1
|
Ruenchit P. Exploring bioactive molecules released during inter- and intraspecific competition: A paradigm for novel antiparasitic drug discovery and design for human use. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2025; 7:100256. [PMID: 40292016 PMCID: PMC12022652 DOI: 10.1016/j.crpvbd.2025.100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025]
Abstract
Many antiparasitic drugs have become obsolete and ineffective in treating parasitic diseases. This ineffectiveness arises from parasite drug resistance, high toxicity, and low drug efficacy. Thus, the discovery of novel agents is urgently needed to control parasitic diseases. Various strategies are employed in drug discovery, design, and development. This review highlights the paradigm of searching for bioactive molecules produced during inter- and intraspecific competition among organisms, particularly between microbes and parasites, as a strategy for de novo antiparasitic drug discovery. Competitive interactions occur when individuals of the same or different species coexist in overlapping niches and compete for space and resources. These interactions are well recognized. Therefore, bioactive molecules released during these interactions are promising targets for novel drug discovery. Compelling data indicate that microbes remain a potential source for the discovery of novel antiparasitic drugs because of their diversity. Many antimicrobial producers in nature have yet to be isolated and investigated. This body of evidence underscores the success of numerous therapeutic drugs, including penicillin, β-lactams, and tetracyclines, which have been successfully discovered and developed for treating infectious diseases. This review comprehensively covers these concepts, with a particular focus on inter- and intraspecific competition in the discovery of novel antiparasitic agents. This approach will pave the way for identifying alternative strategies to control and eradicate parasitic diseases that continue to threaten human health. Additionally, this review discusses current antiparasitic drugs and their mechanisms of action, limitations, and existing gaps. This discussion emphasizes the ongoing need to explore novel antiparasitic drugs.
Collapse
Affiliation(s)
- Pichet Ruenchit
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
2
|
Zhu L, Huang D, Tan J, Huang J, Zhang R, Liao J, Wang J, Jin X. Comparative metabolomics reveals streptophenazines with anti-methicillin-resistant Staphylococcus aureus activity derived from Streptomyces albovinaceus strain WA10-1-8 isolated from Periplaneta americana. BMC Microbiol 2025; 25:77. [PMID: 39962376 PMCID: PMC11831851 DOI: 10.1186/s12866-025-03789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/28/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Streptophenazines, a class of phenazine compounds with a variety of alkyl side chains and activity against methicillin-resistant Staphylococcus aureus (MRSA), are mainly derived from soil or marine microbial secondary metabolites. However, the discovered phenazine compounds still do not meet the needs of the development of anti-MRSA lead compounds. Here, we examined secondary metabolites of Streptomyces albovinaceus WA10-1-8 isolated from Periplaneta americana, for streptophenazines with anti-MRSA activity. RESULTS In this study, a guidance method combining high-performance liquid chromatography-ultraviolet (HPLC-UV) with molecular networking analysis was used to isolate and identify a series of streptophenazines (A-T) from S. albovinaceus WA10-1-8. Among them, a new streptophenazine containing a dihydroxyalkyl chain structure named streptophenazine T was isolated and identified for the first time. The results of bioactivity assays showed that streptophenazine T had anti-MRSA activity with a minimum inhibitory concentration (MIC) of 150.23 µM, while the MICs of streptophenazine A, B, G, and F were 37.74-146.12 µM. CONCLUSIONS This study was the first to report multiple streptophenazine compounds with anti-MRSA activity expressed by Streptomyces isolated from insect niches. These results provided a valuable reference for future exploration of new streptophenazine compounds with activity against drug-resistant bacteria.
Collapse
Affiliation(s)
- Liuchong Zhu
- School of basic medical sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Dan Huang
- School of basic medical sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jinli Tan
- School of basic medical sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jiaxuan Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Ruyu Zhang
- School of basic medical sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jingyang Liao
- School of basic medical sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jie Wang
- School of basic medical sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Xiaobao Jin
- School of basic medical sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
3
|
Liang Y, Lu H, Tang J, Ye X, Wei Y, Liao B, Liu L, Xu H. ActO, a positive cluster-situated regulator for actinomycins biosynthesis in Streptomyces antibioticus ZS. Gene 2025; 933:148962. [PMID: 39321948 DOI: 10.1016/j.gene.2024.148962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024]
Abstract
Actinomycins are a class of cyclic lipopeptide antibiotics produced by Streptomyces, which have rich biological activities and demonstrate great potential value. Among them, actinomycin D is currently the effective drug for some malignant tumor diseases. Although the chemical properties, biological activities and biosynthesis of actinomycins have been extensively studied, the regulation of their biosynthesis remains poorly understood. Streptomyces antibioticus ZS isolated from deep-sea corals is a producer of actinomycin D and actinomycin V. Here, we reported the characterization of a cluster-situated regulator ActO in actinomycins biosynthetic gene cluster (act cluster) of S. antibioticus ZS, which belongs to LmbU family. Deletion of actO completely blocked the synthesis of actinomycins. Overexpression of actO increased the yields of actinomycin D and actinomycin V by 4.4 fold and 2.6 fold, respectively. The result of RT-qPCR showed that ActO activates the transcription of all genes in act cluster. However, no specific binding of His6-ActO to the promoters of target genes was observed after electrophoretic mobility shift assay (EMSA). These results proved that ActO serves as a positive regulator involved in the biosynthesis of actinomycins, affecting the transcription of all genes related to the synthesis of intermediates, skeleton modification and extracellular transportation of final products. Moreover, we demonstrated that overexpression of actO is a novel strategy to increase the yields of actinomycins.
Collapse
Affiliation(s)
- Yingxin Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education and Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Huaqiang Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education and Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jie Tang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education and Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaofang Ye
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education and Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yanshan Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education and Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Boxuan Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education and Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Hui Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education and Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
4
|
Chatterjee A, Khan R, Mukherjee T, Sahoo PP, Tiwari LN, Singh BN, Kumari R, Kumari A, Rai A, Ray S. Harnessing bacterial metabolites for enhanced cancer chemotherapy: unveiling unique therapeutic potentials. Arch Microbiol 2024; 206:449. [PMID: 39472338 DOI: 10.1007/s00203-024-04179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/10/2024]
Abstract
Cancer poses a serious threat to health globally, with millions diagnosed every year. According to Global Cancer Statistics 2024, about 20 million new cases were reported in 2022, and 9.7 million people worldwide died of this condition. Advanced therapies include combination of one or more treatment procedures, depending on the type, stage, and particular genetic constitution of the cancer, which may include surgery, radiotherapy, chemotherapy, immunotherapy, hormone therapy, targeted therapy, and stem cell transplant. Also, awareness about lifestyle changes, preventive measures and screening at early stages has reduced the incidence of the disease; still, there is a major failure in controlling the incidence of cancer because of its complex and multifaceted nature. With increasing interest in bacterial metabolites as possible novel and effective treatment options in cancer therapy, their main benefits include not only direct anticancer effects but also the modulation of the immune system and potential for targeted and combination therapies. They can therefore be used in combination with chemotherapy, radiotherapy, or immunotherapy to improve outcomes or reduce side effects. Furthermore, nanoparticle-based delivery systems have the potential to enhance the potency and safety of anticancer drugs by providing improved stability, targeted release, and controlled delivery.
Collapse
Affiliation(s)
- Aroni Chatterjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Rajni Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, 844102, Bihar, India
| | - Triparna Mukherjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Preity Pragnya Sahoo
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Laxmi Narayan Tiwari
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Basant Narain Singh
- Department of Botany, Pandit Deendayal Upadhyaya Shekhawati University, Sikar, Nawalgarh Road, Katrathal, Rajasthan, 332024, India
| | - Rashmi Kumari
- Department of Zoology, ZA Islamia College Siwan, Affiliated Unit of Jai Prakash University, Chapra, Bihar, 841226, India
| | - Anisha Kumari
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | - Ankit Rai
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India.
