1
|
Urrea V, Páez-Triana L, Velásquez-Ortiz N, Camargo M, Patiño LH, Vega L, Ballesteros N, Hidalgo-Troya A, Galeano LA, Ramírez JD, Muñoz M. Metagenomic Analysis of Surface Waters and Wastewater in the Colombian Andean Highlands: Implications for Health and Disease. Curr Microbiol 2025; 82:162. [PMID: 40021498 PMCID: PMC11870934 DOI: 10.1007/s00284-024-04019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/02/2024] [Indexed: 03/03/2025]
Abstract
Urban water bodies serve as critical reservoirs of microbial diversity, with major implications for public health and environmental quality. This study aimed to characterize the microbial diversity of surface waters and wastewater from the Pasto River in the Colombian Andean Highlands, offering insights that may support water quality monitoring efforts. Sampling was conducted at three river sites and one wastewater location. Standard physicochemical and microbiological analyses were performed, including real-time PCR to detect protozoan pathogens Giardia spp. and Cryptosporidium spp. Metagenomic sequencing provided an in-depth taxonomic and functional profile of microbial communities through two complementary approaches: (i) read-based analysis to identify abundant families and species, both pathogenic and beneficial, and (ii) detection of health-related molecular markers, including antimicrobial resistance markers and virulence factors. Physicochemical analyses showed distinct profiles between wastewater and surface water, with wastewater exhibiting elevated levels of suspended solids (113.6 mg/L), biochemical oxygen demand (BOD, 311.2 mg/L), and chemical oxygen demand (COD, 426.7 mg/L). Real-time PCR detected Giardia spp. DNA in 75% (76/102) of the samples and Cryptosporidium spp. DNA in 94% (96/102) of samples. The metagenomic read-based profiling identified Aeromonas media as a prevalent pathogen and Polaromonas naphthalenivorans as a potential biodegradative agent. The metagenomic assembly produced 270 high-quality genomes, revealing 16 bacterial species (e. g., Acinetobacter johnsonii and Megamonas funiformis) that provided insights into fecal contaminants and native aquatic microbes. Functional profiling further revealed a high prevalence of antimicrobial resistance markers, particularly for tetracyclines, aminoglycosides, and macrolides, with the highest abundance found in wastewater samples. Additionally, virulence factors were notably present in Zoogloea ramigera. The findings underscore the value of metagenomic profiling as a comprehensive tool for water quality monitoring, facilitating the detection of pathogens, beneficial species, and molecular markers indicative of potential health risks. This approach supports continuous monitoring efforts, offering actionable data for water management strategies to safeguard public health and maintain ecological integrity.
Collapse
Affiliation(s)
- Vanessa Urrea
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Natalia Velásquez-Ortiz
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Milena Camargo
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, 250027, Funza, Cundinamarca, Colombia
| | - Luz H Patiño
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Laura Vega
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Nathalia Ballesteros
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Arsenio Hidalgo-Troya
- Grupo de Investigación Salud Pública, Departamento de Matemáticas y Estadística, Universidad de Nariño, 520002, Pasto, Colombia
| | - Luis-Alejandro Galeano
- Grupo de Investigación en Materiales Funcionales y Catálisis (GIMFC), Departamento de Química, Universidad de Nariño, 520002, Pasto, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia.
- Instituto de Biotecnología-UN (IBUN), Universidad Nacional de Colombia, 111321, Bogotá, Colombia.
| |
Collapse
|
2
|
Rungsirivanich P, Parlindungan E, Mahony J, Supandee W, Thongwai N, van Sinderen D. Functional genomic insights into Floricoccus penangensis ML061-4 isolated from leaf surface of Assam tea. Sci Rep 2025; 15:2951. [PMID: 39848972 PMCID: PMC11758030 DOI: 10.1038/s41598-025-86602-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025] Open
Abstract
Floricoccus penangensis ML061-4 was originally isolated from the leaf surface of an Assam tea plant (Camellia sinensis var. assamica) from Northern Thailand. To assess the functions encoded by the F. penangensis ML061-4 genome, gene identification and annotation were undertaken by in silico analysis. The complete genome of F. penangensis ML061-4 consists of single chromosome of 2,159,127 base pairs, containing a GC content of 33.2% and encompassing 2049 predicted protein-encoding genes. A total of 1195 genes (58.0%) in the F. penangensis ML061-4 genome have assignable functions based on BlastKOALA analysis. Furthermore, 1235 genes (59.9%) were classified into six KEGG functional categories with 187 associated pathways, while 1419 genes (68.8%) were assigned a putative function by the Clusters of Orthologous Groups (COGs) database. The ML061-4 genome was evaluated for genes associated with complex carbohydrate metabolism, bacterial adhesion, virulence factors, pathogenicity, bacteriophages, antiviral defence systems as well as toxin- and antibiotic-resistance associated genes, and genes involved in toxin production, secondary metabolite biosynthesis and xenobiotics biodegradation. The obtained results support the notion of F. penangensis ML061-4 being safe for biotechnological and food industry purposes. This is the first report outlining functional genomic insights regarding a member of the genus Floricoccus.
