Indexed: 12/21/2022]
Abstract
Background The present study was conducted to investigate the effects of gastric infusion of short-chain fatty acids (SCFA) on gut barrier function in a pig model. In this study, 21 DLY barrows with an average initial body weight of (8.31 ± 0.72) kg were randomly allotted into three treatments: (1) control, (2) infusing low SCFA, S1, (3) infusing high SCFA, S2. The experimental period lasted for 7 days. Results Gastric infusion of SCFA increased the concentrations of SCFA in serum and digesta, and enhanced the mRNA and protein abundances of SCFA receptors in pig intestine (P < 0.05). Moreover, gastric infusion of SCFA led to alteration of intestinal morphology, elevation of intestinal development-related gene abundances, and decrease of apoptotic cell percentage, as well as reduction of pro-apoptosis gene and protein abundances (P < 0.05). Besides, the jejunal SLC7A1 and ileal DMT1 mRNA abundances in the SCFA infusion groups were higher than those in the control group (P < 0.05). Additionally, gastric infusion of SCFA increased the mRNA abundances of Occludin and Claudin-1 in the duodenum and ileum, enhanced Lactobacillus spp counts in the ileal digesta, decreased the mRNA and protein abundances of IL-1β in the colon, and reduced Escherichia coli count in the ileal digesta (P < 0.05). Conclusions These data indicated that gastric infusion of SCFA, especially high SCFA concentration, may be beneficial to gut development of piglets via improving gut morphology, decreasing apoptotic cell percentage, and maintaining intestinal barrier function. Electronic supplementary material The online version of this article (10.1186/s12263-019-0626-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- H Diao
- 1Institute of Animal Nutrition, Sichuan Agricultural University, Xinkang Road 46#, Ya'an, 625014 Sichuan Province People's Republic of China.,Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Academy of Animal Science, Chengdu, Sichuan Province People's Republic of China
| | - A R Jiao
- 1Institute of Animal Nutrition, Sichuan Agricultural University, Xinkang Road 46#, Ya'an, 625014 Sichuan Province People's Republic of China
| | - B Yu
- 1Institute of Animal Nutrition, Sichuan Agricultural University, Xinkang Road 46#, Ya'an, 625014 Sichuan Province People's Republic of China
| | - X B Mao
- 1Institute of Animal Nutrition, Sichuan Agricultural University, Xinkang Road 46#, Ya'an, 625014 Sichuan Province People's Republic of China
| | - D W Chen
- 1Institute of Animal Nutrition, Sichuan Agricultural University, Xinkang Road 46#, Ya'an, 625014 Sichuan Province People's Republic of China
| |
Collapse
|
47
|
Yang H, Xiang Y, Robinson K, Wang J, Zhang G, Zhao J, Xiao Y. Gut Microbiota Is a Major Contributor to Adiposity in Pigs. Front Microbiol 2018; 9:3045. [PMID: 30619136 PMCID: PMC6296290 DOI: 10.3389/fmicb.2018.03045] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022] Open
Abstract
Different breeds of pigs vary greatly in their propensity for adiposity. Gut microbiota is known to play an important role in modulating host physiology including fat metabolism. However, the relative contribution of gut microbiota to lipogenic characteristics of pigs remains elusive. In this study, we transplanted fecal microbiota of adult Jinhua and Landrace pigs, two breeds of pigs with distinct lipogenic phenotypes, to antibiotic-treated mice. Our results indicated that, 4 weeks after fecal transplantation, the mice receiving Jinhua pigs' "obese" microbiota (JM) exhibited a different intestinal bacterial community structure from those receiving Landrace pigs' "lean" microbiota (LM). Notably, an elevated ratio of Firmicutes to Bacteroidetes and a significant diminishment of Akkermansia were observed in JM mice relative to LM mice. Importantly, mouse recipients resembled their respective porcine donors in many of the lipogenic characteristics. Similar to Jinhua pig donors, JM mice had elevated lipid and triglyceride levels and the lipoprotein lipase activity in the liver. Enhanced expression of multiple key lipogenic genes and reduced angiopoietin-like 4 (Angptl4) mRNA expression were also observed in JM mice, relative to those in LM mice. These results collectively suggested that gut microbiota of Jinhua pigs is more capable of enhancing lipogenesis than that of Landrace pigs. Transferability of the lipogenic phenotype across species further indicated that gut microbiota plays a major role in contributing to adiposity in pigs. Manipulation of intestinal microbiota will, therefore, have a profound impact on altering host metabolism and adipogenesis, with an important implication in the treatment of human overweight and obesity.
