1
|
Hariprasath K, Dhanvarsha M, Mohankumar S, Sudha M, Saranya N, Saminathan VR, Subramanian S. Characterization of gut microbiota in Apis cerana Across different altitudes in the Peninsular India. BMC Ecol Evol 2025; 25:39. [PMID: 40301729 PMCID: PMC12039211 DOI: 10.1186/s12862-025-02349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/06/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Honey bees are vital to global ecosystems and agriculture due to their role as key pollinators. The gut microbiota of honey bees is essential for their health, providing nutrition and protection against pathogens. While extensive research has been conducted on Western honey bees, Less is understood about the gut microbiota of Apis cerana, an economically important species in South Asia. This study aimed to identify and describe the gut microbiota of Apis cerana across different elevations in the Indian peninsula to understand how these bacterial communities adapt to various ecological niches. RESULTS High-throughput metagenome sequencing of the 16S rRNA gene (V1-V9 region) showed that the core microbiota genera in Apis cerana guts across elevations were Gilliamella, Lactobacillus, Snodgrassella, and Frischella. Gilliamella apicola and Lactobacillus kunkeei were identified as the most abundant species. Alpha diversity analysis showed a trend of decreasing species diversity as altitude increased from 200 to 1200 m, with a slight increase observed above 1400 m. Culturable bacterial species identified through 16S rRNA amplification belonged to the Proteobacteria, Firmicutes, and Actinobacteria phyla. Different elevations harboured distinct bacterial communities, with some species being unique to certain altitudes. CONCLUSIONS This study provides valuable insights into the diversity and adaptations of Apis cerana gut microbiota across various ecological niches in the Indian peninsula. The observed variations in microbial communities at different elevations suggest that environmental factors play a significant role in shaping the gut microbiota of honey bees. Understanding these microbial dynamics could help in developing strategies to improve bee health and address critical questions in host-microbe symbiosis. Furthermore, this research lays the groundwork for future studies on the functional roles of these bacterial communities in Apis cerana and their potential applications in beekeeping practices.
Collapse
Affiliation(s)
- K Hariprasath
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - M Dhanvarsha
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - S Mohankumar
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| | - M Sudha
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - N Saranya
- Department of Plant Molecular Biology & Bioinformatics, Tamil Nadu Agricultural University, Coimbatore-641003, India
| | - V R Saminathan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - S Subramanian
- Division of Entomology, NBB - Gut Microbiome Project Consortium, ICAR- IARI, New Delhi, India
| |
Collapse
|
2
|
Agarbati A, Gattucci S, Canonico L, Ciani M, Comitini F. Yeast communities related to honeybees: occurrence and distribution in flowers, gut mycobiota, and bee products. Appl Microbiol Biotechnol 2024; 108:175. [PMID: 38276993 PMCID: PMC10817854 DOI: 10.1007/s00253-023-12942-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024]
Abstract
Honeybee (Apis mellifera) is an important agricultural pollinator and a model for sociality. In this study, a deep knowledge on yeast community characterizing the honeybees' environmental was carried out. For this, a total of 93 samples were collected: flowers as food sources, bee gut mycobiota, and bee products (bee pollen, bee bread, propolis), and processed using culture-dependent techniques and a molecular approach for identification. The occurrence of yeast populations was quantitatively similar among flowers, bee gut mycobiota, and bee products. Overall, 27 genera and 51 species were identified. Basidiomycetes genera were predominant in the flowers while the yeast genera detected in all environments were Aureobasidium, Filobasidium, Meyerozyma, and Metschnikowia. Fermenting species belonging to the genera Debaryomyces, Saccharomyces, Starmerella, Pichia, and Lachancea occurred mainly in the gut, while most of the identified species of bee products were not found in the gut mycobiota. Five yeast species, Meyerozyma guilliermondii, Debaryomyces hansenii, Hanseniaspora uvarum, Hanseniaspora guilliermondii, and Starmerella roseus, were present in both summer and winter, thus indicating them as stable components of bee mycobiota. These findings can help understand the yeast community as a component of the bee gut microbiota and its relationship with related environments, since mycobiota characterization was still less unexplored. In addition, the gut microbiota, affecting the nutrition, endocrine signaling, immune function, and pathogen resistance of honeybees, represents a useful tool for its health evaluation and could be a possible source of functional yeasts. KEY POINTS: • The stable yeast populations are represented by M. guilliermondii, D. hansenii, H. uvarum, H. guilliermondii, and S. roseus. • A. pullulans was the most abondance yeast detective in the flowers and honeybee guts. • Aureobasidium, Meyerozyma, Pichia, and Hanseniaspora are the main genera resident in gut tract.