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| |
Collapse
|
5
|
Bharathi D, Lee J. Recent Advances in Marine-Derived Compounds as Potent Antibacterial and Antifungal Agents: A Comprehensive Review. Mar Drugs 2024; 22:348. [PMID: 39195465 DOI: 10.3390/md22080348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
The increase in antimicrobial resistance (AMR) in microorganisms is a significant global health concern. Various factors contribute to AMR, including alterations in cell membrane permeability, increased efflux pump activity, enzymatic modification or inactivation of antibiotics, target site changes, alternative metabolic pathways, and biofilm formation. Marine environments, with their extensive biodiversity, provide a valuable source of natural products with a wide range of biological activities. Marine-derived antimicrobial compounds show significant potential against drug-resistant bacteria and fungi. This review discusses the current knowledge on marine natural products such as microorganisms, sponges, tunicates and mollusks with antibacterial and antifungal properties effective against drug-resistant microorganisms and their ecological roles. These natural products are classified based on their chemical structures, such as alkaloids, amino acids, peptides, polyketides, naphthoquinones, terpenoids, and polysaccharides. Although still in preclinical studies, these agents demonstrate promising in vivo efficacy, suggesting that marine sources could be pivotal in developing new drugs to combat AMR, thereby fulfilling an essential medical need. This review highlights the ongoing importance of marine biodiversity exploration for discovering potential antimicrobial agents.
Collapse
Affiliation(s)
- Devaraj Bharathi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
6
|
Teklemichael AA, Teshima A, Hirata A, Akimoto M, Taniguchi M, Khodakaramian G, Fujimura T, Tokumasu F, Arakawa K, Mizukami S. Discovery of antimalarial drugs from secondary metabolites in actinomycetes culture library. Trop Med Health 2024; 52:47. [PMID: 38982547 PMCID: PMC11232162 DOI: 10.1186/s41182-024-00608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Natural products play a key role as potential sources of biologically active substances for the discovery of new drugs. This study aimed to identify secondary metabolites from actinomycete library extracts that are potent against the asexual stages of Plasmodium falciparum (P. falciparum). METHODS Secondary metabolites from actinomycete library extracts were isolated from culture supernatants by ethyl acetate extraction. Comprehensive screening was performed to identify novel antimalarial compounds from the actinomycete library extracts (n = 28). The antimalarial activity was initially evaluated in vitro against chloroquine/mefloquine-sensitive (3D7) and-resistant (Dd2) lines of P. falciparum. The cytotoxicity was then evaluated in primary adult mouse brain (AMB) cells. RESULTS Out of the 28 actinomycete extracts, 17 showed parasite growth inhibition > 50% at a concentration of 50 µg/mL, nine were identified with an IC50 value < 10 µg/mL, and seven suppressed the parasite significantly with an IC50 value < 5 µg/mL. The extracts from Streptomyces aureus strains HUT6003 (Extract ID number: 2), S. antibioticus HUT6035 (8), and Streptomyces sp. strains GK3 (26) and GK7 (27), were found to have the most potent antimalarial activity with IC50 values of 0.39, 0.09, 0.97, and 0.36 µg/mL (against 3D7), and 0.26, 0.22, 0.72, and 0.21 µg/mL (against Dd2), respectively. Among them, Streptomyces antibioticus strain HUT6035 (8) showed the highest antimalarial activity with an IC50 value of 0.09 µg/mL against 3D7 and 0.22 µg/mL against Dd2, and a selective index (SI) of 188 and 73.7, respectively. CONCLUSION Secondary metabolites obtained from the actinomycete extracts showed promising antimalarial activity in vitro against 3D7 and Dd2 cell lines of P. falciparum with minimal toxicity. Therefore, secondary metabolites obtained from actinomycete extracts represent an excellent starting point for the development of antimalarial drug leads.
Collapse
Affiliation(s)
- Awet Alem Teklemichael
- Department of Immune Regulation, SHIONOGI Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Nagasaki, Japan
| | - Aiko Teshima
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Asahi Hirata
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Momoko Akimoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Mayumi Taniguchi
- Department of Immune Regulation, SHIONOGI Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Nagasaki, Japan
| | - Gholam Khodakaramian
- Department of Plant Protection, College of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Takashi Fujimura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Fuyuki Tokumasu
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Nagasaki, Japan
- Department of Cellular Architecture Studies, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Nagasaki, Japan
- Department of Laboratory Sciences, Graduate School of Health Sciences, Gunma University, Maebashi, Gunma, Japan
| | - Kenji Arakawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
| | - Shusaku Mizukami
- Department of Immune Regulation, SHIONOGI Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Nagasaki, Japan.
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Nagasaki, Japan.
| |
Collapse
|
7
|
Osman ME, Abo-Elnasr AA, Mohamed ET. Therapeutic potential activity of quercetin complexes against Streptococcus pneumoniae. Sci Rep 2024; 14:12876. [PMID: 38834612 DOI: 10.1038/s41598-024-62782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024] Open
Abstract
This study investigates quercetin complexes as potential synergistic agents against the important respiratory pathogen Streptococcus pneumoniae. Six quercetin complexes (QCX1-6) were synthesized by reacting quercetin with various metal salts and boronic acids and characterized using FTIR spectroscopy. Their antibacterial activity alone and in synergism with antibiotics was evaluated against S. pneumoniae ATCC 49619 using disc diffusion screening, broth microdilution MIC determination, and checkerboard assays. Complexes QCX-3 and QCX-4 demonstrated synergy when combined with levofloxacin via fractional inhibitory concentration indices ≤ 0.5 as confirmed by time-kill kinetics. Molecular docking elucidated interactions of these combinations with virulence enzymes sortase A and sialidase. A biofilm inhibition assay found the synergistic combinations more potently reduced biofilm formation versus monotherapy. Additionally, gene-gene interaction networks, biological activity predictions and in-silico toxicity profiling provided insights into potential mechanisms of action and safety.
Collapse
Affiliation(s)
- Mohamed E Osman
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Amany A Abo-Elnasr
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Eslam T Mohamed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt.
| |
Collapse
|
8
|
Gao L, Huang M, Xiong Q, Liang Y, Mi L, Jiang Y, Zhang J. Antibacterial Mechanism, Control Efficiency, and Nontarget Toxicity Evaluation of Actinomycin X 2 against Xanthomonas citri Subsp. citri. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4788-4800. [PMID: 38377546 DOI: 10.1021/acs.jafc.3c08600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The present study investigated the antibacterial mechanism, control efficiency, and nontarget toxicity of actinomycin X2 (Act-X2) against Xanthomonas citri subsp. citri (Xcc) for the first time. Act-X2 almost completely inhibited the proliferation of Xcc in the growth curve assay at a concentration of 0.25 MIC (minimum inhibitory concentration, MIC = 31.25 μg/mL). This inhibitory effect was achieved by increasing the production of reactive oxygen species (ROS), blocking the formation of biofilms, obstructing the synthesis of intracellular proteins, and decreasing the enzymatic activities of malate dehydrogenase (MDH) and succinate dehydrogenase (SDH) of Xcc. Molecular docking and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analysis results indicated that Act-X2 steadily bonded to the RNA polymerase, ribosome, malate dehydrogenase, and succinate dehydrogenase to inhibit their activities, thus drastically reducing the expression levels of related genes. Act-X2 showed far more effectiveness than the commercially available pesticide Cu2(OH)3Cl in the prevention and therapy of citrus canker disease. Furthermore, the nontarget toxicity evaluation demonstrated that Act-X2 was not phytotoxic to citrus trees and exhibited minimal toxicity to earthworms in both contact and soil toxic assays. This study suggests that Act-X2 has the potential as an effective and environmentally friendly antibacterial agent.