Collapse
Affiliation(s)
- Patthanasak Rungsirivanich
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Community Development Department, Ministry of Interior, Bangkok, 10210, Thailand
- School of Microbiology, University College Cork, Cork, T12 YT20, Ireland
| | - Elvina Parlindungan
- School of Microbiology, University College Cork, Cork, T12 YT20, Ireland
- APC Microbiome Ireland, University College Cork, Cork, T12 TP07, Ireland
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, T12 YT20, Ireland
- APC Microbiome Ireland, University College Cork, Cork, T12 TP07, Ireland
| | - Witsanu Supandee
- Engineering Science Classroom, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Narumol Thongwai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, T12 YT20, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, T12 TP07, Ireland.
| |
Collapse
|
3
|
Ali MS, Ahmed S, Tanimoto Y, Wada T, Kage-Nakadai E. Lactococcus lactis subsp. lactis boosts stress resistance and host defense mechanisms in Caenorhabditis elegans. J Appl Microbiol 2025; 136:lxaf016. [PMID: 39825644 DOI: 10.1093/jambio/lxaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/17/2024] [Accepted: 01/16/2025] [Indexed: 01/20/2025]
Abstract
AIMS To investigate the effects of Lactococcus lactis subsp. lactis strains LL100933 and LL12007 on the host defense mechanisms of Caenorhabditis elegans against pathogenic infections and stressors. METHODS AND RESULTS Caenorhabditis elegans fed a 1:1 mixture of Escherichia coli OP50 and LL100933 (OP50 + LL100933) or E. coli OP50 and LL12007 (OP50 + LL12007) had significantly higher survivability than the control diet (OP50). Moreover, when OP50 + LL100933 and OP50 + LL12007 were fed to C. elegans deficient in daf-16 and pmk-1, survival did not exceed that of control-fed worms under Salmonella infection. Therefore, these strains may enhance the survivability of C. elegans through the p38 MAPK and DAF-16-related pathways. Gene expressions responsible for these enhanced defense responses were estimated using RNA sequencing and gene ontology analysis. The test groups showed significant upregulation of glutathione S-transferase (gsto-1, gst-5, and gst-17), UDP-glucuronyl transferase (ugt-13, ugt-16, and ugt-21), heme-responsive (hrg-4), invertebrate-type lysozyme (ilys-2), and C-type lectin (clec-52) genes compared to those in the control group. CONCLUSION Lactococcus lactis subsp. lactis LL100933 and LL12007 strains demonstrated promising benefits as probiotics for enhancing host defense mechanisms in C. elegans.
Collapse
Affiliation(s)
- Mohammad Shaokat Ali
- Graduate School of Human Life Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka 558-8585, Japan
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh
| | - Shamima Ahmed
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh
- Graduate School of Human Life and Ecology, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka 558-8585, Japan
| | - Yoshihiko Tanimoto
- Graduate School of Human Life and Ecology, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka 558-8585, Japan
- Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takayuki Wada
- Graduate School of Human Life and Ecology, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka 558-8585, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, 1-2-7-601, Asahimachi, Abeno-Ku, Osaka 545-0051, Japan
| | - Eriko Kage-Nakadai
- Graduate School of Human Life and Ecology, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka 558-8585, Japan
- Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
4
|
Ma Z, Chang J, Li J, Wan B, Wang H. Mechanistic Insight into the Reproductive Toxicity of Trifloxystrobin in Male Sprague-Dawley Rats. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22014-22026. [PMID: 39626112 DOI: 10.1021/acs.est.4c08168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Previous studies have demonstrated the reproductive toxicity of trifluorostrobin (TRI) in male organisms. However, the underlying mechanisms of TRI responsible for testicular damage and hormonal disruption remain elusive. This study elucidated the male reproductive toxicity of TRI at the molecular level under environmentally relevant concentrations and its associations with gut microbiota dysbiosis. The rats were administered TRI (1.5, 15, and 75 mg/kg of body weight/day) continuously via gavage for 90 days. Exposure to 15 mg/kg (below the no-observed adverse effect level (NOAEL) of 30 mg/kg) and 75 mg/kg TRI damaged testicular tissue, reduced sperm count, and lowered serum hormone and total cholesterol levels. Transcriptomics analysis combined with molecular docking simulations and cell proliferation assays showed that exposure to TRI led to testicular damage by inhibiting the expression of cholesterol receptor genes, which, in turn, disrupted steroid hormone biosynthesis. Furthermore, exposure to TRI resulted in a marked decline in the relative abundance of the probiotic bacteria. Consistently, significant reductions in the relative abundance of short-chain fatty acids (SCFAs), retinoic acids, and steroid hormones in the gut were observed. Additionally, a significant correlation was observed between the relative abundance of Parabacteroides and serum testosterone levels, a vital biomarker for reproductive toxicity monitoring. These findings shed light on the mode of action of TRI-induced male reproductive toxicity and highlight the link between testicular injury and gut microbiota.
