1
|
Bulavaitė A, Dapkūnas J, Reškevičiūtė R, Dalgėdienė I, Valančauskas L, Baranauskienė L, Plečkaitytė M. Gardnerella fibrinogen-binding protein as a candidate adherence factor. Front Cell Infect Microbiol 2025; 15:1556232. [PMID: 40406528 PMCID: PMC12095359 DOI: 10.3389/fcimb.2025.1556232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/18/2025] [Indexed: 05/26/2025] Open
Abstract
Bacterial vaginosis (BV), a form of vaginal dysbiosis, is associated with numerous adverse reproductive and obstetric outcomes. Gardnerella spp. are among the key bacteria identified in most BV cases. The formation of a polymicrobial Gardnerella-dominated biofilm on the vaginal epithelium is a characteristic diagnostic marker of BV. Gardnerella colonization and biofilm formation indicate a significant adhesion potential, the determinants of which remain unexplored. In this initial approach to identify Gardnerella adhesins, we analyzed the Cna protein located on the G. vaginalis ATCC 14018 cell surface as determined previously. Structure modeling of Cna (designated Grd Cna) revealed that the protein contains N2 and N3 domains with an immunoglobulin (IgG)-like fold, which shows structural homology to the corresponding domains in SdrD and UafA proteins of the microbial surface component recognizing adhesive matrix molecules (MSCRAMMs) family. A single B domain shares structural similarity with the corresponding domain of Sdr proteins. The R region is rich in PKD repeats, while the C-terminal contains a non-canonical LVNTG cell wall sorting motif. The cna gene was predominantly detected in G. vaginalis isolates but was absent in other commonly identified Gardnerella species isolates. The recombinant Grd Cna protein binds dose-dependently to human fibrinogen but does not interact with fibronectin or collagen types I, III, or IV. Cna-positive G. vaginalis cells adhered to immobilized fibrinogen; however, recombinant Cna did not inhibit this binding, suggesting that Cna may not be a major adhesin mediating G. vaginalis adherence to this ECM component.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Milda Plečkaitytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
2
|
Xu Z, Li Y, Xu A, Soteyome T, Yuan L, Ma Q, Seneviratne G, Li X, Liu J. Cell-wall-anchored proteins affect invasive host colonization and biofilm formation in Staphylococcus aureus. Microbiol Res 2024; 285:127782. [PMID: 38833832 DOI: 10.1016/j.micres.2024.127782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
As a major human and animal pathogen, Staphylococcus aureus can attach to medical implants (abiotic surface) or host tissues (biotic surface), and further establish robust biofilms which enhances resistance and persistence to host immune system and antibiotics. Cell-wall-anchored proteins (CWAPs) covalently link to peptidoglycan, and largely facilitate the colonization of S. aureus on various surfaces (including adhesion and biofilm formation) and invasion into host cells (including adhesion, immune evasion, iron acquisition and biofilm formation). During biofilm formation, CWAPs function in adhesion, aggregation, collagen-like fiber network formation, and consortia formation. In this review, we firstly focus on the structural features of CWAPs, including their intracellular function and interactions with host cells, as well as the functions and ligand binding of CWAPs in different stages of S. aureus biofilm formation. Then, the roles of CWAPs in different biofilm processes with regards in development of therapeutic approaches are clarified, followed by the association between CWAPs genes and clonal lineages. By touching upon these aspects, we hope to provide comprehensive knowledge and clearer understanding on the CWAPs of S. aureus and their roles in biofilm formation, which may further aid in prevention and treatment infection and vaccine development.
Collapse
Affiliation(s)
- Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| | - Yaqin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Aijuan Xu
- Guangzhou Hybribio Medical Laboratory, Guangzhou 510730, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Qin Ma
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture /Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Gamini Seneviratne
- National Institute of Fundamental Studies, Hantana road, Kandy, Sri Lanka
| | - Xuejie Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| | - Junyan Liu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China.
