1
|
Timmler SB, Kristich CJ. The extracellular segment of CroS is not required for sensing but fine-tunes the magnitude of CroS signaling to regulate cephalosporin resistance in Enterococcus faecalis. J Bacteriol 2024; 206:e0027424. [PMID: 39445796 PMCID: PMC11580428 DOI: 10.1128/jb.00274-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Enterococci are Gram-positive bacteria that colonize the gastrointestinal tract. Clinically relevant enterococci are intrinsically resistant to antibiotics in the cephalosporin family, and prior therapy with cephalosporins is a major risk factor for the acquisition of an enterococcal infection. One important determinant of intrinsic cephalosporin resistance in enterococci is the two-component signal transduction system CroS/R. The CroS sensor kinase senses cephalosporin-induced cell wall stress to become activated and phosphorylates its cognate response regulator CroR, thereby enhancing CroR-dependent gene expression to drive cephalosporin resistance. CroS possesses a short (~30 amino acids) extracellular segment between its two transmembrane domains near the N-terminus, but whether this extracellular segment is important for sensing cephalosporin stress, or possesses any other function, has remained unknown. Here, we explored the role of the CroS extracellular segment through mutagenesis and functional studies. We found that mutations in the CroS extracellular segment biased CroS to adopt a more active state during ceftriaxone stress, which led to an increase in CroR-dependent gene expression and hyper-resistance to ceftriaxone. Importantly, these mutants still responded to ceftriaxone-mediated stress by enhancing CroS activity, indicating that the extracellular segment of CroS does not directly bind a regulatory ligand. Overall, our results suggest that although the extracellular segment of CroS does not directly bind a regulatory ligand, it can modulate the magnitude of CroS signaling for phosphorylation of CroR to regulate cephalosporin resistance through the resulting changes in CroR-dependent gene expression. IMPORTANCE Clinically relevant enterococci are intrinsically resistant to antibiotics in the cephalosporin family. The CroS sensor kinase senses cephalosporin-induced cell wall stress to trigger signaling that drives cephalosporin resistance, but the mechanism by which CroS senses stress is unknown. We report the first functional characterization of the CroS extracellular segment, revealing that mutations in the extracellular segment did not prevent CroS from responding to cell wall stress but instead biased CroS to adopt a more active state during cephalosporin stress that led to an increase in CroR-dependent gene expression and hyper-resistance to ceftriaxone. Overall, our results suggest that the extracellular segment of CroS does not directly bind to a regulatory ligand but that it can modulate the magnitude of CroS signaling.
Collapse
Affiliation(s)
- Sarah B. Timmler
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher J. Kristich
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Claverie C, Coppolino F, Mazzuoli MV, Guyonnet C, Jacquemet E, Legendre R, Sismeiro O, De Gaetano GV, Teti G, Trieu-Cuot P, Tazi A, Beninati C, Firon A. Constitutive activation of two-component systems reveals regulatory network interactions in Streptococcus agalactiae. Nat Commun 2024; 15:9175. [PMID: 39448655 PMCID: PMC11502775 DOI: 10.1038/s41467-024-53439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Bacterial two-component systems (TCSs) are signaling modules that control physiology, adaptation, and host interactions. A typical TCS consists of a histidine kinase (HK) that activates a response regulator via phosphorylation in response to environmental signals. Here, we systematically test the effect of inactivating the conserved phosphatase activity of HKs to activate TCS signaling pathways. Transcriptome analyses of 14 HK mutants in Streptococcus agalactiae, the leading cause of neonatal meningitis, validate the conserved HK phosphatase mechanism and its role in the inhibition of TCS activity in vivo. Constitutive TCS activation, independent of environmental signals, enables high-resolution mapping of the regulons for several TCSs (e.g., SaeRS, BceRS, VncRS, DltRS, HK11030, HK02290) and reveals the functional diversity of TCS signaling pathways, ranging from highly specialized to interconnected global regulatory networks. Targeted analysis shows that the SaeRS-regulated PbsP adhesin acts as a signaling molecule to activate CovRS signaling, thereby linking the major regulators of host-pathogen interactions. Furthermore, constitutive BceRS activation reveals drug-independent activity, suggesting a role in cell envelope homeostasis beyond antimicrobial resistance. This study highlights the versatility of constitutive TCS activation, via phosphatase-deficient HKs, to uncover regulatory networks and biological processes.
