1
|
Domingues S, Lima T, Escobar C, Plantade J, Charpentier X, da Silva GJ. Large DNA fragment ISEc9-mediated transposition during natural transformation allows interspecies dissemination of antimicrobial resistance genes. Eur J Clin Microbiol Infect Dis 2025; 44:1417-1424. [PMID: 40304893 PMCID: PMC12116815 DOI: 10.1007/s10096-025-05113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/20/2025] [Indexed: 05/02/2025]
Abstract
PURPOSE Antimicrobial resistance poses a significant global health challenge, contributing to a lack of effective therapeutic agents, especially against Gram-negative bacteria. Resistance dissemination is accelerated by horizontal gene transfer (HGT) mechanisms. The extended-spectrum beta lactamases CTX-M confer resistance to several beta-lactams, are usually embedded into plasmids and thought to be mainly disseminated by conjugation. However, an increasing number of isolates carry these enzyme-encoding genes in the chromosome, suggesting that they can spread by other means of HGT. In this study, we aimed to test the involvement of natural transformation in the chromosomal acquisition of a blaCTX-M gene. METHODS Natural transformation assays were performed during motility on wet surfaces. Acquisition of foreign DNA by transformants was screened by antimicrobial susceptibility testing, polymerase-chain reaction (PCR) and whole genome sequencing (WGS). RESULTS Acinetobacter baumannii A118, a naturally competent clinical strain, was transformed with naked DNA from Salmonella enterica serovar Typhimurium Sal25, which was isolated from swine meat. The transformation occurred at low frequency (2.7 × 10- 8 ± 2.04 × 10- 8 transformants per recipient) and blaCTX-M was acquired in one transformant, which was named ACI. WGS of the transformant revealed the acquisition of the blaCTX-M-32 as part of a ca. 36 Kb DNA fragment through an ISEc9-mediated transposition event; various mobile genetic elements and other resistance genes were co-transferred. The blaCTX-M-32 gene was subsequently transferred within A. baumannii at a higher frequency (1.8 × 10- 6 ± 2.49 × 10- 6 transformants per recipient). CONCLUSION Our results highlight the importance of natural transformation events in the dissemination of antimicrobial resistance genes and mobile genetic elements between and within species.
Collapse
Affiliation(s)
- Sara Domingues
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Tiago Lima
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIVG -Vasco da Gama Research Center, EUVG - Vasco da Gama University School, Coimbra, Portugal
| | - Corentin Escobar
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Villeurbanne, 69100, France
| | - Julie Plantade
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Villeurbanne, 69100, France
| | - Xavier Charpentier
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Villeurbanne, 69100, France
| | - Gabriela Jorge da Silva
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Alexyuk PG, Bogoyavlenskiy AP, Moldakhanov YS, Akanova KS, Manakbayeva AN, Kerimov T, Berezin VE, Alexyuk MS. Genomic and Drug Resistance Profile of Bovine Multidrug-Resistant Escherichia coli Isolated in Kazakhstan. Pathogens 2025; 14:90. [PMID: 39861051 PMCID: PMC11768201 DOI: 10.3390/pathogens14010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/02/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
While studying the prevalence and profile of antibiotic resistance among E. coli isolated from the feces of calves with signs of colibacillosis, a strain with a wide spectrum of drug resistance was isolated. Whole-genome sequencing, followed by bioinformatic processing and the annotation of genes of this strain, showed that the genome has a total length of 4,803,482 bp and contains 4986 genes, including 122 RNA genes. A total of 31% of the genes are functionally significant and represent 26 functional groups. Additionally, 55 antibiotic resistance genes were revealed. A phenotypic drug-resistance study was performed according to CASFM and CLSI guidelines, which showed that the investigated strain was resistant to eight antibacterial drugs of different classes, including colistin. This is the first report on the AMR profile of an E. coli isolate obtained from a sick calf with evidence of escherichiosis in Kazakhstan. The provided information on the genome will be valuable in studying the evolution and development of antibiotic-resistant forms of E. coli and increase our knowledge of pathogenicity. It may also be a source for future comparative studies of the virulence and drug resistance of E. coli isolates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Madina S. Alexyuk
- Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (P.G.A.); (A.P.B.)