Collapse
Affiliation(s)
- Alice Agarbati
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Silvia Gattucci
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Laura Canonico
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Maurizio Ciani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Comitini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
3
|
Smutin D, Taldaev A, Lebedev E, Adonin L. Shotgun Metagenomics Reveals Minor Micro" bee"omes Diversity Defining Differences between Larvae and Pupae Brood Combs. Int J Mol Sci 2024; 25:741. [PMID: 38255816 PMCID: PMC10815634 DOI: 10.3390/ijms25020741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Bees represent not only a valuable asset in agriculture, but also serve as a model organism within contemporary microbiology. The metagenomic composition of the bee superorganism has been substantially characterized. Nevertheless, traditional cultural methods served as the approach to studying brood combs in the past. Indeed, the comb microbiome may contribute to determining larval caste differentiation and hive immunity. To further this understanding, we conducted a shotgun sequencing analysis of the brood comb microbiome. While we found certain similarities regarding species diversity, it exhibits significant differentiation from all previously described hive metagenomes. Many microbiome members maintain a relatively constant ratio, yet taxa with the highest abundance level tend to be ephemeral. More than 90% of classified metagenomes were Gammaproteobacteria, Bacilli and Actinobacteria genetic signatures. Jaccard dissimilarity between samples based on bacteria genus classifications hesitate from 0.63 to 0.77, which for shotgun sequencing indicates a high consistency in bacterial composition. Concurrently, we identified antagonistic relationships between certain bacterial clusters. The presence of genes related to antibiotic synthesis and antibiotic resistance suggests potential mechanisms underlying the stability of comb microbiomes. Differences between pupal and larval combs emerge in the total metagenome, while taxa with the highest abundance remained consistent. All this suggests that a key role in the functioning of the comb microbiome is played by minor biodiversity, the function of which remains to be established experimentally.
Collapse
Affiliation(s)
- Daniil Smutin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen 625003, Russia
- Faculty of Information Technology and Programming, ITMO University, St. Petersburg 197101, Russia
| | - Amir Taldaev
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen 625003, Russia
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Egor Lebedev
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen 625003, Russia
| | - Leonid Adonin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen 625003, Russia
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| |
Collapse
|
4
|
Kim M, Kim WJ, Park SJ. Analyzing Gut Microbial Community in Varroa destructor-Infested Western Honeybee ( Apis mellifera). J Microbiol Biotechnol 2023; 33:1495-1505. [PMID: 37482801 DOI: 10.4014/jmb.2306.06040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
The western honeybee Apis mellifera L., a vital crop pollinator and producer of honey and royal jelly, faces numerous threats including diseases, chemicals, and mite infestations, causing widespread concern. While extensive research has explored the link between gut microbiota and their hosts. However, the impact of Varroa destructor infestation remains understudied. In this study, we employed massive parallel amplicon sequencing assays to examine the diversity and structure of gut microbial communities in adult bee groups, comparing healthy (NG) and Varroa-infested (VG) samples. Additionally, we analyzed Varroa-infested hives to assess the whole body of larvae. Our results indicated a notable prevalence of the genus Bombella in larvae and the genera Gillamella, unidentified Lactobacillaceae, and Snodgrassella in adult bees. However, no statistically significant difference was observed between NG and VG. Furthermore, our PICRUSt analysis demonstrated distinct KEGG classification patterns between larval and adult bee groups, with larvae displaying a higher abundance of genes involved in cofactor and vitamin production. Notably, despite the complex nature of the honeybee bacterial community, methanogens were found to be present in low abundance in the honeybee microbiota.
Collapse
Affiliation(s)
- Minji Kim
- Department of Biology, Jeju National University, Jeju 63243, Republic of Korea
| | - Woo Jae Kim
- Center for Life Science (HCLS), Harbin Institute of Technology, No.92 West Dazhi Street, Nangang District, Harbin City, Hei Longjiang Province, P.R. China
| | - Soo-Je Park
- Department of Biology, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
5
|
The promise of probiotics in honeybee health and disease management. Arch Microbiol 2023; 205:73. [PMID: 36705763 DOI: 10.1007/s00203-023-03416-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023]
Abstract
Over the last decades, losses of bee populations have been observed worldwide. A panoply of biotic and abiotic factors, as well as the interplay among them, has been suggested to be responsible for bee declines, but definitive causes have not yet been identified. Among pollinators, the honeybee Apis mellifera is threatened by various diseases and environmental stresses, which have been shown to impact the insect gut microbiota that is known to be fundamental for host metabolism, development and immunity. Aimed at preserving the gut homeostasis, many researches are currently focusing on improving the honeybee health through the administration of probiotics e.g., by boosting the innate immune response against microbial infections. Here, we review the knowledge available on the characterization of the microbial diversity associated to honeybees and the use of probiotic symbionts as a promising approach to maintain honeybee fitness, sustaining a healthy gut microbiota and enhancing its crucial relationship with the host immune system.
