1
|
Liu M, Fan G, Liu H. Integrated bioinformatics and network pharmacology identifying the mechanisms and molecular targets of Guipi Decoction for treatment of comorbidity with depression and gastrointestinal disorders. Metab Brain Dis 2024; 39:183-197. [PMID: 37847347 DOI: 10.1007/s11011-023-01308-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Guipi decoction (GPD) not only improves gastrointestinal (GI) function, but also depressive mood. The bioinformatics study aimed to reveal potential crosstalk genes and related pathways between depression and GI disorders. A network pharmacology approach was used to explore the molecular mechanisms and potential targets of GPD for the simultaneous treatment of depression comorbid GI disorders. METHODS Differentially expressed genes (DEGs) of major depressive disorder (MDD) were identified based on GSE98793 and GSE19738, and GI disorders-related genes were screened from the GeneCards database. Overlapping genes between MDD and GI disorders were obtained to identify potential crosstalk genes. Protein-protein interaction (PPI) network was constructed to screen for hub genes, signature genes were identified by LASSO regression analysis, and single sample gene set enrichment analysis (ssGSEA) was performed to analyze immune cell infiltration. In addition, based on the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, we screened the active ingredients and targets of GPD and identified the intersection targets of GPD with MDD and GI disorder-related genes, respectively. A "component-target" network was constructed using Cytoscape, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. RESULTS The MDD-corrected dataset contained 2619 DEGs, and a total of 109 crosstalk genes were obtained. 14 hub genes were screened, namely SOX2, CRP, ACE, LEP, SHH, CDH2, CD34, TNF, EGF, BDNF, FN1, IL10, PPARG, and KIT. These genes were identified by LASSO regression analysis for 3 signature genes, including TNF, EGF, and IL10. Gamma.delta.T.cell was significantly positively correlated with all three signature genes, while Central.memory.CD4.T.cell and Central.memory.CD8.T.cell were significantly negatively correlated with EGF and TNF. GPD contained 134 active ingredients and 248 targets, with 41 and 87 relevant targets for the treatment of depression and GI disorders, respectively. EGF, PPARG, IL10 and CRP overlap with the hub genes of the disease. CONCLUSION We found that GPD may regulate inflammatory and oxidative stress responses through EGF, PPARG, IL10 and CRP targets, and then be involved in the treatment of both depression and GI disorders.
Collapse
Affiliation(s)
- Menglin Liu
- Tianjin University of Chinese Medicine, Tianjin, China
| | - Genhao Fan
- Tianjin University of Chinese Medicine, Tianjin, China
| | - Huayi Liu
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China.
| |
Collapse
|
2
|
Shrihari S, May HC, Yu JJ, Papp SB, Chambers JP, Guentzel MN, Arulanandam BP. Thioredoxin-mediated alteration of protein content and cytotoxicity of Acinetobacter baumannii outer membrane vesicles. Exp Biol Med (Maywood) 2022; 247:282-288. [PMID: 34713732 PMCID: PMC8851531 DOI: 10.1177/15353702211052952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022] Open
Abstract
Acinetobacter baumannii is a Gram-negative bacterium responsible for many hospital-acquired infections including ventilator-associated pneumonia and sepsis. We have previously identified A. baumannii thioredoxin A protein (TrxA) as a virulence factor with a multitude of functions including reduction of protein disulfides. TrxA plays an important role in resistance to oxidative stress facilitating host immune evasion in part by alteration of type IV pili and cell surface hydrophobicity. Other virulence factors such as outer membrane vesicles (OMV) shed by bacteria have been shown to mediate bacterial intercellular communication and modulate host immune response. To investigate whether OMVs can be modulated by TrxA, we isolated OMVs from wild type (WT) and TrxA-deficient (ΔtrxA) A. baumannii clinical isolate Ci79 and carried out a functional and proteomic comparison. Despite attenuation of ΔtrxA in a mouse challenge model, pulmonary inoculation of ΔtrxA OMVs resulted in increased lung permeability compared to WT OMVs. Furthermore, ΔtrxA OMVs induced more J774 macrophage-like cell death than WT OMVs. This ΔtrxA OMV-mediated cell death was abrogated when cells were incubated with protease-K-treated OMVs suggesting OMV proteins were responsible for cytotoxicity. We therefore compared WT and mutant OMV proteins using proteomic analysis. We observed that up-regulated and unique ΔtrxA OMV proteins consisted of many membrane bound proteins involved in small molecule transport as well as proteolytic activity. Bacterial OmpA, metalloprotease, and fimbrial protein have been shown to enhance mammalian cell apoptosis through various mechanisms. Differential packaging of these proteins in ΔtrxA OMVs may contribute to the increased cytotoxicity observed in this study.