Collapse
Affiliation(s)
- Liangliang Gao
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Meiling Huang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Qin Xiong
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Yan Liang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Lanfang Mi
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Yueming Jiang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
- South China Botanical Garden, Chinese Academy of Science, Guangzhou 510650, China
| | - Jun Zhang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
9
|
Jain M, Stitt G, Son L, Enioutina EY. Probiotics and Their Bioproducts: A Promising Approach for Targeting Methicillin-Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococcus. Microorganisms 2023; 11:2393. [PMID: 37894051 PMCID: PMC10608974 DOI: 10.3390/microorganisms11102393] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Antibiotic resistance is a serious global health problem that poses a threat to the successful treatment of various bacterial infections, especially those caused by methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). Conventional treatment of MRSA and VRE infections is challenging and often requires alternative or combination therapies that may have limited efficacy, higher costs, and/or more adverse effects. Therefore, there is an urgent need to find new strategies to combat antibiotic-resistant bacteria. Probiotics and antimicrobial peptides (AMPs) are two promising approaches that have shown potential benefits in various diseases. Probiotics are live microorganisms that confer health benefits to the host when administered in adequate amounts. AMPs, usually produced with probiotic bacteria, are short amino acid sequences that have broad-spectrum activity against bacteria, fungi, viruses, and parasites. Both probiotics and AMPs can modulate the host immune system, inhibit the growth and adhesion of pathogens, disrupt biofilms, and enhance intestinal barrier function. In this paper, we review the current knowledge on the role of probiotics and AMPs in targeting multi-drug-resistant bacteria, with a focus on MRSA and VRE. In addition, we discuss future directions for the clinical use of probiotics.
Collapse
Affiliation(s)
| | | | | | - Elena Y. Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84108, USA; (M.J.); (G.S.); (L.S.)
| |
Collapse
|
10
|
Nuanjohn T, Suphrom N, Nakaew N, Pathom-Aree W, Pensupa N, Siangsuepchart A, Dell B, Jumpathong J. Actinomycins from Soil-Inhabiting Streptomyces as Sources of Antibacterial Pigments for Silk Dyeing. Molecules 2023; 28:5949. [PMID: 37630201 PMCID: PMC10459128 DOI: 10.3390/molecules28165949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Actinobacteria produce a broad spectrum of bioactive substances that are used in the pharmaceutical, agricultural, and biotechnology industries. This study investigates the production of bioactive substances in Streptomyces, isolated from soil under five tropical plants, focusing on their potential as natural antibacterial dyes for silk fabrics. Out of 194 isolates, 44 produced pigments on broken rice as a solid substrate culture. Eight antibacterial pigmented isolates from under Magnolia baillonii (TBRC 15924, TBRC 15927, TBRC 15931), Magnolia rajaniana (TBRC 15925, TBRC 15926, TBRC 15928, TBRC 15930), and Cinnamomum parthenoxylon (TBRC 15929) were studied in more detail. TBRC 15927 was the only isolate where all the crude extracts inhibited the growth of the test organisms, Staphylococcus epidermidis TISTR 518 and S. aureus DMST 4745. The bioactive compounds present in TBRC 15927 were identified through LC-MS/MS analysis as belonging to the actinomycin group, actinomycin D (or X1), X2, and X0β. Also, the ethyl acetate crude extract exhibited non-toxicity at an IC50 value of 0.029 ± 0.008 µg/mL on the mouse fibroblast L-929 assay. From the 16S rRNA gene sequence analysis, TBRC 15927 had 100% identity with Streptomyces gramineus JR-43T. Raw silk dyed with the positive antimicrobial TBRC 15927 extract (8.35 mg/mL) had significant (>99.99%) antibacterial properties. Streptomyces gramineus TBRC 15927 is the first actinomycin-producing strain reported to grow on broken rice and shows promise for antibacterial silk dyeing.
Collapse
Affiliation(s)
- Tananya Nuanjohn
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Nungruthai Suphrom
- Department of Chemistry, Faculty of Science, Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Nareeluk Nakaew
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wasu Pathom-Aree
- Research Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nattha Pensupa
- Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Apiradee Siangsuepchart
- Department of Agro-Industrial Biotechnology, Maejo University Phrae Campus, Phrae 54140, Thailand
| | - Bernard Dell
- School of Agricultural Sciences, Murdoch University, Perth 6150, Australia
| | - Juangjun Jumpathong
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Research for Agricultural Biotechnology, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
11
|
Ma Y, Guo P, Chen X, Xu M, Liu W, Jin X. Anti-Klebsiella pneumoniae activity of secondary metabolism of Achromobacter from the intestine of Periplaneta americana. BMC Microbiol 2023; 23:162. [PMID: 37277707 DOI: 10.1186/s12866-023-02909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae is one of the main pathogens of clinical isolation and nosocomial infections, as K. pneumoniae show broad-spectrum resistance to β-lactam and carbapenem antibiotics. It is emerging clinical need for a safe and effective drug to anti-K. pneumoniae. At present, Achromobacter mainly focused on its degradation of petroleum hydrocarbons, polycyclic aromatic hydrocarbons, assisting insects to decompose, degrade heavy metals and utilize organic matter, but there were few reports on the antibacterial activity of the secondary metabolites of Achromobacter. RESULTS In this study, a strain WA5-4-31 from the intestinal tract of Periplaneta americana exhibited strong activity against K. Pneumoniae through preliminary screening. The strain was determined to be Achromobacter sp. through the morphological characteristics, genotyping and phylogenetic tree analysis, which is homologous to Achromobacter ruhlandii by 99%, its accession numbe in GenBank at National Center for Biotechnology Information (NCBI) is MN007235, and its deposit number was GDMCC NO.1.2520. Six compounds (Actinomycin D, Actinomycin X2, Collismycin A, Citrinin, Neoechinulin A and Cytochalasin E) were isolated and determined by activity tracking, chemical separation, nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis. Among them, Actinomycin D, Actinomycin X2, Collismycin A, Citrinin and Cytochalasin E showed a good effect on anti-K. pneumoniae, with MIC values of 16-64 µg/mL. CONCLUSIONS The study reported Achromobacter, which was from the intestinal tract of Periplaneta americana with the activity against K. Pneumoniae, can produce antibacterial compounds for the first time. It lays the foundation for development of secondary metabolites of insect intestinal microorganisms.
Collapse
Affiliation(s)
- Yan Ma
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ping Guo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Clinical Laboratory, Shenzhen Bao'An District Central Hospital, Shenzhen, 518103, China
| | - Xueqin Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Minhua Xu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Clinical laboratory, Foshan Fosun Chancheng Hospital, Foshan, 528000, China
| | - Wenbin Liu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaobao Jin
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Zhou W, Xie Z, Si R, Chen Z, Javeed A, Li J, Wu Y, Han B. Actinomycin-X2-Immobilized Silk Fibroin Film with Enhanced Antimicrobial and Wound Healing Activities. Int J Mol Sci 2023; 24:6269. [PMID: 37047243 PMCID: PMC10094675 DOI: 10.3390/ijms24076269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Actinomycin is a family of chromogenic lactone peptides that differ in their peptide portions of the molecule. An antimicrobial peptide, actinomycin X2 (Ac.X2), was produced through the fermentation of a Streptomyces cyaneofuscatus strain. Immobilization of Ac.X2 onto a prepared silk fibroin (SF) film was done through a carbodiimide reaction. The physical properties of immobilized Ac.X2 (antimicrobial films, AMFs) were analyzed by ATR-FTIR, SEM, AFM, and WCA. The findings from an in vitro study showed that AMFs had a more broad-spectrum antibacterial activity against both S. aureus and E. coli compared with free Ac.X2, which showed no apparent strong effect against E. coli. These AMFs showed a suitable degradation rate, good hemocompatibility, and reduced cytotoxicity in the biocompatibility assay. The results of in vivo bacterially infected wound healing experiments indicated that wound inflammation was prevented by AMFs, which promoted wound repair and improved the wound microenvironment. This study revealed that Ac.X2 transformation is a potential candidate for skin wound healing.