Collapse
|
6
|
Guo B, Tang J, Ding G, Mashilingi SK, Huang J, An J. Gut microbiota is a potential factor in shaping phenotypic variation in larvae and adults of female bumble bees. Front Microbiol 2023; 14:1117077. [PMID: 36937270 PMCID: PMC10014921 DOI: 10.3389/fmicb.2023.1117077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Host symbionts are often considered an essential part of the host phenotype, influencing host growth and development. Bumble bee is an ideal model for investigating the relationship between microbiota and phenotypes. Variations in life history across bumble bees may influence the community composition of gut microbiota, which in turn influences phenotypes. In this study, we explored gut microbiota from four development stages (early-instar larvae, 1st instar; mid-instar larvae, 5th instar; late-instar larvae, 9th instar; and adults) of workers and queens in the bumble bee Bombus terrestris using the full-length 16S rRNA sequencing technology. The results showed that morphological indices (weight and head capsule) were significantly different between workers and queens from 5th instar larvae (p < 0.01). The alpha and beta diversities of gut microbiota were similar between workers and queens in two groups: early instar and mid instar larvae. However, the alpha diversity was significantly different in late instar larvae or adults. The relative abundance of three main phyla of bacteria (Cyanobacteria, Proteobacteria, and Firmicutes) and two genera (Snodgrassella and Lactobacillus) were significantly different (p < 0.01) between workers and queens in late instar larvae or adults. Also, we found that age significantly affected the microbial alpha diversity as the Shannon and ASVs indices differed significantly among the four development stages. Our study suggests that the 5th instar larval stage can be used to judge the morphology of workers or queens in bumble bees. The key microbes differing in phenotypes may be involved in regulating phenotypic variations.
Collapse
Affiliation(s)
- Baodi Guo
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiao Tang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guiling Ding
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shibonage K. Mashilingi
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Crop Sciences and Beekeeping Technology, College of Agriculture and Food Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Jiaxing Huang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiandong An
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Jiandong An,
| |
Collapse
|
7
|
Lanh PT, Duong BTT, Thu HT, Hoa NT, Yoo MS, Cho YS, Quyen DV. The Gut Microbiota at Different Developmental Stages of Apis cerana Reveals Potential Probiotic Bacteria for Improving Honeybee Health. Microorganisms 2022; 10:1938. [PMID: 36296213 PMCID: PMC9607016 DOI: 10.3390/microorganisms10101938] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 01/18/2024] Open
Abstract
Honeybees play a vital role in the ecological environment and agricultural economy. Increasing evidence shows that the gut microbiome greatly influences the host's health. Therefore, a thorough understanding of gut bacteria composition can lead to the development of probiotics specific for each development stage of honeybees. In this study, the gut microbiota at different developmental stages (larvae, pupae, and adults) of the honeybees Apis cerana in Hanoi, Vietnam, was assessed by sequencing the V3-V4 region in the 16S rRNA gene using the Illumina Miseq platform. The results indicated that the richness and diversity of the gut microbiota varied over the investigated stages of A. cenara. All three bee groups showed relative abundance at both phylum and family levels. In larvae, Firmicutes were the most predominant (81.55%); however, they decreased significantly along with the bee development (33.7% in pupae and 10.3% in adults) in favor of Proteobacteria. In the gut of adult bees, four of five core bacteria were found, including Gilliamella apicola group (34.01%) Bifidobacterium asteroides group (10.3%), Lactobacillus Firm-4 (2%), and Lactobacillus Firm-5 (1%). In contrast, pupae and larvae lacked almost all core bacteria except G. apicola (4.13%) in pupae and Lactobacillus Firm-5 (4.04%) in larvae. This is the first report on the gut microbiota community at different developmental stages of A. cerana in Vietnam and provides potential probiotic species for beekeeping.