Collapse
Affiliation(s)
- Swathi Shrihari
- South Texas Center for Emerging Infectious Disease
and Department of Biology, University of Texas at San Antonio, San Antonio, TX
78249, USA
| | - Holly C May
- South Texas Center for Emerging Infectious Disease
and Department of Biology, University of Texas at San Antonio, San Antonio, TX
78249, USA
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Disease
and Department of Biology, University of Texas at San Antonio, San Antonio, TX
78249, USA
| | - Sara B Papp
- South Texas Center for Emerging Infectious Disease
and Department of Biology, University of Texas at San Antonio, San Antonio, TX
78249, USA
| | - James P Chambers
- South Texas Center for Emerging Infectious Disease
and Department of Biology, University of Texas at San Antonio, San Antonio, TX
78249, USA
| | - M Neal Guentzel
- South Texas Center for Emerging Infectious Disease
and Department of Biology, University of Texas at San Antonio, San Antonio, TX
78249, USA
| | - Bernard P Arulanandam
- South Texas Center for Emerging Infectious Disease
and Department of Biology, University of Texas at San Antonio, San Antonio, TX
78249, USA
| |
Collapse
|
3
|
Arenas J, Szabo Z, van der Wal J, Maas C, Riaz T, Tønjum T, Tommassen J. Serum proteases prevent bacterial biofilm formation: role of kallikrein and plasmin. Virulence 2021; 12:2902-2917. [PMID: 34903146 PMCID: PMC8677018 DOI: 10.1080/21505594.2021.2003115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Biofilm formation is a general strategy for bacterial pathogens to withstand host defense mechanisms. In this study, we found that serum proteases inhibit biofilm formation by Neisseria meningitidis, Neisseria gonorrhoeae, Haemophilus influenzae, and Bordetella pertussis. Confocal laser-scanning microscopy analysis revealed that these proteins reduce the biomass and alter the architecture of meningococcal biofilms. To understand the underlying mechanism, the serum was fractionated through size-exclusion chromatography and anion-exchange chromatography, and the composition of the fractions that retained anti-biofilm activity against N. meningitidis was analyzed by intensity-based absolute quantification mass spectrometry. Among the identified serum proteins, plasma kallikrein (PKLK), FXIIa, and plasmin were found to cleave neisserial heparin-binding antigen and the α-peptide of IgA protease on the meningococcal cell surface, resulting in the release of positively charged polypeptides implicated in biofilm formation by binding extracellular DNA. Further experiments also revealed that plasmin and PKLK inhibited biofilm formation of B. pertussis by cleaving filamentous hemagglutinin. We conclude that the proteolytic activity of serum proteases toward bacterial adhesins involved in biofilm formation could constitute a defense mechanism for the clearance of pathogens.
Collapse
Affiliation(s)
- Jesús Arenas
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands.,Unit of Microbiology and Immunology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| | - Zalan Szabo
- Research and Development Department, U-Protein Express BV, Utrecht, The Netherlands
| | - Jelle van der Wal
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | - Coen Maas
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tahira Riaz
- Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, Oslo, Norway
| | - Jan Tommassen
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Facchetti A, Wheeler JX, Vipond C, Whiting G, Lavender H, Feavers IM, Maiden MCJ, Maharjan S. Factor H binding protein (fHbp)-mediated differential complement resistance of a serogroup C Neisseria meningitidis isolate from cerebrospinal fluid of a patient with invasive meningococcal disease. Access Microbiol 2021; 3:000255. [PMID: 34712903 PMCID: PMC8549389 DOI: 10.1099/acmi.0.000255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/03/2021] [Indexed: 11/01/2022] Open
Abstract
During an outbreak of invasive meningococcal disease (IMD) at the University of Southampton, UK, in 1997, two Neisseria meningitidis serogroup C isolates were retrieved from a student ('Case'), who died of IMD, and a close contact ('Carrier') who, after mouth-to-mouth resuscitation on the deceased, did not contract the disease. Genomic comparison of the isolates demonstrated extensive nucleotide sequence identity, with differences identified in eight genes. Here, comparative proteomics was used to measure differential protein expression between the isolates and investigate whether the differences contributed to the clinical outcomes. A total of six proteins were differentially expressed: four proteins (methylcitrate synthase, PrpC; hypothetical integral membrane protein, Imp; fructose-1,6-bisphosphate aldolase, Fba; aldehyde dehydrogenase A, AldA) were upregulated in the Case isolate, while one protein (Type IV pilus-associated protein, PilC2) was downregulated. Peptides for factor H binding protein (fHbp), a major virulence factor and antigenic protein, were only detected in the Case, with a single base deletion (ΔT366) in the Carrier fHbp causing lack of its expression. Expression of fHbp resulted in an increased resistance of the Case isolate to complement-mediated killing in serum. Complementation of fHbp expression in the Carrier increased its serum resistance by approximately 8-fold. Moreover, a higher serum bactericidal antibody titre was seen for the Case isolate when using sera from mice immunized with Bexsero (GlaxoSmithKline), a vaccine containing fHbp as an antigenic component. This study highlights the role of fHbp in the differential complement resistance of the Case and the Carrier isolates. Expression of fHbp in the Case resulted in its increased survival in serum, possibly leading to active proliferation of the bacteria in blood and death of the student through IMD. Moreover, enhanced killing of the Case isolate by sera raised against an fHbp-containing vaccine, Bexsero, underlines the role and importance of fHbp in infection and immunity.