Collapse
Affiliation(s)
- Zheng Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
- University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Jing Chang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Jianzhong Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Bin Wan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
- University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Huili Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| |
Collapse
|
5
|
Zhang L, Ma H, Tang W, Zeng J, Kulyar MF, Hu J. Changes in the Microbiome in Yak Mastitis: Insights Based on Full-Length 16S rRNA Sequencing. Vet Sci 2024; 11:335. [PMID: 39195789 PMCID: PMC11359330 DOI: 10.3390/vetsci11080335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Mastitis is an inflammation of the mammary gland that can be caused by various factors, including biological, chemical, mechanical, or physical. Microbiological culture, DNA techniques, and high-throughput next-generation sequencing have been used to identify mastitis-causing pathogens in various animal species. However, little is known about microbiota and microbiome changes linked to yak milk mastitis. This study aimed to characterize the milk microbiota of healthy and mastitis-infected yaks using full-length 16S rRNA sequencing. The results showed that the bacterial microbiota comprises 7 phyla, 9 classes, 20 orders, 39 families, 59 genera, and 72 species. Proteobacteria and Firmicutes were the predominant microbial communities, with lower abundances of Bacteroidota, Actinobacteriota, Acidobacteriota, and other minor groupings also observed. Proteobacteria dominated the clinical and subclinical mastitis groups (95.36% and 89.32%, respectively), in contrast to the healthy group (60.17%). Conversely, Firmicutes were more common in the healthy group (39.7%) than in the subclinical and clinical mastitis groups (10.49% and 2.92%, respectively). The predominant organisms found in the healthy group were Leuconostoc mesenteroides, Lactococcus piscium, Carnobacterium maltaromaticum, and Lactococcus raffinolactis. Low abundances of Staphylococcus aureus species were found in both subclinical and clinical mastitis groups, with Moraxella osloensis and Psychrobacter cibarius dominating the subclinical mastitis group and Pseudomonas fluorescens dominating the clinical mastitis group. An alpha diversity study revealed that the healthy group had a higher microbial diversity than the clinical and subclinical mastitis groups. According to beta-diversity analysis, the principal coordinate analysis identified that mastitis-infected samples significantly differed from healthy ones. The milk microbiota of healthy yaks is more varied, and specific prominent taxa within various groups can act as marker microorganisms for mastitis risk. The genera Leuconostoc and Lactococcus are promising candidates for creating probiotics.
Collapse
Affiliation(s)
- Lihong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Hongcai Ma
- Institute of Animal Husbandry and Veterinary Medicine, Xizang Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (H.M.); (W.T.); (J.Z.)
| | - Wenqiang Tang
- Institute of Animal Husbandry and Veterinary Medicine, Xizang Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (H.M.); (W.T.); (J.Z.)
| | - Jiangyong Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Xizang Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (H.M.); (W.T.); (J.Z.)
| | - Md. F. Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| |
Collapse
|
6
|
Guo Y, Askari N, Smets I, Appels L. A review on co-metabolic degradation of organic micropollutants during anaerobic digestion: Linkages between functional groups and digestion stages. WATER RESEARCH 2024; 256:121598. [PMID: 38663209 DOI: 10.1016/j.watres.2024.121598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
The emerging presence of organic micropollutants (OMPs) in water bodies produced by human activities is a source of growing concern due to their environmental and health issues. Biodegradation is a widely employed treatment method for OMPs in wastewater owing to its high efficiency and low operational cost. Compared to aerobic degradation, anaerobic degradation has numerous advantages, including energy efficiency and superior performance for certain recalcitrant compounds. Nonetheless, the low influent concentrations of OMPs in wastewater treatment plants (WWTPs) and their toxicity make it difficult to support the growth of microorganisms. Therefore, co-metabolism is a promising mechanism for OMP biodegradation in which co-substrates are added as carbon and energy sources and stimulate increased metabolic activity. Functional microorganisms and enzymes exhibit significant variations at each stage of anaerobic digestion affecting the environment for the degradation of OMPs with different structural properties, as these factors substantially influence OMPs' biodegradability and transformation pathways. However, there is a paucity of literature reviews that explicate the correlations between OMPs' chemical structure and specific metabolic conditions. This study provides a comprehensive review of the co-metabolic processes which are favored by each stage of anaerobic digestion and attempts to link various functional groups to their favorable degradation pathways. Furthermore, potential co-metabolic processes and strategies that can enhance co-digestion are also identified, providing directions for future research.
Collapse
Affiliation(s)
- Yutong Guo
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS) Campus De Nayer, Jan Pieter De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium
| | - Najmeh Askari
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS) Campus De Nayer, Jan Pieter De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium
| | - Ilse Smets
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F box 2424, Heverlee 3001, Belgium
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS) Campus De Nayer, Jan Pieter De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium.
| |
Collapse
|
7
|
Paiva NML, Ribeiro SC, Rosa HJD, Silva CCG. Comparative study of the bacterial community of organic and conventional cow's milk. Food Microbiol 2024; 120:104488. [PMID: 38431314 DOI: 10.1016/j.fm.2024.104488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 03/05/2024]
Abstract
Agricultural practises such as conventional and organic farming can potentially affect the microbial communities in milk. In the present study, the bacterial diversity of milk was investigated using high-throughput sequencing on ten organic and ten conventional farms in the Azores, a region where milk production is largely based on year-round grazing systems. The microbiota of milk from both production systems was dominated by Bacillota, Pseudomonadota, Actinomycetota and Bacteroidota. The organic milk showed greater heterogeneity between farms, as reflected in the dispersion of diversity indices and the large variation in the relative abundances of the dominant genera. In contrast, conventionally produced milk showed a high degree of similarity within each season. In the conventional production system, the season also had a strong influence on the bacterial community, but this effect was not observed in the organic milk. The LEfSe analysis identified the genus Iamia as significantly (p < 0.05) more abundant in organic milk, but depending on the season, several other genera were identified that distinguished organic milk from conventionally produced milk. Of these, Bacillus, Iamia and Nocardioides were associated with the soil microbiota in organic farming.