Collapse
Affiliation(s)
- Pham Thi Lanh
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
| | - Bui Thi Thuy Duong
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
| | - Ha Thi Thu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
| | - Nguyen Thi Hoa
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
| | - Mi Sun Yoo
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Korea
| | - Yun Sang Cho
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Korea
| | - Dong Van Quyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
| |
Collapse
|
8
|
Honey Bee Larval and Adult Microbiome Life Stages Are Effectively Decoupled with Vertical Transmission Overcoming Early Life Perturbations. mBio 2021; 12:e0296621. [PMID: 34933445 PMCID: PMC8689520 DOI: 10.1128/mbio.02966-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microbiomes provide a range of benefits to their hosts which can lead to the coevolution of a joint ecological niche. However, holometabolous insects, some of the most successful organisms on Earth, occupy different niches throughout development, with larvae and adults being physiologically and morphologically highly distinct. Furthermore, transition between the stages usually involves the loss of the gut microbiome since the gut is remodeled during pupation. Most eusocial organisms appear to have evolved a workaround to this problem by sharing their communal microbiome across generations. However, whether this vertical microbiome transmission can overcome perturbations of the larval microbiome remains untested. Honey bees have a relatively simple, conserved, coevolved adult microbiome which is socially transmitted and affects many aspects of their biology. In contrast, larval microbiomes are more variable, with less clear roles. Here, we manipulated the gut microbiome of in vitro-reared larvae, and after pupation of the larvae, we inoculated the emerged bees with adult microbiome to test whether adult and larval microbiome stages may be coupled (e.g., through immune priming). Larval treatments differed in bacterial composition and abundance, depending on diet, which also drove larval gene expression. Nonetheless, adults converged on the typical core taxa and showed limited gene expression variation. This work demonstrates that honey bee adult and larval stages are effectively microbiologically decoupled, and the core adult microbiome is remarkably stable to early developmental perturbations. Combined with the transmission of the microbiome in early adulthood, this allows the formation of long-term host-microbiome associations. IMPORTANCE This work investigated host-microbiome interactions during a crucial developmental stage-the transition from larvae to adults, which is a challenge to both, the insect host and its microbiome. Using the honey bee as a tractable model system, we showed that microbiome transfer after emergence overrides any variation in the larvae, indicating that larval and adult microbiome stages are effectively decoupled. Together with the reliable vertical transfer in the eusocial system, this decoupling ensures that the adults are colonized with a consistent and derived microbiome after eclosion. Taken all together, our data provide additional support that the evolution of sociality, at least in the honey bee system tested here, is linked with host-microbiome relationships.
Collapse
|
9
|
Tauber JP, McMahon D, Ryabov EV, Kunat M, Ptaszyńska AA, Evans JD. Honeybee intestines retain low yeast titers, but no bacterial mutualists, at emergence. Yeast 2021; 39:95-107. [PMID: 34437725 DOI: 10.1002/yea.3665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/08/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Honeybee symbionts, predominantly bacteria, play important roles in honeybee health, nutrition, and pathogen protection, thereby supporting colony health. On the other hand, fungi are often considered indicators of poor bee health, and honeybee microbiome studies generally exclude fungi and yeasts. We hypothesized that yeasts may be an important aspect of early honeybee biology, and if yeasts provide a mutual benefit to their hosts, then honeybees could provide a refuge during metamorphosis to ensure the presence of yeasts at emergence. We surveyed for yeast and fungi during pupal development and metamorphosis in worker bees using fungal-specific quantitative polymerase chain reaction (qPCR), next-generation sequencing, and standard microbiological culturing. On the basis of yeast presence in three distinct apiaries and multiple developmental stages, we conclude that yeasts can survive through metamorphosis and in naïve worker bees, albeit at relatively low levels. In comparison, known bacterial mutualists, like Gilliamella and Snodgrassella, were generally not found in pre-eclosed adult bees. Whether yeasts are actively retained as an important part of the bee microbiota or are passively propagating in the colony remains unknown. Our demonstration of the constancy of yeasts throughout development provides a framework to further understand the honeybee microbiota.
Collapse
Affiliation(s)
- James P Tauber
- Bee Research Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, Maryland, USA.,Department for Materials and the Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Dino McMahon
- Department for Materials and the Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany.,Institute for Biology, Free University of Berlin, Berlin, Germany
| | - Eugene V Ryabov
- Bee Research Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, Maryland, USA
| | - Magdalena Kunat
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Aneta A Ptaszyńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Jay D Evans
- Bee Research Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, Maryland, USA
| |
Collapse
|
10
|
Structural diversity and functional variability of gut microbial communities associated with honey bees. Microb Pathog 2020; 138:103793. [DOI: 10.1016/j.micpath.2019.103793] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022]
|