Collapse
Affiliation(s)
- Cosme Claverie
- Institut Pasteur, Université Paris Cité, Department of Microbiology, Biology of Gram-Positive Pathogens, Paris, France
| | - Francesco Coppolino
- Institut Pasteur, Université Paris Cité, Department of Microbiology, Biology of Gram-Positive Pathogens, Paris, France
- University of Messina, Department of Human Pathology, Messina, Italy
| | - Maria-Vittoria Mazzuoli
- Institut Pasteur, Université Paris Cité, Department of Microbiology, Biology of Gram-Positive Pathogens, Paris, France
| | - Cécile Guyonnet
- Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Department of Bacteriology, French National Reference Center for Streptococci, Paris, France
- Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Team Bacteria and Perinatality, Paris, France
- Fédération Hospitalo-Universitaire Fighting Prematurity, Paris, France
| | - Elise Jacquemet
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Rachel Legendre
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Odile Sismeiro
- Institut Pasteur, Université Paris Cité, Department of Microbiology, Biology of Gram-Positive Pathogens, Paris, France
| | | | | | - Patrick Trieu-Cuot
- Institut Pasteur, Université Paris Cité, Department of Microbiology, Biology of Gram-Positive Pathogens, Paris, France
| | - Asmaa Tazi
- Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Department of Bacteriology, French National Reference Center for Streptococci, Paris, France
- Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Team Bacteria and Perinatality, Paris, France
- Fédération Hospitalo-Universitaire Fighting Prematurity, Paris, France
| | - Concetta Beninati
- University of Messina, Department of Human Pathology, Messina, Italy
| | - Arnaud Firon
- Institut Pasteur, Université Paris Cité, Department of Microbiology, Biology of Gram-Positive Pathogens, Paris, France.
| |
Collapse
|
3
|
Fang X, Yang Y, Guo Q, Zhang Y, Yuan M, Liang X, Liu J, Fang S, Fang C. Two-component system LiaSR negatively regulated the acid resistance and pathogenicity of Listeria monocytogenes 10403S. Food Microbiol 2024; 119:104428. [PMID: 38225058 DOI: 10.1016/j.fm.2023.104428] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
The glutamate decarboxylase (GAD) system is one of the acid-resistant systems of Listeria monocytogenes (L. monocytogenes), while the regulatory mechanism of GadT2/GadD2, which plays the major role in the GAD system for acid resistance, is not clear. The two-component system (TCS) is a signal transduction system that is also involved in regulating acid resistance in bacteria. By screening the TCSs of L. monocytogenes 10403S, we found that knocking out the TCS LisSR (encoded by lmo1021/lmo1022) led to a significant increase in the transcription and expression of the gadT2/gadD2 cluster. Subsequently, we constructed a complemental strain CΔliaSR. and a complemental strain with LiaS His157 to Ala, which was designated as CΔliaSRH157A. Survival assay, transcriptional and expression analysis and pathogenicity assay revealed that liaSR deletion significantly enhanced the acid resistance and pathogenicity of 10403S and significantly increased the gadT2/gadD2 transcription and expression. Mutating LiaS His157 to Ala significantly enhanced the acid resistance and pathogenicity of CΔliaSR and significantly increased the gadT2/gadD2 transcription and expression. The results suggest that the two-component system LiaSR mediates the acid resistance and pathogenicity in 10403S by inhibiting the gadT2/gadD2 cluster, and the key activation site of LiaS is His157. This study provides novel knowledge on the regulation of GAD system and the control of this foodborne pathogen.