Collapse
Affiliation(s)
- Wenjing Zhou
- Laboratory of Antiallergy Functional Molecules, Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhenxia Xie
- Laboratory of Antiallergy Functional Molecules, Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ranran Si
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zijun Chen
- Laboratory of Antiallergy Functional Molecules, Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ansar Javeed
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiaxing Li
- Laboratory of Antiallergy Functional Molecules, Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yang Wu
- Laboratory of Antiallergy Functional Molecules, Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bingnan Han
- Laboratory of Antiallergy Functional Molecules, Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
13
|
Apoptotic Induction in Human Cancer Cell Lines by Antimicrobial Compounds from Antarctic Streptomyces fildesensis (INACH3013). FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Antarctic Streptomyces fildesensis has been recognized for its production of antimicrobial compounds with interesting biological activities against foodborne bacteria and multi-resistant strains, but not for its potential antiproliferative activity and mechanisms involved. Two bioactive ethyl acetate extract (EAE) fractions were purified via thin-layer chromatography and High-Performance Liquid Chromatography (HPLC), showing that orange-colored compounds displayed antimicrobial activity against pathogenic bacteria even after shock thermal treatment. The UV–VIS features of the active compounds, the TLC assay with actinomycin-D pure standard, Fourier transform infrared (FTIR) spectra and the ANTISMASH analysis support the presence of actinomycin-like compounds. We demonstrated that S. fildesensis displays antiproliferative activity against human tumor cell lines, including human breast cancer (MCF-7), prostate cancer (PC-3), colon cancer (HT-29) and non-tumoral colon epithelial cells (CoN). The half-maximal effective concentrations (EC50) ranged from 3.98 µg/mL to 0.1 µg/mL. Our results reveal that actinomycin-like compounds of S. fildesensis induced apoptosis mediated by caspase activation, decreasing the mitochondrial membrane potential and altering the cell morphology in all tumoral and non-tumoral cell lines analyzed. These findings confirm the potential of the psychrotolerant Antarctic S. fildesensis species as a promising source for obtaining potential novel anticancer compounds.
Collapse
|
14
|
El-Sayed MH, Alshammari FA, Sharaf MH. Antagonistic Potentiality of Actinomycete-Derived Extract with Anti-Biofilm, Antioxidant, and Cytotoxic Capabilities as a Natural Combating Strategy for Multidrug-Resistant ESKAPE Pathogens. J Microbiol Biotechnol 2023; 33:61-74. [PMID: 36597590 PMCID: PMC9896001 DOI: 10.4014/jmb.2211.11026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
The global increase in multidrug-resistant (MDR) bacteria has inspired researchers to develop new strategies to overcome this problem. In this study, 23 morphologically different, soil-isolated actinomycete cultures were screened for their antibacterial ability against MDR isolates of ESKAPE pathogens. Among them, isolate BOGE18 exhibited a broad antibacterial spectrum, so it was selected and identified based on cultural, morphological, physiological, and biochemical characteristics. Chemotaxonomic analysis was also performed together with nucleotide sequencing of the 16S rRNA gene, which showed this strain to have identity with Streptomyces lienomycini. The ethyl acetate extract of the cell-free filtrate (CFF) of strain BOGE18 was evaluated for its antibacterial spectrum, and the minimum inhibitory concentration (MIC) ranged from 62.5 to 250 μg/ml. The recorded results from the in vitro anti-biofilm microtiter assay and confocal laser scanning microscopy (CLSM) of sub-MIC concentrations revealed a significant reduction in biofilm formation in a concentration-dependent manner. The extract also displayed significant scavenging activity, reaching 91.61 ± 4.1% and 85.06 ± 3.14% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis( 3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), respectively. A promising cytotoxic ability against breast (MCF-7) and hepatocellular (HePG2) cancer cell lines was obtained from the extract with IC50 values of 47.15 ± 13.10 and 122.69 ± 9.12 μg/ml, respectively. Moreover, based on gas chromatography-mass spectrometry (GC-MS) analysis, nine known compounds were detected in the BOGE18 extract, suggesting their contribution to the multitude of biological activities recorded in this study. Overall, Streptomyces lienomycini BOGE18-derived extract is a good candidate for use in a natural combating strategy to prevent bacterial infection, especially by MDR pathogens.
Collapse
Affiliation(s)
- Mohamed H. El-Sayed
- Department of Biology, College of Science and Arts, Northern Border University, Saudi Arabia,Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt,Corresponding author Phone: +20 111 91 070 44 E-mail:
| | - Fahdah A. Alshammari
- Department of Biology, College of Science and Arts, Northern Border University, Saudi Arabia
| | - Mohammed H. Sharaf
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
15
|
Qureshi KA, Azam F, Fatmi MQ, Imtiaz M, Prajapati DK, Rai PK, Jaremko M, Emwas AH, Elhassan GO. In vitro and in silico evaluations of actinomycin X 2and actinomycin D as potent anti-tuberculosis agents. PeerJ 2023; 11:e14502. [PMID: 36935926 PMCID: PMC10022501 DOI: 10.7717/peerj.14502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/10/2022] [Indexed: 03/11/2023] Open
Abstract
Background Multidrug-resistant tuberculosis (MDR-TB) is one of the world's most devastating contagious diseases and is caused by the MDR-Mycobacterium tuberculosis (MDR-Mtb) bacteria. It is therefore essential to identify novel anti-TB drug candidates and target proteins to treat MDR-TB. Here, in vitro and in silico studies were used to investigate the anti-TB potential of two newly sourced actinomycins, actinomycin-X2 (act-X2) and actinomycin-D (act-D), from the Streptomyces smyrnaeus strain UKAQ_23 (isolated from the Jubail industrial city of Saudi Arabia). Methods The anti-TB activity of the isolated actinomycins was assessed in vitro using the Mtb H37Ra, Mycobacterium bovis (BCG), and Mtb H37Rv bacterial strains, using the Microplate Alamar Blue Assay (MABA) method. In silico molecular docking studies were conducted using sixteen anti-TB drug target proteins using the AutoDock Vina 1.1.2 tool. The molecular dynamics (MD) simulations for both actinomycins were then performed with the most suitable target proteins, using the GROningen MAchine For Chemical Simulations (GROMACS) simulation software (GROMACS 2020.4), with the Chemistry at HARvard Macromolecular Mechanics 36m (CHARMM36m) forcefield for proteins and the CHARMM General Force Field (CGenFF) for ligands. Results In vitro results for the Mtb H37Ra, BCG, and Mtb H37Rv strains showed that act-X2 had minimum inhibitory concentration (MIC) values of 1.56 ± 0.0, 1.56 ± 0.0, and 2.64 ± 0.07 µg/mL and act-D had MIC values of 1.56 ± 0.0, 1.56 ± 0.0, and 1.80 ± 0.24 µg/mL respectively. The in silico molecular docking results showed that protein kinase PknB was the preferred target for both actinomycins, while KasA and pantothenate synthetase were the least preferred targets for act-X2and act-D respectively. The molecular dynamics (MD) results demonstrated that act-X2 and act-D remained stable inside the binding region of PknB throughout the simulation period. The MM/GBSA (Molecular Mechanics/Generalized Born Surface Area) binding energy calculations showed that act-X2 was more potent than act-D. Conclusion In conclusion, our results suggest that both actinomycins X2 and D are highly potent anti-TB drug candidates. We show that act-X2is better able to antagonistically interact with the protein kinase PknB target than act-D, and thus has more potential as a new anti-TB drug candidate.