| |
Collapse
|
3
|
Houtak G, Bouras G, Nepal R, Shaghayegh G, Cooksley C, Psaltis AJ, Wormald PJ, Vreugde S. The intra-host evolutionary landscape and pathoadaptation of persistent Staphylococcus aureus in chronic rhinosinusitis. Microb Genom 2023; 9:001128. [PMID: 38010322 PMCID: PMC10711304 DOI: 10.1099/mgen.0.001128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a common chronic sinonasal mucosal inflammation associated with Staphylococcus aureus biofilm and relapsing infections. This study aimed to determine rates of S. aureus persistence and pathoadaptation in CRS patients by investigating the genomic relatedness and antibiotic resistance/tolerance in longitudinally collected S. aureus clinical isolates. A total of 68 S. aureus paired isolates (34 pairs) were sourced from 34 CRS patients at least 6 months apart. Isolates were grown into 48 h biofilms and tested for tolerance to antibiotics. A hybrid sequencing strategy was used to obtain high-quality reference-grade assemblies of all isolates. Single nucleotide variants (SNV) divergence in the core genome and sequence type clustering were used to analyse the relatedness of the isolate pairs. Single nucleotide and structural genome variations, plasmid similarity, and plasmid copy numbers between pairs were examined. Our analysis revealed that 41 % (14/34 pairs) of S. aureus isolates were persistent, while 59 % (20/34 pairs) were non-persistent. Persistent isolates showed episode-specific mutational changes over time with a bias towards events in genes involved in adhesion to the host and mobile genetic elements such as plasmids, prophages, and insertion sequences. Furthermore, a significant increase in the copy number of conserved plasmids of persistent strains was observed. This was accompanied by a significant increase in biofilm tolerance against all tested antibiotics, which was linked to a significant increase in biofilm biomass over time, indicating a potential biofilm pathoadaptive process in persistent isolates. In conclusion, our study provides important insights into the mutational changes during S. aureus persistence in CRS patients highlighting potential pathoadaptive mechanisms in S. aureus persistent isolates culminating in increased biofilm biomass.
Collapse
Affiliation(s)
- Ghais Houtak
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - Roshan Nepal
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - Gohar Shaghayegh
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - Clare Cooksley
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - Alkis James Psaltis
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - Peter-John Wormald
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - Sarah Vreugde
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| |
Collapse
|
4
|
Bastakoti S, Ajayi C, Julin K, Johannessen M, Hanssen AM. Exploring differentially expressed genes of Staphylococcus aureus exposed to human tonsillar cells using RNA sequencing. BMC Microbiol 2023; 23:185. [PMID: 37438716 PMCID: PMC10337072 DOI: 10.1186/s12866-023-02919-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND The nose and the throat are the most predominant colonizing sites of Staphylococcus aureus, and colonization is a risk factor for infection. Nasal colonization is well described; however, we have limited knowledge about S. aureus throat colonization. The main objective of this study was to explore differentially expressed genes (DEGs) in S. aureus throat isolate TR145 exposed to human tonsil epithelial cells (HTEpiC) by using RNA sequencing (RNA-seq) and pathway analysis. DEGs in S. aureus at 1 or 3 hours (h) interaction with its host were explored. RESULTS S. aureus was co-cultured in absence and presence of tonsillar cells at 1 or 3 h. Over the 3 h time frame, the bacteria multiplied, but still caused only minor cytotoxicity. Upon exposure to tonsillar cell line, S. aureus changed its transcriptomic profile. A total of 508 DEGs were identified including unique (1 h, 160 DEGs and 3 h, 78 DEGs) and commonly shared genes (1 and 3 h, 270 DEGs). Among the DEGs, were genes encoding proteins involved in adhesion and immune evasion, as well as iron acquisition and transport. Reverse transcription qPCR was done on selected genes, and the results correlated with the RNA-seq data. CONCLUSION We have shown the suitability of using HTEpiC as an in vitro model for investigating key determinants in S. aureus during co-incubation with host cells. Several DEGs were unique after 1 or 3 h exposure to host cells, while others were commonly expressed at both time points. As their expression is induced upon meeting with the host, they might be explored further for future targets for intervention to prevent either colonization or infection in the throat.