Collapse
Affiliation(s)
- Xiaowei Fang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou, 434025, China; College of Agriculture, Yangtze University, No.88, Jingmi Road, Jingzhou, 434025, China
| | - Yuying Yang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou, 434025, China
| | - Qian Guo
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou, 434025, China
| | - Yu Zhang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou, 434025, China
| | - Mei Yuan
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou, 434025, China
| | - Xiongyan Liang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou, 434025, China
| | - Jing Liu
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou, 434025, China
| | - Shouguo Fang
- College of Agriculture, Yangtze University, No.88, Jingmi Road, Jingzhou, 434025, China.
| | - Chun Fang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou, 434025, China.
| |
Collapse
|
4
|
Lo HY, Long DR, Holmes EA, Penewit K, Hodgson T, Lewis JD, Waalkes A, Salipante SJ. Transposon sequencing identifies genes impacting Staphylococcus aureus invasion in a human macrophage model. Infect Immun 2023; 91:e0022823. [PMID: 37676013 PMCID: PMC10580828 DOI: 10.1128/iai.00228-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/13/2023] [Indexed: 09/08/2023] Open
Abstract
Staphylococcus aureus is a facultative intracellular pathogen in many host cell types, facilitating its persistence in chronic infections. The genes contributing to intracellular pathogenesis have not yet been fully enumerated. Here, we cataloged genes influencing S. aureus invasion and survival within human THP-1 derived macrophages using two laboratory strains (ATCC2913 and JE2). We developed an in vitro transposition method to produce highly saturated transposon mutant libraries in S. aureus and performed transposon insertion sequencing (Tn-Seq) to identify candidate genes with significantly altered abundance following macrophage invasion. While some significant genes were strain-specific, 108 were identified as common across both S. aureus strains, with most (n = 106) being required for optimal macrophage infection. We used CRISPR interference (CRISPRi) to functionally validate phenotypic contributions for a subset of genes. Of the 20 genes passing validation, seven had previously identified roles in S. aureus virulence, and 13 were newly implicated. Validated genes frequently evidenced strain-specific effects, yielding opposing phenotypes when knocked down in the alternative strain. Genomic analysis of de novo mutations occurring in groups (n = 237) of clonally related S. aureus isolates from the airways of chronically infected individuals with cystic fibrosis (CF) revealed significantly greater in vivo purifying selection in conditionally essential candidate genes than those not associated with macrophage invasion. This study implicates a core set of genes necessary to support macrophage invasion by S. aureus, highlights strain-specific differences in phenotypic effects of effector genes, and provides evidence for selection of candidate genes identified by Tn-Seq analyses during chronic airway infection in CF patients in vivo.
Collapse
Affiliation(s)
- Hsin-Yu Lo
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Dustin R. Long
- Division of Critical Care Medicine, Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elizbeth A. Holmes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kelsi Penewit
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Taylor Hodgson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Janessa D. Lewis
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
5
|
Structural and biochemical analyses of the flagellar expression regulator DegU from Listeria monocytogenes. Sci Rep 2022; 12:10856. [PMID: 35798759 PMCID: PMC9263151 DOI: 10.1038/s41598-022-14459-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Listeria monocytogenes is a pathogenic bacterium that produces flagella, the locomotory organelles, in a temperature-dependent manner. At 37 °C inside humans, L. monocytogenes employs MogR to repress the expression of flagellar proteins, thereby preventing the production of flagella. However, in the low-temperature environment outside of the host, the antirepressor GmaR inactivates MogR, allowing flagellar formation. Additionally, DegU is necessary for flagellar expression at low temperatures. DegU transcriptionally activates the expression of GmaR and flagellar proteins by binding the operator DNA in the fliN-gmaR promoter as a response regulator of a two-component regulatory system. To determine the DegU-mediated regulation mechanism, we performed structural and biochemical analyses on the recognition of operator DNA by DegU. The DegU-DNA interaction is primarily mediated by a C-terminal DNA-binding domain (DBD) and can be fortified by an N-terminal receiver domain (RD). The DegU DBD adopts a tetrahelical helix-turn-helix structure and assembles into a dimer. The DegU DBD dimer recognizes the operator DNA using a positive patch. Unexpectedly, unlike typical response regulators, DegU interacts with operator DNA in both unphosphorylated and phosphorylated states with similar binding affinities. Therefore, we conclude that DegU is a noncanonical response regulator that is constitutively active irrespective of phosphorylation.
Collapse
|