Collapse
Affiliation(s)
- Kamal Ahmad Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Al-Qassim, Saudi Arabia
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Al-Qassim, Saudi Arabia
| | | | - Mahrukh Imtiaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Dinesh Kumar Prajapati
- Department of Biotechnology, Faculty of Biosciences, Invertis University, Bareilly, Uttar Pradesh, India
| | - Pankaj Kumar Rai
- Department of Biotechnology, Faculty of Biosciences, Invertis University, Bareilly, Uttar Pradesh, India
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gamal Osman Elhassan
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Al-Qassim, Saudi Arabia
| |
Collapse
|
16
|
Chanthasena P, Hua Y, Rosyidah A, Pathom-Aree W, Limphirat W, Nantapong N. Isolation and Identification of Bioactive Compounds from Streptomyces actinomycinicus PJ85 and Their In Vitro Antimicrobial Activities against Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2022; 11:antibiotics11121797. [PMID: 36551454 PMCID: PMC9774200 DOI: 10.3390/antibiotics11121797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Antibiotic-resistant strains are a global health-threatening problem. Drug-resistant microbes have compromised the control of infectious diseases. Therefore, the search for a novel class of antibiotic drugs is necessary. Streptomycetes have been described as the richest source of bioactive compounds, including antibiotics. This study was aimed to characterize the antibacterial compounds of Streptomyces sp. PJ85 isolated from dry dipterocarp forest soil in Northeast Thailand. The 16S rRNA gene sequence and phylogenetic analysis showed that PJ85 possessed a high similarity to Streptomyces actinomycinicus RCU-197T of 98.90%. The PJ85 strain was shown to produce antibacterial compounds that were active against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA). The active compounds of PJ85 were extracted and purified using silica gel column chromatography. Two active antibacterial compounds, compound 1 and compound PJ85_F39, were purified and characterized with spectroscopy, including liquid chromatography and mass spectrometry (LC-MS). Compound 1 was identified as actinomycin D, and compound PJ85_F39 was identified as dihomo-γ-linolenic acid (DGLA). To the best of our knowledge, this is the first report of the purification and characterization of the antibacterial compounds of S. actinomycinicus.
Collapse
Affiliation(s)
- Panjamaphon Chanthasena
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Yanling Hua
- The Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - A’liyatur Rosyidah
- Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wanwisa Limphirat
- Synchrotron Light Research Institute, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Nawarat Nantapong
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Correspondence: ; Tel.: +66-442-242-82
| |
Collapse
|
17
|
Nair S, Abraham J. Bioproduction and Characterization of Pigments from Streptomyces sp. Isolated from Marine Biotope. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822060114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
18
|
Devi S, Sharma M, Manhas RK. Investigating the plant growth promoting and biocontrol potentiality of endophytic Streptomyces SP. SP5 against early blight in Solanum lycopersicum seedlings. BMC Microbiol 2022; 22:285. [PMID: 36447141 PMCID: PMC9706909 DOI: 10.1186/s12866-022-02695-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/08/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Early blight (EB), caused by Alternaria solani, is one of the alarming diseases that restrict tomato production globally. Existing cultural practices and fungicide applications are not enough to control early blight diseases. Therefore, the study aimed to isolate, identify, and characterize an endophytic Streptomyces exhibiting the potential to control early blight in tomato and also promote plant growth. RESULTS From a Citrus jambhiri leaf, an endophytic Streptomyces sp. with antagonistic activity against Alternaria solani, Colletotrichum acutatum, Cladosporium herbarum, Alternaria brassicicola, Alternaria sp., Fusarium oxysporum and Fusarium sp. was isolated. It was identified as a Streptomyces sp. through 16S ribosomal DNA sequence analysis and designated as SP5. It also produced indole acetic acid which was confirmed by Salkowski reagent assay, TLC and HPLC analysis. Treatment of pathogen infected plants with Streptomyces sp. SP5 antagonists (culture cells/culture supernatant/solvent extract/ acetone precipitates) decreased the early blight disease incidence and significantly increased the various agronomic traits. CONCLUSION The present study concluded that Streptomyces sp. SP5 possessed antifungal activity against different fungal phytopathogens and had significant potential to control early blight disease and promote plant growth.
Collapse
Affiliation(s)
- Sapna Devi
- grid.411894.10000 0001 0726 8286Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab India
| | - Manish Sharma
- grid.411894.10000 0001 0726 8286Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab India
| | - Rajesh Kumari Manhas
- grid.411894.10000 0001 0726 8286Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab India
| |
Collapse
|
19
|
Rütten A, Kirchner T, Musiol-Kroll EM. Overview on Strategies and Assays for Antibiotic Discovery. Pharmaceuticals (Basel) 2022; 15:1302. [PMID: 36297414 PMCID: PMC9607151 DOI: 10.3390/ph15101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
The increase in antibiotic resistance poses a major threat to global health. Actinomycetes, the Gram-positive bacteria of the order Actinomycetales, are fertile producers of bioactive secondary metabolites, including antibiotics. Nearly two-thirds of antibiotics that are used for the treatment of bacterial infections were originally isolated from actinomycetes strains belonging to the genus Streptomyces. This emphasizes the importance of actinomycetes in antibiotic discovery. However, the identification of a new antimicrobial compound and the exploration of its mode of action are very challenging tasks. Therefore, different approaches that enable the "detection" of an antibiotic and the characterization of the mechanisms leading to the biological activity are indispensable. Beyond bioinformatics tools facilitating the identification of biosynthetic gene clusters (BGCs), whole cell-screenings-in which cells are exposed to actinomycete-derived compounds-are a common strategy applied at the very early stage in antibiotic drug development. More recently, target-based approaches have been established. In this case, the drug candidates were tested for interactions with usually validated targets. This review focuses on the bioactivity-based screening methods and provides the readers with an overview on the most relevant assays for the identification of antibiotic activity and investigation of mechanisms of action. Moreover, the article includes examples of the successful application of these methods and suggestions for improvement.
Collapse
Affiliation(s)
- Anika Rütten
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Teresa Kirchner
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Ewa Maria Musiol-Kroll
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
20
|
Nikbakht M, Omidi B, Amozegar MA, Amini K. Isolation and identification of Streptomyces tunisiensis from Garmsar salt cave soil with antibacterial and gene expression activity against Pseudomonas aeruginosa. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is known that more than 70% of the current antibiotics have been produced by Streptomyces; therefore, the main goal of the present study was to isolate halophiles Streptomyces to investigate their antimicrobial properties on the expression of the pathogenic genes of clinically resistant Pseudomonas aeruginosa. To this aim, isolation of Streptomyces from soil was performed by serial dilution method, and cultivation on ISP2 and SCA medium. The secondary metabolite was extracted by ethyl acetate method. The presence of exo A, alg D and oprl genes were determined by PCR in 50 clinical isolates of Pseudomonas aeruginosa. The inhibitory effect of active metabolites on gene expression were investigated by employing the real-time PCR technique. The purification of secondary metabolites were performed by employing the HPLC technique. Moreover, the FTIR technique was employed to determine the functional groups to help performing identifications by employing the LC-MS technique. Finally, selected Streptomyces was identified by 16S ribosomal RNA gene. Accordingly, the possible forms of Streptomyces were isolated and identified, in which Streptomyces number 25 had the highest growth inhibition zone against the clinical strains of Pseudomonas aeruginosa. The obtained results of molecular analysis showed 95.4% similarity to Streptomyces tunisiensis. The effect of selected Streptomyces secondary metabolites reduced expressions of both of exo A and algD genes in 1024μg/mL concentration. In this regard, the potent fraction could be known as an isobutyl Nonactin analogue. The concluding remarks of this work showed the antimicrobial activity of halophilus Streptomyces species against the resistant strains of Pseudomonas aeruginosa with the ability of producing antibiotics proposing for running further investigations to determine the active compound structures.