Collapse
Affiliation(s)
- Srijana Bastakoti
- Department of Medical Biology, Host-Microbe Interaction (HMI) research group, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Clement Ajayi
- Department of Medical Biology, Host-Microbe Interaction (HMI) research group, UiT - The Arctic University of Norway, Tromsø, Norway
- Center for Research and Education, University Hospital of North Norway (UNN), Tromsø, Norway
| | - Kjersti Julin
- Department of Medical Biology, Host-Microbe Interaction (HMI) research group, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Mona Johannessen
- Department of Medical Biology, Host-Microbe Interaction (HMI) research group, UiT - The Arctic University of Norway, Tromsø, Norway
- Center for Research and Education, University Hospital of North Norway (UNN), Tromsø, Norway
| | - Anne-Merethe Hanssen
- Department of Medical Biology, Host-Microbe Interaction (HMI) research group, UiT - The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
5
|
Sun L, Zhuang H, Di L, Ling X, Yin Y, Wang Z, Chen M, Jiang S, Chen Y, Zhu F, Wang H, Ji S, Sun L, Wu D, Yu Y, Chen Y. Transmission and microevolution of methicillin-resistant Staphylococcus aureus ST88 strain among patients, healthcare workers, and household contacts at a trauma and orthopedic ward. Front Public Health 2023; 10:1053785. [PMID: 36699930 PMCID: PMC9868773 DOI: 10.3389/fpubh.2022.1053785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Background Surgical sites infections (SSIs) caused by Methicillin-resistant Staphylococcus aureus (MRSA) constitute a major clinical problem. Understanding the transmission mode of MRSA is important for its prevention and control. Aim We investigated the transmission mode of a MRSA outbreak in a trauma and orthopedic hospital ward. Methods Clinical data were collected from patients (n = 9) with MRSA infection in a trauma and orthopedic ward from January 1, 2015 to December 31, 2019. The wards (n = 18), patients (n = 48), medical staff (n = 23), and their households (n = 5) were screened for MRSA. The transmission mode of MRSA isolates was investigated using next-generation sequencing and phylogenetic analyses. The resistance genes, plasmids, and single-nucleotide variants of the isolates were analyzed to evaluate microevolution of MRSA isolates causing SSIs. The MRSA colonization-positive doctor was asked to suspend his medical activities to stop MRSA spread. Findings Nine MRSA infected patients were investigated, of which three patients were diagnosed with SSI and had prolonged hospitalization due to the persistent MRSA infection. After screening, MRSA isolates were not detected in environmental samples. The surgeon in charge of the patients with SSI caused by MRSA and his son were positive for MRSA colonization. The MRSA from the son was closely related to the isolates detected in MRSA-induced SSIs patients with 8-9 single-nucleotide variants, while ST88-MRSA isolates with three different spa types were detected in the surgeon's nasal cavity. Comparative genomic analysis showed that ST88-MRSA isolates acquired mutations in genes related to cell wall synthesis, colonization, metabolism, and virulence during their transmission. Suspending the medical activity of this surgeon interrupted the spread of MRSA infection in this ward. Conclusion Community-associated MRSA clones can invade hospitals and cause severe postoperative nosocomial infections. Further MRSA surveillance in the households of health workers may prevent the transition of MRSA from colonization to infection.