Collapse
Affiliation(s)
- Nuno M L Paiva
- School of Agrarian and Environmental Sciences, University of the Azores, Angra do Heroísmo, Azores, Portugal
| | - Susana C Ribeiro
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, Angra do Heroísmo, Azores, Portugal
| | - Henrique J D Rosa
- School of Agrarian and Environmental Sciences, University of the Azores, Angra do Heroísmo, Azores, Portugal; Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, Angra do Heroísmo, Azores, Portugal
| | - Célia C G Silva
- School of Agrarian and Environmental Sciences, University of the Azores, Angra do Heroísmo, Azores, Portugal; Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, Angra do Heroísmo, Azores, Portugal.
| |
Collapse
|
8
|
Goicochea-Vargas J, Salvatierra-Alor M, Acosta-Pachorro F, Rondón-Jorge W, Herrera-Briceño A, Morales-Parra E, Mialhe E. Genomic characterization and probiotic potential of lactic acid bacteria isolated from feces of guinea pig ( Cavia porcellus). Open Vet J 2024; 14:716-729. [PMID: 38549567 PMCID: PMC10970124 DOI: 10.5455/ovj.2024.v14.i2.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/23/2023] [Indexed: 04/02/2024] Open
Abstract
Background Presently, there exists a growing interest in mitigating the utilization of antibiotics in response to the challenges emanating from their usage in livestock. A viable alternative strategy encompasses the introduction of live microorganisms recognized as probiotics, exerting advantageous impacts on the immune system and nutritional aspects of the host animals. Native lactic acid bacteria, inherently possessing specific properties and adaptive capabilities tailored to each animal, are deemed optimal contenders for probiotic advancement. Aim In the current investigation, microorganisms exhibiting probiotic potential were isolated, characterized, and identified from the fecal samples of guinea pigs (Cavia porcellus) belonging to the Peruvian breed. Methods The lactic acid bacteria isolated on Man, Rogosa, and Sharpe agar underwent Gram staining, catalase testing, proteolytic, amylolytic, and cellulolytic activity assays, low pH tolerance assessment, hemolytic evaluation, antagonism against Salmonella sp., determination of autoaggregation and coaggregation capacity, and genotypic characterization through sequencing of the 16S rRNA gene. Results A total of 33 lactic acid bacteria were isolated from the feces of 30 guinea pigs, also 10 isolates were selected based on Gram staining and catalase testing. All strains exhibited proteolytic activity, while only one demonstrated amylolytic capability, and none displayed cellulase activity. These bacteria showed higher tolerance to pH 5.0 and, to a lesser extent, to pH 4.0. Furthermore, they exhibited antagonistic activity against Salmonella sp. Only two bacteria demonstrated hemolytic activity, and were subsequently excluded from further evaluations. Subsequent assessments revealed autoaggregation capacities ranging from 4.55% to 23.19%, with a lesser degree of coaggregation with Salmonella sp. ranging from 3.53% to 8.94% for the remaining eight bacterial isolates. Based on these comprehensive tests, five bacteria with notable probiotic potential were identified by molecular assays as Leuconostoc citreum, Enterococcus gallinarum, Exiguobacterium sp., and Lactococcus lactis. Conclusion The identified bacteria stand out as promising probiotic candidates, deserving further assessment in Peruvian breed guinea pigs. This exploration aims to enhance production outcomes while mitigating the adverse effects induced by pathogenic microorganisms.
Collapse
Affiliation(s)
- José Goicochea-Vargas
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Hermilio Valdizan, Huánuco, Peru
- Laboratorio de Biotecnología Molecular, Unidad Central de Laboratorios, Universidad Nacional Hermilio Valdizan, Huánuco, Peru
| | - Max Salvatierra-Alor
- Laboratorio de Biotecnología Molecular, Unidad Central de Laboratorios, Universidad Nacional Hermilio Valdizan, Huánuco, Peru
| | - Fidel Acosta-Pachorro
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Hermilio Valdizan, Huánuco, Peru
| | - Wilson Rondón-Jorge
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Hermilio Valdizan, Huánuco, Peru
| | - Arnold Herrera-Briceño
- Centros de Producción Canchán y Kotosh, Universidad Nacional Hermilio Valdizan, Huánuco, Peru
| | - Edson Morales-Parra
- Centro de Información y Educación para la Prevención del Abuso de Drogas—CEDRO, Lima, Peru
| | | |
Collapse
|
9
|
Ali MS, Ahmed S, Takeuchi S, Wada T, Kage-Nakadai E. Improvement of Locomotion Caused by Lactococcus lactis subsp. lactis in the Model Organism Caenorhabditis elegans. Nutrients 2023; 15:4482. [PMID: 37892557 PMCID: PMC10610199 DOI: 10.3390/nu15204482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Lactococcus lactis subsp. lactis exhibits probiotic properties in humans. Considering that Caenorhabditis elegans can be used to study the effects of microorganisms on animal behavior, owing to its simple nervous system, we assessed the impacts of two strains of Lactococcus lactis subsp. Lactis-a non-nisin-producing strain, NBRC 100933 (LL100933), and a nisin-producing strain, NBRC 12007 (LL12007)-on the lifespan, locomotion, reproductive capacity of, and lipid accumulation in, C. elegans. The lifespan of adult C. elegans fed a mixture (1:1) of Escherichia coli OP50 and LL100933 or LL12007 did not show a significant increase compared to that of the group fed a standard diet of E. coli OP50. However, the nematodes fed Lactococcus strains showed notable enhancement in their locomotion at all of the tested ages. Further, the beneficial effects of LL100933 and LL12007 were observed in the daf-16 mutants, but not in the skn-1 and pmk-1 mutants. The lipid accumulation in the worms of the Lactococcus-fed group was lower than that in the control group at all experimental ages. Overall, LL100933 and LL12007 enhance the locomotor behavior of C. elegans, likely by modulating the PMK-1/p38 MAPK and SKN-1/Nrf2 transcription factors.
Collapse
Affiliation(s)
- Mohammad Shaokat Ali
- Graduate School of Human Life Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka-shi 558-8585, Japan; (M.S.A.); (T.W.)