Collapse
Affiliation(s)
- Maryam Nikbakht
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Behin Omidi
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Ali Amozegar
- Department of Microbiology, Faculty of Basic Science, University of Tehran, Tehran, Iran
| | - Kumarss Amini
- Department of Microbiology, Saveh Branch, Islamic Azad University, Saveh, Iran
| |
Collapse
|
21
|
Alaidaroos BA. Rare Actinomycetes from Undiscovered Sources as a Source of Novel Antimicrobial Agents to Control Multidrug-Resistant Bacteria. INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND ALLIED SCIENCES 2022. [DOI: 10.51847/dpfaj9fiep] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Actinomycin X2, an Antimicrobial Depsipeptide from Marine-Derived Streptomyces cyaneofuscatus Applied as a Good Natural Dye for Silk Fabric. Mar Drugs 2021; 20:md20010016. [PMID: 35049871 PMCID: PMC8778624 DOI: 10.3390/md20010016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/27/2022] Open
Abstract
Actinomycins as clinical medicine have been extensively studied, while few investigations were conducted to discover the feasibility of actinomycins as antimicrobial natural dye contributing to the medical value of the functional fabrics. This study was focused on the application of actinomycin X2 (Ac.X2), a peptide pigment cultured from marine-derived Streptomyces cyaneofuscatus, in the dyeing and finishing of silk fabric. The dyeing potential of Ac.X2 with silk vs. cotton fabrics was assessed. As a result, the silk fabric exhibited greater uptake and color fastness with Ac.X2. Through Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analyses, some changes of chemical property for the dyed fabric and Ac.X2 were studied. The silk fabric dyed with Ac.X2 exhibited good UV protection ability. The antibacterial properties of dyed and finished silk were also evaluated, which exhibited over 90% antibacterial activity even after 20 washing cycles. In addition, the brine shrimp assay was conducted to evaluate the general toxicity of the tested fabric, and the results indicated that the dyed silk fabrics had a good biological safety property.
Collapse
|
23
|
Ma Y, Xu M, Liu H, Yu T, Guo P, Liu W, Jin X. Antimicrobial compounds were isolated from the secondary metabolites of Gordonia, a resident of intestinal tract of Periplaneta americana. AMB Express 2021; 11:111. [PMID: 34331149 PMCID: PMC8324697 DOI: 10.1186/s13568-021-01272-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022] Open
Abstract
Gordonia sp. are members of the actinomycete family, their contribution to the environment improvement and environmental protection by their biological degradation ability, but there are few studies on the antimicrobial activity of their secondary metabolites. Our team isolated and purified an actinomycete WA 4-31 from the intestinal tract of Periplaneta americana, firstly identified the strain WA 4-31 by the morphological characteristics and the phylogenetic analyses, and found it was completely homologous to the strain of Gordonia terrae from the Indian desert. Meanwhile, actinomycin D (1), actinomycin X2 (2), mojavensin A (3) and cyclic (leucine-leucne) dipeptide (4) were obtained from the EtOAc extract from the broth of WA 4-31. Compounds 1–4 showed anti-fungus activities against Candida albicans, Aspergillus niger, A. fumigatus and Trichophyton rubrum, also anti-MRSA and inhibited Escherichia coli in different degree. Interestingly, we found when 3 was mixed with 4 with ratio of 1:1, the activity of the mixture on anti-Candida albicans was better than the single. Besides, compounds 1–3 had varying degrees of antiproliferative activities on CNE-2 and HepG-2 cell lines. These indicated that Gordonia rare actinomycete from the intestinal tract of Periplaneta americana possessed a potential as a source of active secondary metabolites.
Collapse
|
24
|
Al-shaibani MM, Radin Mohamed RMS, Sidik NM, Enshasy HAE, Al-Gheethi A, Noman E, Al-Mekhlafi NA, Zin NM. Biodiversity of Secondary Metabolites Compounds Isolated from Phylum Actinobacteria and Its Therapeutic Applications. Molecules 2021; 26:molecules26154504. [PMID: 34361657 PMCID: PMC8347454 DOI: 10.3390/molecules26154504] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 12/08/2022] Open
Abstract
The current review aims to summarise the biodiversity and biosynthesis of novel secondary metabolites compounds, of the phylum Actinobacteria and the diverse range of secondary metabolites produced that vary depending on its ecological environments they inhabit. Actinobacteria creates a wide range of bioactive substances that can be of great value to public health and the pharmaceutical industry. The literature analysis process for this review was conducted using the VOSviewer software tool to visualise the bibliometric networks of the most relevant databases from the Scopus database in the period between 2010 and 22 March 2021. Screening and exploring the available literature relating to the extreme environments and ecosystems that Actinobacteria inhabit aims to identify new strains of this major microorganism class, producing unique novel bioactive compounds. The knowledge gained from these studies is intended to encourage scientists in the natural product discovery field to identify and characterise novel strains containing various bioactive gene clusters with potential clinical applications. It is evident that Actinobacteria adapted to survive in extreme environments represent an important source of a wide range of bioactive compounds. Actinobacteria have a large number of secondary metabolite biosynthetic gene clusters. They can synthesise thousands of subordinate metabolites with different biological actions such as anti-bacterial, anti-parasitic, anti-fungal, anti-virus, anti-cancer and growth-promoting compounds. These are highly significant economically due to their potential applications in the food, nutrition and health industries and thus support our communities' well-being.
Collapse
Affiliation(s)
- Muhanna Mohammed Al-shaibani
- Micro-Pollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Johor, Malaysia;
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Radin Maya Saphira Radin Mohamed
- Micro-Pollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Johor, Malaysia;
- Correspondence: (R.M.S.R.M.); (N.M.S.); (A.A.-G.)
| | - Nik Marzuki Sidik
- Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
- Correspondence: (R.M.S.R.M.); (N.M.S.); (A.A.-G.)
| | - Hesham Ali El Enshasy
- Institute of Bioproducts Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia;
- City of Scientific Research and Technology Applications (SRTA), 21934 New Burg Al Arab, Alexandria, Egypt
| | - Adel Al-Gheethi
- Micro-Pollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Johor, Malaysia;
- Correspondence: (R.M.S.R.M.); (N.M.S.); (A.A.-G.)
| | - Efaq Noman
- Applied Microbiology Department, Faculty of Applied Sciences, Taiz University, Taiz 6803, Yemen;
| | - Nabil Ali Al-Mekhlafi
- Atta-ur-Rahman Institute for Natural Product Discovery, UiTM, Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor, Malaysia;
- Biochemical Technology Program, Department of Chemistry Faculty of Applied Science, Thamar University, Thamar P.O. Box 87246, Yemen
| | - Noraziah Mohamad Zin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
25
|
Qureshi KA, Al Nasr I, Koko WS, Khan TA, Fatmi MQ, Imtiaz M, Khan RA, Mohammed HA, Jaremko M, Emwas AH, Azam F, Bholay AD, Elhassan GO, Prajapati DK. In Vitro and In Silico Approaches for the Antileishmanial Activity Evaluations of Actinomycins Isolated from Novel Streptomyces smyrnaeus Strain UKAQ_23. Antibiotics (Basel) 2021; 10:antibiotics10080887. [PMID: 34438937 PMCID: PMC8388687 DOI: 10.3390/antibiotics10080887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
Leishmaniasis, a Neglected Tropical Parasitic Disease (NTPD), is induced by several Leishmania species and is disseminated through sandfly (Lutzomyia longipalpis) bites. The parasite has developed resistance to currently prescribed antileishmanial drugs, and it has become pertinent to the search for new antileishmanial agents. The current study aimed to investigate the in vitro and in silico antileishmanial activity of two newly sourced actinomycins, X2 and D, produced by the novel Streptomyces smyrnaeus strain UKAQ_23. The antileishmanial activity conducted on promastigotes and amastigotes of Leishmania major showed actinomycin X2 having half-maximal effective concentrations (EC50), at 2.10 ± 0.10 μg/mL and 0.10 ± 0.0 μg/mL, and selectivity index (SI) values of 0.048 and 1, respectively, while the actinomycin D exhibited EC50 at 1.90 ± 0.10 μg/mL and 0.10 ± 0.0 μg/mL, and SI values of 0.052 and 1. The molecular docking studies demonstrated squalene synthase as the most favorable antileishmanial target protein for both the actinomycins X2 and D, while the xanthine phosphoribosyltransferase was the least favorable target protein. The molecular dynamics simulations confirmed that both the actinomycins remained stable in the binding pocket during the simulations. Furthermore, the MMPBSA (Molecular Mechanics Poisson-Boltzmann Surface Area) binding energy calculations established that the actinomycin X2 is a better binder than the actinomycin D. In conclusion, both actinomycins X2 and D from Streptomyces smyrnaeus strain UKAQ_23 are promising antileishmanial drug candidates and have strong potential to be used for treating the currently drug-resistant leishmaniasis.