Collapse
Affiliation(s)
- Long Sun
- Department of Clinical Laboratory, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Zhejiang, China
| | - Hemu Zhuang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingfang Di
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Department of Clinical Laboratory, Tongxiang First People's Hospital, Tongxiang, Zhejiang, China
| | - Xia Ling
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Blood Center of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yiping Yin
- Hospital Infection Control Office, Hospital of Zhejiang People's Armed Police, Zhejiang, China
| | - Zhengan Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengzhen Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengnan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiyi Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feiteng Zhu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiping Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shujuan Ji
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dandan Wu
- Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Yunsong Yu ✉
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Yan Chen ✉
| |
Collapse
|
6
|
Castro BE, Rios R, Carvajal LP, Vargas ML, Cala MP, León L, Hanson B, Dinh AQ, Ortega-Recalde O, Seas C, Munita JM, Arias CA, Rincon S, Reyes J, Diaz L. Multiomics characterization of methicillin-resistant Staphylococcus aureus (MRSA) isolates with heterogeneous intermediate resistance to vancomycin (hVISA) in Latin America. J Antimicrob Chemother 2022; 78:122-132. [PMID: 36322484 PMCID: PMC10205466 DOI: 10.1093/jac/dkac363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) compromise the clinical efficacy of vancomycin. The hVISA isolates spontaneously produce vancomycin-intermediate Staphylococcus aureus (VISA) cells generated by diverse and intriguing mechanisms. OBJECTIVE To characterize the biomolecular profile of clinical hVISA applying genomic, transcriptomic and metabolomic approaches. METHODS 39 hVISA and 305 VSSA and their genomes were included. Core genome-based Bayesian phylogenetic reconstructions were built and alterations in predicted proteins in VISA/hVISA were interrogated. Linear discriminant analysis and a Genome-Wide Association Study were performed. Differentially expressed genes were identified in hVISA-VSSA by RNA-sequencing. The undirected profiles of metabolites were determined by liquid chromatography and hydrophilic interaction in six CC5-MRSA. RESULTS Genomic relatedness of MRSA associated to hVISA phenotype was not detected. The change Try38 → His in Atl (autolysin) was identified in 92% of the hVISA. We identified SNPs and k-mers associated to hVISA in 11 coding regions with predicted functions in virulence, transport systems, carbohydrate metabolism and tRNA synthesis. Further, capABCDE, sdrD, esaA, esaD, essA and ssaA genes were overexpressed in hVISA, while lacABCDEFG genes were downregulated. Additionally, valine, threonine, leucine tyrosine, FAD and NADH were more abundant in VSSA, while arginine, glycine and betaine were more abundant in hVISA. Finally, we observed altered metabolic pathways in hVISA, including purine and pyrimidine pathway, CoA biosynthesis, amino acid metabolism and aminoacyl tRNA biosynthesis. CONCLUSIONS Our results show that the mechanism of hVISA involves major changes in regulatory systems, expression of virulence factors and reduction in glycolysis via TCA cycle. This work contributes to the understanding of the development of this complex resistance mechanism in regional strains.
Collapse
Affiliation(s)
- Betsy E Castro
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Rafael Rios
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Lina P Carvajal
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Mónica L Vargas
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Mónica P Cala
- Metabolomics Core Facility-MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia
| | - Lizeth León
- Metabolomics Core Facility-MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia
| | - Blake Hanson
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - An Q Dinh
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA
- Center for Research in Genetics and Genomics—CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Oscar Ortega-Recalde
- Center for Research in Genetics and Genomics—CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Carlos Seas
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jose M Munita
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Genomics and Resistant Microbes (GeRM) Group. Clínica Alemana de Santiago, Universidad del Desarrollo School of Medicine, Santiago, Chile
| | - Cesar A Arias
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA
| | - Sandra Rincon
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Jinnethe Reyes
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Lorena Diaz
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Genomics and Resistant Microbes (GeRM) Group. Clínica Alemana de Santiago, Universidad del Desarrollo School of Medicine, Santiago, Chile
| |
Collapse
|
7
|
In Silico Genome-Scale Analysis of Molecular Mechanisms Contributing to the Development of a Persistent Infection with Methicillin-Resistant Staphylococcus aureus (MRSA) ST239. Int J Mol Sci 2022; 23:ijms232416086. [PMID: 36555727 PMCID: PMC9781258 DOI: 10.3390/ijms232416086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The increasing frequency of isolation of methicillin-resistant Staphylococcus aureus (MRSA) limits the chances for the effective antibacterial therapy of staphylococcal diseases and results in the development of persistent infection such as bacteremia and osteomyelitis. The aim of this study was to identify features of the MRSAST239 0943-1505-2016 (SA943) genome that contribute to the formation of both acute and chronic musculoskeletal infections. The analysis was performed using comparative genomics data of the dominant epidemic S. aureus lineages, namely ST1, ST8, ST30, ST36, and ST239. The SA943 genome encodes proteins that provide resistance to the host's immune system, suppress immunological memory, and form biofilms. The molecular mechanisms of adaptation responsible for the development of persistent infection were as follows: amino acid substitution in PBP2 and PBP2a, providing resistance to ceftaroline; loss of a large part of prophage DNA and restoration of the nucleotide sequence of beta-hemolysin, that greatly facilitates the escape of phagocytosed bacteria from the phagosome and formation of biofilms; dysfunction of the AgrA system due to the presence of psm-mec and several amino acid substitutions in the AgrC; partial deletion of the nucleotide sequence in genomic island vSAβ resulting in the loss of two proteases of Spl-operon; and deletion of SD repeats in the SdrE amino acid sequence.