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh;
| | - Shamima Ahmed
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh;
- Graduate School of Human Life and Ecology, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka-shi 558-8585, Japan;
| | - Shino Takeuchi
- Graduate School of Human Life and Ecology, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka-shi 558-8585, Japan;
| | - Takayuki Wada
- Graduate School of Human Life Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka-shi 558-8585, Japan; (M.S.A.); (T.W.)
- Graduate School of Human Life and Ecology, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka-shi 558-8585, Japan;
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, 1-2-7-601, Asahimachi, Abeno-Ku, Osaka-shi 545-0051, Japan
| | - Eriko Kage-Nakadai
- Graduate School of Human Life Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka-shi 558-8585, Japan; (M.S.A.); (T.W.)
- Graduate School of Human Life and Ecology, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka-shi 558-8585, Japan;
| |
Collapse
|
10
|
Staniszewski A, Kordowska-Wiater M. Probiotic Yeasts and How to Find Them-Polish Wines of Spontaneous Fermentation as Source for Potentially Probiotic Yeasts. Foods 2023; 12:3392. [PMID: 37761101 PMCID: PMC10529123 DOI: 10.3390/foods12183392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
One approach towards maintaining healthy microbiota in the human gastrointestinal tract is through the consumption of probiotics. Until now, the majority of probiotic research has focused on probiotic bacteria, but over the last few years more and more studies have demonstrated the probiotic properties of yeast, and also of species besides the well-studied Saccharomyces cerevisiae var. boulardii. Probiotic strains have to present the ability to survive in harsh conditions of the host body, like the digestive tract. Must fermentation might be an example of a similar harsh environment. In the presented study, we examined the probiotic potential of 44 yeast strains isolated from Polish wines. The tested isolates belonged to six species: Hanseniaspora uvarum, Pichia kluyveri, Metschnikowia pulcherrima, Metschnikowia ziziphicola, Saccharomyces cerevisiae and Starmerella bacillaris. The tested strains were subjected to an assessment of probiotic properties, their safety and their other properties, such as enzymatic activity or antioxidant properties, in order to assess their potential usefulness as probiotic yeast candidates. Within the most promising strains were representatives of three species: H. uvarum, M. pulcherrima and S. cerevisiae. H. uvarum strains 15 and 16, as well as S. cerevisiae strain 37, showed, among other features, survivability in gastrointestinal tract conditions exceeding 100%, high hydrophobicity and autoaggregation, had no hemolytic activity and did not produce biogenic amines. The obtained results show that Polish wines might be a source of potential probiotic yeast candidates with perspectives for further research.
Collapse
Affiliation(s)
| | - Monika Kordowska-Wiater
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| |
Collapse
|
11
|
Mishra G, Singh P, Molla M, Yimer YS, Dinda SC, Chandra P, Singh BK, Dagnew SB, Assefa AN, Ewunetie A. Harnessing the potential of probiotics in the treatment of alcoholic liver disorders. Front Pharmacol 2023; 14:1212742. [PMID: 37361234 PMCID: PMC10287977 DOI: 10.3389/fphar.2023.1212742] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
In the current scenario, prolonged consumption of alcohol across the globe is upsurging an appreciable number of patients with the risk of alcohol-associated liver diseases. According to the recent report, the gut-liver axis is crucial in the progression of alcohol-induced liver diseases, including steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Despite several factors associated with alcoholic liver diseases, the complexity of the gut microflora and its great interaction with the liver have become a fascinating area for researchers due to the high exposure of the liver to free radicals, bacterial endotoxins, lipopolysaccharides, inflammatory markers, etc. Undoubtedly, alcohol-induced gut microbiota imbalance stimulates dysbiosis, disrupts the intestinal barrier function, and trigger immune as well as inflammatory responses which further aggravate hepatic injury. Since currently available drugs to mitigate liver disorders have significant side effects, hence, probiotics have been widely researched to alleviate alcohol-associated liver diseases and to improve liver health. A broad range of probiotic bacteria like Lactobacillus, Bifidobacteria, Escherichia coli, Sacchromyces, and Lactococcus are used to reduce or halt the progression of alcohol-associated liver diseases. Several underlying mechanisms, including alteration of the gut microbiome, modulation of intestinal barrier function and immune response, reduction in the level of endotoxins, and bacterial translocation, have been implicated through which probiotics can effectively suppress the occurrence of alcohol-induced liver disorders. This review addresses the therapeutic applications of probiotics in the treatment of alcohol-associated liver diseases. Novel insights into the mechanisms by which probiotics prevent alcohol-associated liver diseases have also been elaborated.
Collapse
Affiliation(s)
- Garima Mishra
- Pharmaceutical Chemistry Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Pradeep Singh
- Pharmaceutical Chemistry Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Mulugeta Molla
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Yohannes Shumet Yimer
- Social Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | | | - Phool Chandra
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | | | - Samuel Berihun Dagnew
- Clinical Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Abraham Nigussie Assefa
- Social Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Amien Ewunetie
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
12
|
Sylvere N, Mustopa AZ, Budiarti S, Meilina L, Hertati A, Handayani I. Whole-genome sequence analysis and probiotic characteristics of Lactococcus lactis Subsp. lactis strain Lac3 isolated from traditional fermented buffalo milk (Dadih). J Genet Eng Biotechnol 2023; 21:49. [PMID: 37127774 PMCID: PMC10151293 DOI: 10.1186/s43141-023-00503-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Probiotics are live microorganisms that provide beneficial effects on the host's health when exploited in adequate amounts. This study aimed at carrying out whole-genome sequence analysis and in vitro potential probiotic characteristics of Lactococcus lactis subsp. lactis strain Lac3 isolated from the spontaneously fermented buffalo milk named Dadih. RESULTS The results from de novo assembly indicated that the assembled genome consisted of 55 contigs with a genome size of 2,441,808 bp ~ (2.44 Mb), and GC % content of 34.85%. The evolution history result showed that the strain Lac3 was closely related to Lactococcus lactis species deposited in NCBI with a sequence similarity ≥ 99.93%. L. lactis subsp. lactis Lac3 was non-pathogenic with a probability of 0.21 out of 1 and had a pathogenicity score of zero (0), and neither harbored virulence factors nor acquired antibiotic resistance phenotypes. L. lactis subsp. lactis Lac3 exhibited the potential probiotic characteristics to tolerate acid at pH (2.0 and 5.0), salinity (1-5% NaCl), bile salt of (0.3-1.0%) and had auto-aggregation capacity increased from 6.0 to 13.1%. CONCLUSION This study described a novel strain of Lactococcus lactis subsp. lactis called Lac3, which exhibits probiotic properties that could be beneficial in the development of probiotics.