Collapse
Affiliation(s)
- Hua Yang
- Institute of Quality and Standards for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yun Xiang
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Kelsy Robinson
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Junjun Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Yingping Xiao
- Institute of Quality and Standards for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
48
|
Carbonero F, Mayta-Apaza AC, Yu JZ, Lindeblad M, Lyubimov A, Neri F, Szilagyi E, Bartholomew A. A comparative analysis of gut microbiota disturbances in the Gottingen minipig and rhesus macaque models of acute radiation syndrome following bioequivalent radiation exposures. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:419-426. [PMID: 30343431 DOI: 10.1007/s00411-018-0759-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/13/2018] [Indexed: 06/08/2023]
Abstract
In rodent studies, the gut microbiota has been implicated in facilitating both radioresistance, by protecting the epithelium from apoptotic responses and radiosensitivity, inducing endothelial apoptotic responses. Despite the observation that large animal models, such as the Chinese Rhesus macaque and the Gottingen Minipig, demonstrate similarity to human physiologic responses to radiation, little is known about radiation-induced changes of the gut microbiome in these models. To compare the two models, we used bioequivalent radiation doses which resulted in an LD50 for Gottingen Minipigs and Chinese Rhesus macaques, 1.9 Gy and 6.8 Gy, respectively. Fecal samples taken prior and 3 days post-radiation were used for 16S rRNA gene sequence amplicon high throughput sequencing (Illumina MiSeq). Baseline gut microbiota profiles were dissimilar between minipigs and rhesus macaques. Irradiation profoundly impacted gut microbiota profiles in both animals. Significant increases of intracellular symbionts were common to both models and to reported changes in rodents suggesting universality of these findings post-radiation. Remarkably, opposite dynamics were observed for the main phyla, with increase of Firmicutes and decrease of Bacteroidetes and Proteobacteria in minipigs but with enrichment of Bacteroidetes in rhesus macaques. Minipig changes in magnitude and in variety of species affected were more extensive than those observed in rhesus macaques. This pilot study provides an important first step in comparing the radiosensitive pig model to the comparatively more radioresistant macaque model, for the identification of microbial elements which may influence radiosensitivity.
Collapse
Affiliation(s)
- Franck Carbonero
- Department of Food Science, University of Arkansas, 2650 North Young Avenue, Fayetteville, AR, 72704, USA.
| | - Alba C Mayta-Apaza
- Department of Food Science, University of Arkansas, 2650 North Young Avenue, Fayetteville, AR, 72704, USA
| | - Jiang-Zhou Yu
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Matt Lindeblad
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Alex Lyubimov
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Flavia Neri
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Erzsebet Szilagyi
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Amelia Bartholomew
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| |
Collapse
|
49
|
Hu J, Chen L, Tang Y, Xie C, Xu B, Shi M, Zheng W, Zhou S, Wang X, Liu L, Yan Y, Yang T, Niu Y, Hou Q, Xu X, Yan X. Standardized Preparation for Fecal Microbiota Transplantation in Pigs. Front Microbiol 2018; 9:1328. [PMID: 29971061 PMCID: PMC6018536 DOI: 10.3389/fmicb.2018.01328] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/30/2018] [Indexed: 12/26/2022] Open
Abstract
The intestine of pigs harbors a mass of microorganisms which are essential for intestinal homeostasis and host health. Intestinal microbial disorders induce enteric inflammation and metabolic dysfunction, thereby causing adverse effects on the growth and health of pigs. In the human medicine, fecal microbiota transplantation (FMT), which engrafts the fecal microbiota from a healthy donor into a patient recipient, has shown efficacy in intestinal microbiota restoration. In addition, it has been used widely in therapy for human gastrointestinal diseases, including Clostridium difficile infection, inflammatory bowel diseases, and irritable bowel syndrome. Given that pigs share many similarities with humans, in terms of anatomy, nutritional physiology, and intestinal microbial compositions, FMT may also be used to restore the normal intestinal microbiota of pigs. However, feasible procedures for performing FMT in pigs remains unclear. Here, we summarize a standardized preparation for FMT in pigs by combining the standard methodology for human FMT with pig production. The key issues include the donor selection, fecal material preparation, fecal material transfer, stool bank establishment, and the safety for porcine FMT. Optimal donors should be selected to ensure the efficacy of porcine FMT and reduce the risks of transmitting infectious diseases to recipients during FMT. Preparing for fresh fecal material is highly recommended. Alternatively, frozen fecal suspension can also be prepared as an optimal choice because it is convenient and has similar efficacy. Oral administration of fecal suspension could be an optimal method for porcine fecal material transfer. Furthermore, the dilution ratio of fecal materials and the frequency of fecal material transfer could be adjusted according to practical situations in the pig industry. To meet the potential large-scale requirement in the pig industry, it is important to establish a stool bank to make porcine FMT readily available. Future studies should also focus on providing more robust safety data on FMT to improve the safety and tolerability of the recipient pigs. This standardized preparation for porcine FMT can facilitate the development of microbial targeted therapies and improve the intestinal health of pigs.