Collapse
Affiliation(s)
- Kamal A. Qureshi
- Faculty of Biosciences and Biotechnology, Invertis University, Bareilly 243123, UP, India;
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Qassim, Saudi Arabia;
| | - Ibrahim Al Nasr
- Department of Biology, College of Science and Arts, Qassim University, Unaizah 51911, Qassim, Saudi Arabia;
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Qassim, Saudi Arabia;
| | - Waleed S. Koko
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Qassim, Saudi Arabia;
| | - Tariq A. Khan
- Department of Clinical Nutrition, College of Applied Health Sciences, Qassim University, Ar Rass 51921, Qassim, Saudi Arabia;
| | - M. Qaiser Fatmi
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45600, Pakistan; (M.Q.F.); (M.I.)
| | - Mahrukh Imtiaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45600, Pakistan; (M.Q.F.); (M.I.)
| | - Riaz A. Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Qassim, Saudi Arabia; (R.A.K.); (H.A.M.)
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Qassim, Saudi Arabia; (R.A.K.); (H.A.M.)
| | - Mariusz Jaremko
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Makkah, Saudi Arabia;
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Makkah, Saudi Arabia;
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Qassim, Saudi Arabia
- Correspondence: or (F.A.); (D.K.P.); Tel.: +966-502728652 (F.A.); +91-9454369931 (D.K.P.)
| | - Avinash D. Bholay
- Department of Microbiology, KTHM College, Savitribai Phule Pune University, Nashik 422002, MS, India;
| | - Gamal O. Elhassan
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Qassim, Saudi Arabia;
| | - Dinesh K. Prajapati
- Faculty of Biosciences and Biotechnology, Invertis University, Bareilly 243123, UP, India;
- Correspondence: or (F.A.); (D.K.P.); Tel.: +966-502728652 (F.A.); +91-9454369931 (D.K.P.)
| |
Collapse
|
26
|
Qureshi KA, Bholay AD, Rai PK, Mohammed HA, Khan RA, Azam F, Jaremko M, Emwas AH, Stefanowicz P, Waliczek M, Kijewska M, Ragab EA, Rehan M, Elhassan GO, Anwar MJ, Prajapati DK. Isolation, characterization, anti-MRSA evaluation, and in-silico multi-target anti-microbial validations of actinomycin X 2 and actinomycin D produced by novel Streptomyces smyrnaeus UKAQ_23. Sci Rep 2021; 11:14539. [PMID: 34267232 PMCID: PMC8282855 DOI: 10.1038/s41598-021-93285-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022] Open
Abstract
Streptomyces smyrnaeus UKAQ_23, isolated from the mangrove-sediment, collected from Jubail,Saudi Arabia, exhibited substantial antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA), including non-MRSA Gram-positive test bacteria. The novel isolate, under laboratory-scale conditions, produced the highest yield (561.3 ± 0.3 mg/kg fermented agar) of antimicrobial compounds in modified ISP-4 agar at pH 6.5, temperature 35 °C, inoculum 5% v/w, agar 1.5% w/v, and an incubation period of 7 days. The two major compounds, K1 and K2, were isolated from fermented medium and identified as Actinomycin X2 and Actinomycin D, respectively, based on their structural analysis. The antimicrobial screening showed that Actinomycin X2 had the highest antimicrobial activity compared to Actinomycin D, and the actinomycins-mixture (X2:D, 1:1, w/w) against MRSA and non-MRSA Gram-positive test bacteria, at 5 µg/disc concentrations. The MIC of Actinomycin X2 ranged from 1.56-12.5 µg/ml for non-MRSA and 3.125-12.5 µg/ml for MRSA test bacteria. An in-silico molecular docking demonstrated isoleucyl tRNA synthetase as the most-favored antimicrobial protein target for both actinomycins, X2 and D, while the penicillin-binding protein-1a, was the least-favorable target-protein. In conclusion, Streptomyces smyrnaeus UKAQ_23 emerged as a promising source of Actinomycin X2 with the potential to be scaled up for industrial production, which could benefit the pharmaceutical industry.
Collapse
Affiliation(s)
- Kamal A Qureshi
- Faculty of Biosciences and Biotechnology, Invertis University, Bareilly, UP, 243123, India.
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Qassim, 51911, Saudi Arabia.
| | - Avinash D Bholay
- Department of Microbiology, KTHM College, Savitribai Phule Pune University, Nashik, MS, 422002, India
| | - Pankaj K Rai
- Faculty of Biosciences and Biotechnology, Invertis University, Bareilly, UP, 243123, India
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Qassim, 51452, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371, Egypt
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Qassim, 51452, Saudi Arabia
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Qassim, 51911, Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Sciences and Engineering Division (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Piotr Stefanowicz
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie, Street-14, 50-383, Wroclaw, Poland
| | - Mateusz Waliczek
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie, Street-14, 50-383, Wroclaw, Poland
| | - Monika Kijewska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie, Street-14, 50-383, Wroclaw, Poland
| | - Ehab A Ragab
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371, Egypt
| | - Medhat Rehan
- Department of Genetics, Faculty of Agriculture, Kafr El-Sheikh University, Kafr El-Sheikh, 33516, Egypt
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Qassim, 51452, Saudi Arabia
| | - Gamal O Elhassan
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Qassim, 51911, Saudi Arabia
| | - Md Jamir Anwar
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah, Qassim, 51911, Saudi Arabia
| | - Dinesh K Prajapati
- Faculty of Biosciences and Biotechnology, Invertis University, Bareilly, UP, 243123, India.
| |
Collapse
|
27
|
Goel N, Fatima SW, Kumar S, Sinha R, Khare SK. Antimicrobial resistance in biofilms: Exploring marine actinobacteria as a potential source of antibiotics and biofilm inhibitors. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 30:e00613. [PMID: 33996521 PMCID: PMC8105627 DOI: 10.1016/j.btre.2021.e00613] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/19/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022]
Abstract
Antimicrobial resistance (AMR) is one of the serious global public health threats that require immediate action. With the emergence of new resistance mechanisms in infection-causing microorganisms such as bacteria, fungi, and viruses, AMR threatens the effective prevention and treatment of diseases caused by them. This has resulted in prolonged illness, disability, and death. It has been predicted that AMR will lead to over ten million deaths by 2050. The rapid spread of multidrug-resistant bacteria is also causing old antibiotics to become ineffective. Among the diverse factors contributing to AMR, intrinsic biofilm development has been highlighted as an essential contributing facet. Moreover, biofilm-derived antibiotic tolerance leads to serious recurrent chronic infections. Therefore, the discovery of novel bioactive molecules is a potential solution that can help combat AMR. To achieve this, sustained mining of novel antimicrobial leads from actinobacteria, particularly marine actinobacteria, can be a promising strategy. Given their vast diversity and different habitats, the extraordinary capacity of actinobacteria can be tapped to synthesize new antibiotics or bioactive molecules for biofilm inhibition. Advanced screening strategies and novel approaches in the field of modern biochemical and molecular biology can be used to detect such new compounds. In view of this, the present review focuses on understanding some of the recent strategies to inhibit biofilm formation and explores the potential role of marine actinobacteria as sources of novel antibiotics and biofilm inhibitor molecules.