Collapse
Affiliation(s)
| | - Apon Zaenal Mustopa
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia.
| | - Sri Budiarti
- School of Biotechnology, IPB University, Bogor, Indonesia
- Indonesia Research Center for Bioresources and Biotechnology, IPB University, Bogor, Indonesia
| | - Lita Meilina
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Ai Hertati
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Ira Handayani
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| |
Collapse
|
13
|
Dash J, Sethi M, Deb S, Parida D, Kar S, Mahapatra S, Minz AP, Pradhan B, Prasad P, Senapati S. Biochemical, functional and genomic characterization of a new probiotic Ligilactobacillus salivarius F14 from the gut of tribes of Odisha. World J Microbiol Biotechnol 2023; 39:171. [PMID: 37101059 DOI: 10.1007/s11274-023-03626-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Characterization of new potential probiotics is desirable in the field of research on probiotics for their extensive use in health and disease. Tribes could be an unusual source of probiotics due to their unique food habits and least dependence on medications and consumption of antibiotics. The aim of the present study is to isolate lactic acid bacteria from tribal fecal samples of Odisha, India, and characterize their genetic and probiotic attributes. In this context one of the catalase-negative and Gram-positive isolates, identified using 16S rRNA sequencing as Ligilactobacillus salivarius, was characterized in vitro for its acid and bile tolerance, cell adhesion and antimicrobial properties. The whole genome sequence was obtained and analyzed for strain level identification, presence of genomic determinants for probiotic-specific features, and safety. Genes responsible for its antimicrobial and immunomodulatory functions were detected. The secreted metabolites were analyzed using high resolution mass spectroscopy; the results indicated that the antimicrobial potential could be due to the presence of pyroglutamic acid, propionic acid, lactic acid, 2-hydroxyisocaproic acid, homoserine, and glutathione, and the immuno-modulating activity, contributed by the presence of short chain fatty acids such as acetate, propionate, and butyrate. So, to conclude we have successfully characterized a Ligilactobacillus salivarius species with potential antimicrobial and immunomodulatory ability. The health-promoting effects of this probiotic strain and/or its derivatives will be investigated in future.
Collapse
Affiliation(s)
- Jayalaxmi Dash
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Manisha Sethi
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Sushanta Deb
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Department of Microbiology, AIIMS, New Delhi, India
| | - Deepti Parida
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Salona Kar
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Soumendu Mahapatra
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Aliva P Minz
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Biswaranjan Pradhan
- S. K. Dash Center of Excellence of Biosciences and Engineering & Technology (SKBET), Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, India
| | - Punit Prasad
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | | |
Collapse
|
14
|
Deb S. Pan-genome evolution and its association with divergence of metabolic functions in Bifidobacterium genus. World J Microbiol Biotechnol 2022; 38:231. [PMID: 36205822 DOI: 10.1007/s11274-022-03430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/30/2022] [Indexed: 10/10/2022]
Abstract
Previous studies were mainly focused on genomic evolution and diversity of type species of Bifidobacterium genus due to their health-promoting effect on host. However, those studies were mainly based on species-level taxonomic resolution, adaptation, and characterization of carbohydrate metabolic features of the bifidobacterial species. Here, a comprehensive analysis of the type strain genome unveils the association of pan-genome evolution with the divergence of metabolic function of the Bifidobacterium genus. This study has also demonstrated that horizontal gene transfer, as well as genome expansion and reduction events, leads to the divergence of metabolic functions in Bifidobacterium genus. Furthermore, the genome-based search of probiotic traits among all the available bifidobacterial type strains gives hints on type species, that could confer health benefits to nutrient-deficient individuals. Altogether, the present study provides insight into the developments of genomic evolution, functional divergence, and potential probiotic type species of the Bifidobacterium genus.
Collapse
Affiliation(s)
- Sushanta Deb
- Department of Molecular Biology and Bioinformatics, Tripura University, Suryamaninagar, 799022, Tripura, India. .,All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
15
|
Raw Milk for Provolone Valpadana PDO Cheese: Impact of Modified Cold Storage Conditions on the Composition of the Bacterial Biota. DAIRY 2022. [DOI: 10.3390/dairy3040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The raw milk for production of long-ripened, spicy type, Provolone Valpadana (PV) PDO cheese must be stored, refrigerated, and processed within 60 h from the first milking, according to European and Consortium regulations. Low-temperature storage conditions preserve the hygienic quality, but also reduce the diversity and content of dairy microbiota, which is important to define the characteristics and quality of raw milk cheeses. Eleven bulk, raw milk samples were stored, at laboratory level, under two different time/temperature conditions (i.e., 10 °C or 12 °C for 15 h, then cooled to 4 °C for 45 h). The count of different bacterial groups and the diversity of bacterial communities were determined before and after storage by culture-dependent and DNA metabarcoding methods, respectively. The two-step cold storage conditions increased the mesophilic, psychrotrophic, lipolytic, and proteolytic bacterial load, without affecting the hygienic quality of milk. Among the 66 dominant and 161 subdominant taxa retrieved by DNA metabarcoding, Acinetobacter, Pseudomonas, and the lactic acid bacteria belonging to the genera Lactococcus and Streptococcus were present in almost all the raw milk samples, and their relative abundance was positively related with the total bacterial count. The storage conditions tested could be considered for eventual application in long-ripened PV cheese production to rationalize storage, transfer, and processing of raw milk.