Collapse
Affiliation(s)
- Alessandra Facchetti
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Jun X Wheeler
- Division of Analytical Biological Sciences, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Caroline Vipond
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Gail Whiting
- Division of Analytical Biological Sciences, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Hayley Lavender
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Ian M Feavers
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Martin C J Maiden
- Department of Zoology, Peter Medawar Building, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
| | - Sunil Maharjan
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| |
Collapse
|
5
|
Zachary M, Bauer S, Klepsch M, Wagler K, Hüttel B, Rudel T, Beier D. Identification and initial characterization of a new pair of sibling sRNAs of Neisseria gonorrhoeae involved in type IV pilus biogenesis. MICROBIOLOGY-SGM 2021; 167. [PMID: 34515630 DOI: 10.1099/mic.0.001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Non-coding regulatory RNAs mediate post-transcriptional gene expression control by a variety of mechanisms relying mostly on base-pairing interactions with a target mRNA. Though a plethora of putative non-coding regulatory RNAs have been identified by global transcriptome analysis, knowledge about riboregulation in the pathogenic Neisseriae is still limited. Here we report the initial characterization of a pair of sRNAs of N. gonorrhoeae, TfpR1 and TfpR2, which exhibit a similar secondary structure and identical single-stranded seed regions, and therefore might be considered as sibling sRNAs. By combination of in silico target prediction and sRNA pulse expression followed by differential RNA sequencing we identified target genes of TfpR1 which are involved in type IV pilus biogenesis and DNA damage repair. We provide evidence that members of the TfpR1 regulon can also be targeted by the sibling TfpR2.
Collapse
Affiliation(s)
- Marie Zachary
- Chair of Microbiology, Biocenter, University of Würzburg, Germany
| | - Susanne Bauer
- Chair of Microbiology, Biocenter, University of Würzburg, Germany
| | | | - Katharina Wagler
- Chair of Microbiology, Biocenter, University of Würzburg, Germany
| | | | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Germany
| | - Dagmar Beier
- Chair of Microbiology, Biocenter, University of Würzburg, Germany
| |
Collapse
|
6
|
Chitin Degradation Machinery and Secondary Metabolite Profiles in the Marine Bacterium Pseudoalteromonas rubra S4059. Mar Drugs 2021; 19:md19020108. [PMID: 33673118 PMCID: PMC7917724 DOI: 10.3390/md19020108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Genome mining of pigmented Pseudoalteromonas has revealed a large potential for the production of bioactive compounds and hydrolytic enzymes. The purpose of the present study was to explore this bioactivity potential in a potent antibiotic and enzyme producer, Pseudoalteromonas rubra strain S4059. Proteomic analyses (data are available via ProteomeXchange with identifier PXD023249) indicated that a highly efficient chitin degradation machinery was present in the red-pigmented P. rubra S4059 when grown on chitin. Four GH18 chitinases and two GH20 hexosaminidases were significantly upregulated under these conditions. GH19 chitinases, which are not common in bacteria, are consistently found in pigmented Pseudoalteromonas, and in S4059, GH19 was only detected when the bacterium was grown on chitin. To explore the possible role of GH19 in pigmented Pseudoalteromonas, we developed a protocol for genetic manipulation of S4059 and deleted the GH19 chitinase, and compared phenotypes of the mutant and wild type. However, none of the chitin degrading ability, secondary metabolite profile, or biofilm-forming capacity was affected by GH19 deletion. In conclusion, we developed a genetic manipulation protocol that can be used to unravel the bioactive potential of pigmented pseudoalteromonads. An efficient chitinolytic enzyme cocktail was identified in S4059, suggesting that this strain could be a candidate with industrial potential.
Collapse
|
7
|
Bernstein H, Bernstein C, Michod RE. Sex in microbial pathogens. INFECTION GENETICS AND EVOLUTION 2018; 57:8-25. [DOI: 10.1016/j.meegid.2017.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
|