| |
Collapse
|
3
|
Grevskott DH, Salvà-Serra F, Moore ERB, Marathe NP. Escherichia coli novel sequence type 11873 harbours a new CTX-M-15-carrying multidrug resistance type 1/2 hybrid IncC plasmid. J Glob Antimicrob Resist 2024; 39:109-113. [PMID: 39197655 DOI: 10.1016/j.jgar.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
OBJECTIVE The aim of the current study was to determine the genomic map of the resistance genes of two CTX-M-15-carrying Escherichia coli strains belonging to novel sequence type (ST) 11873. Complete, closed genome sequences of the E. coli strains were obtained by applying a combination of short-read Illumina and long-read Oxford Nanopore-based sequencing. METHODS Isolation of E. coli was performed using ECC CHROMagar and antibiotic sensitivity patterns were determined using Sensititre EUVSEC plates. Whole-genome sequencing was performed for two E. coli strains (3-338 and 5-325) using Illumina MiSeq- and Oxford Nanopore MinION-based sequencing. RESULTS The complete genome of strain 3-338 (GenBank accession no. CP130007-17) was assembled into a circular chromosome of 4.65 Mb and 10 plasmids (between 2 and 148 kb). Strain 5-325 (CP130018-27) exhibited a circular chromosome of 4.7 Mb and 9 plasmids (between 2 and 148 kb). Both strains carried an identical type 1/2 hybrid IncC plasmid (∼148 kb) harbouring multiple antibiotic resistance genes (ARGs), including blaCTX-M-15, blaOXA-1, blaTEM-1, qnrS1, sul2, aphA1, aacC2, mph(A) and floR. This plasmid also carried heavy metal resistance genes, such as chrA and arsR. Strain 5-325 carried an additional IncFIB plasmid (∼78 kb) harbouring additional ARGs, including blaTEM-1, qnrS1, tet(A), dfrA14, sul2, strA and strB. CONCLUSIONS Our study shows the emergence of a CTX-M-15-carrying type 1/2 hybrid IncC plasmid in novel E. coli ST11873. These findings emphasise the need for population-based sewage surveillance for understanding the prevalence of antibiotic resistance in pathogens in order to mitigate the further spread of such resistance factors.
Collapse
Affiliation(s)
- Didrik H Grevskott
- Department of Contaminants and Biohazards, Institute of Marine Research (IMR), Bergen, Norway
| | - Francisco Salvà-Serra
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Edward R B Moore
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nachiket P Marathe
- Department of Contaminants and Biohazards, Institute of Marine Research (IMR), Bergen, Norway.
| |
Collapse
|
4
|
Wang Z, Sun M, Guo S, Wang Y, Meng L, Shi J, Geng C, Han D, Fu X, Xue J, Ma H, Liu K. Detection of drug resistance in Escherichia coli from calves with diarrhea in the Tongliao region: an analysis of multidrug-resistant strains. Front Vet Sci 2024; 11:1466690. [PMID: 39606646 PMCID: PMC11601152 DOI: 10.3389/fvets.2024.1466690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Escherichia coli is a major pathogen responsible for calf diarrhea, which has been exacerbated by the irrational and unscientific use of antimicrobial drugs, leading to significant drug resistance. Methods This study focused on the isolation and identification of E. coli from calf diarrhea samples in the Tongliao area of China. Isolation was conducted using selective media, Gram staining, and 16S rRNA sequencing. The minimum inhibitory concentration (MIC) of E. coli was determined through the microbroth dilution method. Additionally, the presence of antibiotic-resistant genes was detected, and multidrug-resistant strains were selected for whole-genome sequencing (WGS). Results The results revealed that all 40 isolated strains of E. coli exhibited resistance to sulfadiazine sodium, enrofloxacin, and ciprofloxacin, with 90% of the strains being susceptible to polymyxin B. Notably, strains 11, 23, and 24 demonstrated severe resistance. The detection rates of the antibiotic resistance genes TEM-1, TEM-206, strA, strB, qacH, and blaCTX were 100%, indicating a high prevalence of these genes. Moreover, the majority of strains carried antibiotic resistance genes consistent with their resistance phenotypes. WGS of strains 11, 23, and 24 revealed genome sizes of 4,897,185 bp, 4,920,234 bp, and 4,912,320 bp, respectively. These strains carried two, one, and two plasmids, respectively. The prediction of antibiotic resistance genes showed a substantial number of these genes within the genomes, with strain 24 harboring the highest number, totaling 77 subspecies containing 88 antibiotic resistance genes. Discussion In conclusion, all 40 isolated strains of E. coli from calf diarrhea in this study were multidrug-resistant, exhibiting a broad distribution of antibiotic resistance genes and mobile components. This poses a significant risk of horizontal gene transfer, highlighting the critical situation of antibiotic resistance in this region.