Collapse
Affiliation(s)
- Nikky Goel
- Department of Chemistry, Indian Institute of Technology Delhi, India
| | | | - Sumit Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, India
| | | | - Sunil K. Khare
- Department of Chemistry, Indian Institute of Technology Delhi, India
| |
Collapse
|
28
|
Narayanan KB, Park GT, Han SS. Biocompatible, antibacterial, polymeric hydrogels active against multidrug-resistant Staphylococcus aureus strains for food packaging applications. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Al-Daghistani HI, Mohammad BT, Kurniawan TA, Singh D, Rabadi AD, Xue W, Avtar R, Othman MHD, Shirazian S. Characterization and applications of Thermomonas hydrothermalis isolated from Jordan's hot springs for biotechnological and medical purposes. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Qiu Y, Yoo HM, Cho N, Yan P, Liu Z, Cheng J, Suh JW. Secondary Metabolites Isolated From Streptomyces sp. MJM3055 and Their Cytotoxicity Against Jurkat Cells. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20977591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bacteria of the genus Streptomyces are used in multiple applications in the medical field owing to their ability to generate large quantities of secondary metabolites. Chromatographic purification of Streptomyces sp. MJM3055 led to the isolation of 1 new streptenol derivative, 1- O-acetylstreptenol A (2), along with (3 E,8 E)-1-hydroxydeca-3,8-dien-5-one (1), streptenol A (3), cyclo-(L-Ile-L-Pro) (4), streptazolin (5), and 7- O-acetylstreptazolin (6). The structures were elucidated by interpretation of combined mass spectrometry, circular dichroism, and 2-dimensional nuclear magnetic resonance spectroscopic data. Among these isolated compounds, compound 1 exhibited strong cytotoxic effects against Jurkat T cells.
Collapse
Affiliation(s)
- Yinda Qiu
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Hee Min Yoo
- Microbiological Analysis Team, Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
| | - Namki Cho
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Pengcheng Yan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Zhiguo Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jinhua Cheng
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Gyeonggi, Republic of Korea
| | - Joo-Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Gyeonggi, Republic of Korea
| |
Collapse
|
31
|
Dahal RH, Nguyen TM, Pandey RP, Yamaguchi T, Sohng JK, Noh J, Myung SW, Kim J. The genome insights of Streptomyces lannensis T1317-0309 reveals actinomycin D production. J Antibiot (Tokyo) 2020; 73:837-844. [DOI: 10.1038/s41429-020-0343-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 11/10/2022]
|
32
|
Activity of Actinomycetes Isolated from Mangrove Segara Anakan Cilacap toward Methicillin-resistant Staphylococcus aureus (MRSA). JURNAL KIMIA SAINS DAN APLIKASI 2020. [DOI: 10.14710/jksa.23.1.1-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major health concern because it causes numerous infections in both healthcare facilities and communities. The development of multiresistant against topical antibiotics has caused substantial difficulty in the management of Staphylococcus infection. Thus, this research was aimed to explore indigenous marine Actinomycetes isolated from Segara Anakan Cilacap for anti-MRSA activity. The methods used were screening anti-MRSA activity using agar-block method, production of anti-MRSA extract, extraction of the anti-MRSA extract with ethyl acetate, MIC determination of the ethyl-acetate extract, and species identification based on morphology and 16S rRNA genes. The results indicated that 14 out of 16 Actinomycetes have anti-MRSA activity. Three isolates, which were W-5B, W-5A, and P-7D, showed the highest anti-MRSA activity with the inhibition zone of 2.40 mm, 1.20 mm, and 0.80 mm, respectively. The minimum inhibitory concentration (MIC) of ethyl acetate extract from isolates W-5B, W-5A, and P-7D against MRSA were 2 mg/mL, 4 mg/mL, and 8 mg/mL, respectively. The species identification based on 16S rRNA genes indicated that Actinomycetes W-5B isolate has 92.51% similarity with Streptomyces sp. 2011. The W-5A has 94.69% similarity with Arthrobacter sp. HZ11. The P-7D has 94.79% similarity with Streptomyces clavuligerus strain A-ZN-05. The present study concludes that marine Actinomycetes from sediment mangrove in Segara Anakan Cilacap, Indonesia, has potency as anti-MRSA.
Collapse
|
33
|
Herbrík A, Corretto E, Chroňáková A, Langhansová H, Petrásková P, Hrdý J, Čihák M, Krištůfek V, Bobek J, Petříček M, Petříčková K. A Human Lung-Associated Streptomyces sp. TR1341 Produces Various Secondary Metabolites Responsible for Virulence, Cytotoxicity and Modulation of Immune Response. Front Microbiol 2020; 10:3028. [PMID: 32010093 PMCID: PMC6978741 DOI: 10.3389/fmicb.2019.03028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Streptomycetes, typical soil dwellers, can be detected as common colonizers of human bodies, especially the skin, the respiratory tract, the guts and the genital tract using molecular techniques. However, their clinical manifestations and isolations are rare. Recently they were discussed as possible "coaches" of the human immune system in connection with certain immune disorders and cancer. This work aimed for the characterization and evaluation of genetic adaptations of a human-associated strain Streptomyces sp. TR1341. The strain was isolated from sputum of a senior male patient with a history of lung and kidney TB, recurrent respiratory infections and COPD. It manifested remarkably broad biological activities (antibacterial, antifungal, beta-hemolytic, etc.). We found that, by producing specific secondary metabolites, it is able to modulate host immune responses and the niche itself, which increase its chances for long-term survival in the human tissue. The work shows possible adaptations or predispositions of formerly soil microorganism to survive in human tissue successfully. The strain produces two structural groups of cytotoxic compounds: 28-carbon cytolytic polyenes of the filipin type and actinomycin X2. Additionally, we summarize and present data about streptomycete-related human infections known so far.
Collapse
Affiliation(s)
- Andrej Herbrík
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Erika Corretto
- Institute of Soil Biology, Biology Centre Academy of Sciences of the Czech Republic, České Budějovice, Czechia
| | - Alica Chroňáková
- Institute of Soil Biology, Biology Centre Academy of Sciences of the Czech Republic, České Budějovice, Czechia
| | - Helena Langhansová
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Petra Petrásková
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Matouš Čihák
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Václav Krištůfek
- Institute of Soil Biology, Biology Centre Academy of Sciences of the Czech Republic, České Budějovice, Czechia
| | - Jan Bobek
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czechia.,Department of Chemistry, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czechia
| | - Miroslav Petříček
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Kateřina Petříčková
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
34
|
Sharma M, Jasrotia S, Ohri P, Manhas RK. Nematicidal potential of Streptomyces antibioticus strain M7 against Meloidogyne incognita. AMB Express 2019; 9:168. [PMID: 31641879 PMCID: PMC6805829 DOI: 10.1186/s13568-019-0894-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/10/2019] [Indexed: 11/10/2022] Open
Abstract
Meloidogyne spp. are microscopic, obligatory endoparasites with worldwide distribution which cause severe damage to agricultural crops. The present study revealed the nematicidal activity of Streptomyces antibioticus strain M7 against Meloidogyne incognita. The culture supernatant of the isolate caused 100% J2 mortality after 24 h and inhibited egg hatching (only 3%). In addition, the nematicidal activity of actinomycins V, X2 and D purified from strain M7 was also checked. In vitro studies displayed 97.0-99.0% juvenile mortality and 28.0-44.0% egg hatching after 168 h at 240 µg/ml of actinomycin, with LD50 (lethal dose) values of 28-120 µg/ml. In vivo study further validated the nematicidal activity of strain M7, where nematode infested tomato plants treated with culture supernatant/cells/solvent extract showed reduction in root galls and egg masses per plant by 50.0-62.06% and 53.48-76.74%, respectively, and significantly enhanced the shoot length (54.67-76.39%), root length (36.45-64.88%), shoot fresh weight (111-171.77%), root fresh weight (120-163.33%), shoot dry weight (54.45-145.45%), and root dry weight (100-133.3%) over the nematode infested plants treated with water. Furthermore, tomato plants treated with cells/culture supernatant/extract of strain M7 without nematode infestation also showed significant increase in various plant growth parameters. Thus, the outcome of the study revealed the potential of S. antibioticus strain M7 and actinomycins produced from it to be developed as safe nematicidal agents to control the root knot nematodes, and to increase the crop yield.
Collapse
|