Collapse
Affiliation(s)
- Jun Hu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Lingli Chen
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Yimei Tang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Chunlin Xie
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Baoyang Xu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Min Shi
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Wenyong Zheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Shuyi Zhou
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Xinkai Wang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Liu Liu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Yiqin Yan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Tao Yang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Yaorong Niu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Qiliang Hou
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Xiaofan Xu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Xianghua Yan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| |
Collapse
|
50
|
McCormack UM, Curião T, Wilkinson T, Metzler-Zebeli BU, Reyer H, Ryan T, Calderon-Diaz JA, Crispie F, Cotter PD, Creevey CJ, Gardiner GE, Lawlor PG. Fecal Microbiota Transplantation in Gestating Sows and Neonatal Offspring Alters Lifetime Intestinal Microbiota and Growth in Offspring. mSystems 2018; 3:e00134-17. [PMID: 29577087 PMCID: PMC5864416 DOI: 10.1128/msystems.00134-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/16/2018] [Indexed: 12/29/2022] Open
Abstract
Previous studies suggest a link between intestinal microbiota and porcine feed efficiency (FE). Therefore, we investigated whether fecal microbiota transplantation (FMT) in sows and/or neonatal offspring, using inocula derived from highly feed-efficient pigs, could improve offspring FE. Pregnant sows were assigned to control or FMT treatments and the subsequent offspring to control treatment, FMT once (at birth), or FMT four times (between birth and weaning). FMT altered sow fecal and colostrum microbiota compositions and resulted in lighter offspring body weight at 70 and 155 days of age when administered to sows and/or offspring. This was accompanied by FMT-associated changes within the offspring's intestinal microbiota, mostly in the ileum. These included transiently higher fecal bacterial diversity and load and numerous compositional differences at the phylum and genus levels (e.g., Spirochaetes and Bacteroidetes at high relative abundances and mostly members of Clostridia, respectively), as well as differences in the abundances of predicted bacterial pathways. In addition, intestinal morphology was negatively impacted, duodenal gene expression altered, and serum protein and cholesterol concentrations reduced due to FMT in sows and/or offspring. Taken together, the results suggest poorer absorptive capacity and intestinal health, most likely explaining the reduced body weight. An additive effect of FMT in sows and offspring also occurred for some parameters. Although these findings have negative implications for the practical use of the FMT regime used here for improving FE in pigs, they nonetheless demonstrate the enormous impact of early-life intestinal microbiota on the host phenotype. IMPORTANCE Here, for the first time, we investigate FMT as a novel strategy to modulate the porcine intestinal microbiota in an attempt to improve FE in pigs. However, reprogramming the maternal and/or offspring microbiome by using fecal transplants derived from highly feed-efficient pigs did not recapitulate the highly efficient phenotype in the offspring and, in fact, had detrimental effects on lifetime growth. Although these findings may not be wholly attributable to microbiota transplantation, as antibiotic and purgative were also part of the regime in sows, similar effects were also seen in offspring, in which these interventions were not used. Nonetheless, additional work is needed to unravel the effects of each component of the FMT regime and to provide additional mechanistic insights. This may lead to the development of an FMT procedure with practical applications for the improvement of FE in pigs, which could in turn improve the profitability of pig production.
Collapse
Affiliation(s)
- Ursula M. McCormack
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork, Ireland
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Tânia Curião
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Toby Wilkinson
- Animal and Microbial Sciences, Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Barbara U. Metzler-Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, University Clinic for Swine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Henry Reyer
- Leibeniz institute (FBN), Dummerstorf, Germany
| | - Tomas Ryan
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Julia A. Calderon-Diaz
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork, Ireland
- Department of Animal Behaviour and Welfare, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Magdalenka, Poland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
- APC Microbiome Institute, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
- APC Microbiome Institute, Cork, Ireland
| | - Christopher J. Creevey
- Animal and Microbial Sciences, Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Gillian E. Gardiner
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Peadar G. Lawlor
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork, Ireland
| |
Collapse
|