Collapse
|
16
|
Anthocyanin Addition to Kefir: Metagenomic Analysis of Microbial Community Structure. Curr Microbiol 2022; 79:327. [PMID: 36125585 DOI: 10.1007/s00284-022-03017-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/30/2022] [Indexed: 11/03/2022]
Abstract
The addition of anthocyanin to kefir for the production of more functional and bio-diversified kefir beverages has the potential to increase kefir's healthful activities. In the present study, anthocyanin extracts, obtained from black carrots, were added into kefir mixture during the fermentation process in different concentrations (1% and 5%, w/v). These kefir samples were then analyzed in terms of their microbiological qualities by metagenomic analysis. The results of the analyses show that the addition of anthocyanin has significant impacts on the community structure of kefir microbiome which in turn directly affects the expected health impacts of the beverage. Kefir with no anthocyanin included predominantly probiotic bacteria such as Lactococcus lactis (34%) and Lactobacillus kefiri (34%). On the other hand, kefir with 1% anthocyanin demonstrated a more balanced distribution of probiotic species like Lb. kefiri (17%), Leuconostoc mesenteroides (9%), and Lc. lactis (5%) at similar abundance rates. 5% anthocyanin kefir demonstrated the highest polarity in the community with a strong dominance of probiotic Lb. kefiri (72%), and distinctly less abundant bacteria such as Streptococcus salivarius subsp. thermophilus (3%). These findings provide that fortification with anthocyanins can be utilized to enhance the quality, composition, and beneficial functions of kefir.
Collapse
|
17
|
Isolation and Identification of Lactococcus lactis and Weissella cibaria Strains from Fermented Beetroot and an Investigation of Their Properties as Potential Starter Cultures and Probiotics. Foods 2022; 11:foods11152257. [PMID: 35954024 PMCID: PMC9368051 DOI: 10.3390/foods11152257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 01/25/2023] Open
Abstract
The presence of certain microorganisms in dairy products or silage is highly desirable. Among them are probiotic strains of lactic acid bacteria (LAB), which show many beneficial features, including antimicrobial properties that support the development of beneficial microflora; in addition, owing to their biochemical activity, they influence the nutritional, dietary, and organoleptic properties of food products. Before being placed on the market, each strain requires separate testing to determine its probiotic properties and effectiveness. The aim of this study was to isolate LAB strains from a pickled beetroot sample that could be used in the dairy industry and with the potential to be considered as a probiotic in the future. Two strains identified using the MALDI technique were selected—Lactococcus lactis and Weissella cibaria. The optimal growth conditions of the strains were determined, and their proteolytic properties were assessed with the use of the o-PA reagent and spectrophotometry. The lipid profile was analyzed using the SALDI (surface-assisted laser desorption/ionization) technique and silver nanoparticles. High-performance liquid chromatography was used to assess the ability of the strains to synthesize beneficial metabolites, such as B vitamins (B2, B3, and B9) or lactic acid, and gas chromatography was used to analyze the substances responsible for organoleptic properties. Moreover, the ability to inhibit the growth of pathogenic strains was also tested in the selected strains. Both tested strains demonstrated the desired properties of starter cultures for future use in functional food production, showing that fermented plant products can serve as valuable potential probiotic sources.
Collapse
|
18
|
Nguepi Tsopmejio IS, Ding M, Wei J, Zhao C, Jiang Y, Li Y, Song H. Auricularia polytricha and Flammulina velutipes ameliorate inflammation and modulate the gut microbiota via regulation of NF-κB and Keap1/Nrf2 signaling pathways on DSS-induced inflammatory bowel disease. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Aleknavičius D, Lukša J, Strazdaitė-Žielienė Ž, Servienė E. The Bacterial Microbiota of Edible Insects Acheta domesticus and Gryllus assimilis Revealed by High Content Analysis. Foods 2022; 11:1073. [PMID: 35454659 PMCID: PMC9032608 DOI: 10.3390/foods11081073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/02/2022] Open
Abstract
In the concept of novel food, insects reared under controlled conditions are considered mini livestock. Mass-reared edible insect production is an economically and ecologically beneficial alternative to conventional meat gain. Regarding food safety, insect origin ingredients must comply with food microbial requirements. House crickets (Acheta domesticus) and Jamaican field crickets (Gryllus assimilis) are preferred insect species that are used commercially as food. In this study, we examined cricket-associated bacterial communities using amplicon-based sequencing of the 16S ribosomal RNA gene region (V3-V4). The high taxonomic richness of the bacterial populations inhabiting both tested cricket species was revealed. According to the analysis of alpha and beta diversity, house crickets and Jamaican field crickets displayed significantly different bacterial communities. Investigation of bacterial amplicon sequence variants (ASVs) diversity revealed cricket species as well as surface and entire body-associated bacterial assemblages. The efficiency of crickets processing and microbial safety were evaluated based on viable bacterial counts and identified bacterial species. Among the microorganisms inhabiting both tested cricket species, the potentially pathogenic bacteria are documented. Some bacteria representing identified genera are inhabitants of the gastrointestinal tract of animals and humans, forming a normal intestinal microflora and performing beneficial probiotic functions. The novel information on the edible insect-associated microbiota will contribute to developing strategies for cricket processing to avoid bacteria-caused risks and reap the benefits.