Collapse
|
8
|
Jin Y, Zhou W, Yin Z, Zhang S, Chen Y, Shen P, Ji J, Chen W, Zheng B, Xiao Y. The genetic feature and virulence determinant of highly virulent community-associated MRSA ST338-SCCmec Vb in China. Emerg Microbes Infect 2021; 10:1052-1064. [PMID: 33823746 PMCID: PMC8183566 DOI: 10.1080/22221751.2021.1914516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
ST59 is the predominant pathotype of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) in China. As a variant of ST59, there is relatively little known about the detailed information of ST338. To address this issue, here, we described thirteen ST338 CA-MRSA strains isolated from severe bloodstream infection cases, and focused on their epidemiology, genetic features and virulence potential. Phylogenetic analysis showed the earliest isolated strain of this study is likely a predecessor of recent ST338 lineage (after year of 2014). Furthermore, the phylogenetic reconstruction and time estimation suggested that ST338 evolved from ST59 in 1991. Notably, the carrying patten of virulence factors of all ST338 strains were similar, and the genomic islands νSaα, νSaγ and SaPI and the core virulence factors like hla and psm were detected in ST338 isolates. However, all ST338 isolates lacked some adhesion factors such as clfA, clfB, eap, cna and icaD. Additionally, among these ST338 strains, one PVL-negative ST338 isolate was detected. Experiment on mice nose and human alveolar epithelial cell showed that the nasal colonization ability of ST338 was weaker than that of CA-MRSA MW2. In a mouse bloodstream infection model and skin infection model, PVL+ and PVL− strains had the similar virulence, which was dependent on upregulation of toxin genes rather than the presence of mobile genetic elements such as ΦSa2 carrying PVL. Our findings provide important insight into the epidemiology and pathogenicity of the novel and highly virulent ST338-SCCmec Vb clone.
Collapse
Affiliation(s)
- Ye Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wangxiao Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zhidong Yin
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, People's Republic of China
| | - Shuntian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jinru Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Weiwei Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
9
|
Sharabiani HR, Sadeghi J, Pirzade T, Rezaee MA, Ghotaslou R, Laghousi D, Sefidan FY, Kafil HS, Nikbakht M, Mazraeh FN, Hematyar Y. Comparison of superantigens and attachment factors genes of Staphylococcus aureus in clinical isolates and nasal colonizers in the same patients. Microb Pathog 2021; 154:104860. [PMID: 33771631 DOI: 10.1016/j.micpath.2021.104860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) is a bacterial pathogen can cause a wide range of nosocomial infections. Nasal colonization by S.aureus plays important role both in the epidemiology and pathogenesis of infection. OBJECTIVES The purpose of this study was to investigate the association of clinical isolates and nasal colonizers of S. aureus in the same patients by molecular methods, and their antibiotic susceptibility pattern. METHODS A total of 181 S. aureus isolates were collected from 100 patients admitted that including 100 clinical isolates and 81 nasal swabs from the same patients (19 cases were found as noncarriers). Superantigens and adhesion genes were identified by PCR. Molecular typing of the isolates was performed by repetitive element polymerase chain reaction (Rep-PCR). Antimicrobial susceptibility pattern of the isolates was conducted by disk diffusion. MIC of the isolates to vancomycin was determined by microbroth dilution. The ability of S. aureus isolates to form biofilm was determined by microtiter plate assay. RESULTS The most frequent adhesion gene in both clinical isolates and nasal colonizer was clfA with 93% and 76%, respectively. Staphylococcal enterotoxin A (SEA) was the most commonly superantigen (68%) in both nasal colonizers (71.6%) and clinical isolates (65%). The highest resistance rate was to erythromycin (45.3%) with 36% and 56.8% in clinical and nasal colonizer isolates, respectively. All S. aureus isolates were susceptible to linezolid and vancomycin. Multiple drug resistance (MDR) was detected in 36% (n = 65) of the isolates. Biofilm formation was identified in 160 (88.4%) isolates with 87% and 90% in clinical isolates and nasal colonizers, respectively. Repetitive element polymerase chain reaction (Rep-PCR) typing divided 181 S. aureus isolates into six clusters. Twelve isolates from clinical isolates and nasal carriers were closely related. CONCLUSION There is a high concordance rate between colonizing and clinical isolates of S. aureus in terms of adhesion factors and superantigen genes. It is suggested that nasal decolonization could be effective in the preventing of S. aureus infections.
Collapse
Affiliation(s)
- Hamideh Richi Sharabiani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadeghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Tahere Pirzade
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Delara Laghousi
- Social Determinants of Health Research Center, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fateme Yeghane Sefidan
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Nikbakht
- Meshginshahr Health Center Laboratory, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fariba Naeimi Mazraeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Hematyar
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Arora S, Li X, Hillhouse A, Konganti K, Little SV, Lawhon SD, Threadgill D, Shelburne S, Hook M. Staphylococcus epidermidis MSCRAMM SesJ Is Encoded in Composite Islands. mBio 2020; 11:e02911-19. [PMID: 32071265 PMCID: PMC7029136 DOI: 10.1128/mbio.02911-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/08/2020] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus epidermidis is a leading cause of nosocomial infections in patients with a compromised immune system and/or an implanted medical device. Seventy to 90% of S. epidermidis clinical isolates are methicillin resistant and carry the mecA gene, present in a mobile genetic element (MGE) called the staphylococcal cassette chromosome mec (SCCmec) element. Along with the presence of antibiotic and heavy metal resistance genes, MGEs can also contain genes encoding secreted or cell wall-anchored virulence factors. In our earlier studies of S. epidermidis clinical isolates, we discovered S. epidermidis surface protein J (SesJ), a prototype of a recently discovered subfamily of the microbial surface component recognizing adhesive matrix molecule (MSCRAMM) group. MSCRAMMs are major virulence factors of pathogenic Gram-positive bacteria. Here, we report that the sesJ gene is always accompanied by two glycosyltransferase genes, gtfA and gtfB, and is present in two MGEs, called the arginine catabolic mobile element (ACME) and the staphylococcal cassette chromosome (SCC) element. The presence of the sesJ gene was associated with the left-hand direct repeat DR_B or DR_E. When inserted via DR_E, the sesJ gene was encoded in the SCC element. When inserted via DR_B, the sesJ gene was accompanied by the genes for the type 1 restriction modification system and was encoded in the ACME. Additionally, the SCC element and ACME carry different isoforms of the SesJ protein. To date, the genes encoding MSCRAMMs have been seen to be located in the bacterial core genome. Here, we report the presence of an MSCRAMM in an MGE in S. epidermidis clinical isolates.IMPORTANCES. epidermidis is an opportunistic bacterium that has established itself as a successful nosocomial pathogen. The modern era of novel therapeutics and medical devices has extended the longevity of human life, but at the same time, we also witness the evolution of pathogens to adapt to newly available niches in the host. Increasing antibiotic resistance among pathogens provides an example of such pathogen adaptation. With limited opportunities to modify the core genome, most of the adaptation occurs by acquiring new genes, such as virulence factors and antibiotic resistance determinants present in MGEs. In this study, we describe that the sesJ gene, encoding a recently discovered cell wall-anchored protein in S. epidermidis, is present in both ACME and the SCC element. The presence of virulence factors in MGEs can influence the virulence potential of a specific strain. Therefore, it is critical to study the virulence factors found in MGEs in emerging pathogenic bacteria or strains to understand the mechanisms used by these bacteria to cause infections.
Collapse
Affiliation(s)
- Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Xiqi Li
- Department of Infectious Diseases, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andrew Hillhouse
- Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas, USA
| | - Kranti Konganti
- Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas, USA
| | - Sara V Little
- Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Sara D Lawhon
- Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - David Threadgill
- Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas, USA
| | - Samuel Shelburne
- Department of Infectious Diseases, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Magnus Hook
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| |
Collapse
|