Collapse
Affiliation(s)
- Dominykas Aleknavičius
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, 08412 Vilnius, Lithuania; (D.A.); (J.L.); (Ž.S.-Ž.)
| | - Juliana Lukša
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, 08412 Vilnius, Lithuania; (D.A.); (J.L.); (Ž.S.-Ž.)
| | - Živilė Strazdaitė-Žielienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, 08412 Vilnius, Lithuania; (D.A.); (J.L.); (Ž.S.-Ž.)
| | - Elena Servienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, 08412 Vilnius, Lithuania; (D.A.); (J.L.); (Ž.S.-Ž.)
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10221 Vilnius, Lithuania
| |
Collapse
|
20
|
Gustaw K, Niedźwiedź I, Rachwał K, Polak-Berecka M. New Insight into Bacterial Interaction with the Matrix of Plant-Based Fermented Foods. Foods 2021; 10:1603. [PMID: 34359473 PMCID: PMC8304663 DOI: 10.3390/foods10071603] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Microorganisms have been harnessed to process raw plants into fermented foods. The adaptation to a variety of plant environments has resulted in a nearly inseparable association between the bacterial species and the plant with a characteristic chemical profile. Lactic acid bacteria, which are known for their ability to adapt to nutrient-rich niches, have altered their genomes to dominate specific habitats through gene loss or gain. Molecular biology approaches provide a deep insight into the evolutionary process in many bacteria and their adaptation to colonize the plant matrix. Knowledge of the adaptive characteristics of microorganisms facilitates an efficient use thereof in fermentation to achieve desired final product properties. With their ability to acidify the environment and degrade plant compounds enzymatically, bacteria can modify the textural and organoleptic properties of the product and increase the bioavailability of plant matrix components. This article describes selected microorganisms and their competitive survival and adaptation in fermented fruit and vegetable environments. Beneficial changes in the plant matrix caused by microbial activity and their beneficial potential for human health are discussed as well.
Collapse
Affiliation(s)
| | | | - Kamila Rachwał
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (K.G.); (I.N.); (M.P.-B.)
| | | |
Collapse
|
21
|
ODFM, an omics data resource from microorganisms associated with fermented foods. Sci Data 2021; 8:113. [PMID: 33879798 PMCID: PMC8058077 DOI: 10.1038/s41597-021-00895-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/23/2021] [Indexed: 11/08/2022] Open
Abstract
ODFM is a data management system that integrates comprehensive omics information for microorganisms associated with various fermented foods, additive ingredients, and seasonings (e.g. kimchi, Korean fermented vegetables, fermented seafood, solar salt, soybean paste, vinegar, beer, cheese, sake, and yogurt). The ODFM archives genome, metagenome, metataxonome, and (meta)transcriptome sequences of fermented food-associated bacteria, archaea, eukaryotic microorganisms, and viruses; 131 bacterial, 38 archaeal, and 28 eukaryotic genomes are now available to users. The ODFM provides both the Basic Local Alignment Search Tool search-based local alignment function as well as average nucleotide identity-based genetic relatedness measurement, enabling gene diversity and taxonomic analyses of an input query against the database. Genome sequences and annotation results of microorganisms are directly downloadable, and the microbial strains registered in the archive library will be available from our culture collection of fermented food-associated microorganisms. The ODFM is a comprehensive database that covers the genomes of an entire microbiome within a specific food ecosystem, providing basic information to evaluate microbial isolates as candidate fermentation starters for fermented food production.
Collapse
|
22
|
Mining, heterologous expression, purification and characterization of 14 novel bacteriocins from Lactobacillus rhamnosus LS-8. Int J Biol Macromol 2020; 164:2162-2176. [DOI: 10.1016/j.ijbiomac.2020.08.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
|
23
|
Unraveling microbial fermentation features in kimchi: from classical to meta-omics approaches. Appl Microbiol Biotechnol 2020; 104:7731-7744. [PMID: 32749526 DOI: 10.1007/s00253-020-10804-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022]
Abstract
Kimchi is a traditional Korean fermented food prepared via spontaneous fermentation by various microorganisms originating from vegetables such as kimchi cabbage, radishes, and garlic. Recent advances in meta-omics approaches that integrate metataxonomics, metagenomics, metatranscriptomics, and metabolomics have contributed to explaining and understanding food fermentation processes. Kimchi microbial communities are composed of majorly lactic acid bacteria such as Leuconostoc, Lactobacillus, and Weissella and fewer eukaryotic microorganisms and kimchi fermentation are accomplished by complex microbial metabolisms to produce diverse metabolites such as lactate, acetate, CO2, ethanol, mannitol, amino acids, formate, malate, diacetyl, acetoin, and 2, 3-butanediol, which determine taste, quality, health benefit, and safety of fermented kimchi products. Therefore, in the future, kimchi researches should be systematically performed using the meta-omics approaches to understand complex microbial metabolisms during kimchi fermentation. KEY POINTS: • Spontaneous fermentation by raw material microbes gives kimchi its unique flavor. • The kimchi microbiome is altered by environmental factors and raw materials. • Through the multi-omics approaches, it is possible to accurately analyze the diversity and metabolic characteristics of kimchi microbiome and discover potential functionalities.
Collapse
|