Collapse
Affiliation(s)
- Zi Wang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Inner Mongolia Engineering Technology Research Center for Prevention and Control of Beef Cattle Diseases, Tongliao, China
- Beef Cattle Industry School of Inner Mongolia Autonomous Region, Tongliao, China
| | - Miao Sun
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Shuang Guo
- Hinggan League Animal Disease Control Center, Hinggan League, China
| | | | - Linghao Meng
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Jinchuan Shi
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Chao Geng
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Dongxu Han
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Inner Mongolia Engineering Technology Research Center for Prevention and Control of Beef Cattle Diseases, Tongliao, China
- Beef Cattle Industry School of Inner Mongolia Autonomous Region, Tongliao, China
| | - Xiaomeng Fu
- Tongliao Vocational College, Tongliao, China
| | - Jiangdong Xue
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Inner Mongolia Engineering Technology Research Center for Prevention and Control of Beef Cattle Diseases, Tongliao, China
- Beef Cattle Industry School of Inner Mongolia Autonomous Region, Tongliao, China
| | - Hongxia Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Kai Liu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Inner Mongolia Engineering Technology Research Center for Prevention and Control of Beef Cattle Diseases, Tongliao, China
- Beef Cattle Industry School of Inner Mongolia Autonomous Region, Tongliao, China
| |
Collapse
|
5
|
Flatgard BM, Williams AD, Amin MB, Hobman JL, Stekel DJ, Rousham EK, Islam MA. Tracking antimicrobial resistance transmission in urban and rural communities in Bangladesh: a One Health study of genomic diversity of ESBL-producing and carbapenem-resistant Escherichia coli. Microbiol Spectr 2024; 12:e0395623. [PMID: 38700359 PMCID: PMC11237648 DOI: 10.1128/spectrum.03956-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant threat to global health and sustainable development goals, especially in low- and middle-income countries (LMICs). This study aimed to understand the transmission of AMR between poultry, humans, and the environment in Bangladesh using a One Health approach. We analyzed the whole genome sequences (WGS) of 117 extended-spectrum β-lactamase-producing Escherichia coli (ESBL-Ec) isolates, with 46 being carbapenem resistant. These isolates were obtained from human (n = 20) and poultry feces (n = 12), as well as proximal environments (wastewater) (n = 85) of three different study sites, including rural households (n = 48), rural poultry farms (n = 20), and urban wet markets (n = 49). The WGS of ESBL-Ec isolates were compared with 58 clinical isolates from global databases. No significant differences in antibiotic resistance genes (ARGs) were observed in ESBL-Ec isolated from humans with and without exposure to poultry. Environmental isolates showed higher ARG diversity than human and poultry isolates. No clonal transmission between poultry and human isolates was found, but wastewater was a reservoir for ESBL-Ec for both. Except for one human isolate, all ESBL-Ec isolates were distinct from clinical isolates. Most isolates (77.8%) carried at least one plasmid replicon type, with IncFII being the most prevalent. IncFIA was predominant in human isolates, while IncFII, Col(MG828), and p0111 were common in poultry. We observed putative sharing of ARG-carrying plasmids among isolates, mainly from wastewater. However, in most cases, bacterial isolates sharing plasmids were also clonally related, suggesting clonal spread was more probable than just plasmid transfer. IMPORTANCE Our study underscores that wastewater discharged from households and wet markets carries antibiotic-resistant organisms from both human and animal sources. Thus, direct disposal of wastewater into the environment not only threatens human health but also endangers food safety by facilitating the spread of antimicrobial resistance (AMR) to surface water, crops, vegetables, and subsequently to food-producing animals. In regions with intensive poultry production heavily reliant on the prophylactic use of antibiotics, compounded by inadequate waste management systems, such as Bangladesh, the ramifications are particularly pronounced. Wastewater serves as a pivotal juncture for the dissemination of antibiotic-resistant organisms and functions as a pathway through which strains of human and animal origin can infiltrate the environment and potentially colonize new hosts. Further research is needed to thoroughly characterize wastewater isolates/populations and understand their potential impact on interconnected environments, communities, and wildlife.
Collapse
Affiliation(s)
- Brandon M. Flatgard
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Alexander D. Williams
- Laboratory of Data Discovery for Health Ltd, Hong Kong Science and Technology Park, Tai Po, Hong Kong, China
- School of Public Health, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | | | - Jon L. Hobman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, United Kingdom
| | - Dov J. Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, United Kingdom
- Department of Mathematics and Applied Mathematics, University of Johannesburg, Johannesburg, South Africa
| | - Emily K. Rousham
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Mohammad Aminul Islam
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
- Laboratory of Food Safety and One Health, icddr,b, Dhaka, Bangladesh
| |
Collapse
|
6
|
van Hamelsveld S, Kurenbach B, Paull DJ, Godsoe WA, Ferguson GC, Heinemann JA. Indigenous food sources as vectors of Escherichia coli and antibiotic resistance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122155. [PMID: 37442321 DOI: 10.1016/j.envpol.2023.122155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/13/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
The contamination of surface waters by fecal bacteria, measured by the number of Escherichia coli, is a significant public health issue. When these bacteria are also resistant to antimicrobials, infections are more complicated to treat. While water is regularly tested at recreational sites, wild-harvested foods, known as mahinga kai by the indigenous Māori people of Aotearoa New Zealand, are commonly overlooked as a source of exposure to potential pathogens and antimicrobial resistance (AMR). We investigate two likely sources of risk from harvesting aquatic wild foods. The first is water contact, and the second is contact with/ingestion of the harvest. We used E. coli as a proxy for microbial water quality at harvesting sites. Two popular mahinga kai species were also harvested and assessed. We found antibiotic-resistant bacteria on watercress (Nasturtium officinale) and cockles (Austrovenus stutchburyi). One-third of E. coli isolates were conjugative donors of at least one resistance phenotype. Tank experiments were used to track the internalization of E. coli by Greenshell/lip mussels (Perna canaliculus). Greenshell mussels kept at environmentally relevant concentrations of E. coli were colonized to levels considered unsafe for human consumption in 24 h. Finally, we measured horizontal gene transfer between bacteria within the shellfish, what we termed 'intra-shellular' conjugation. The transmission frequency of plasmid RP4 was significantly higher in mussels than in water alone. Our results indicate that shellfish could promote the dissemination of antibiotic resistance. They highlight the need to limit or reduce human pathogenic bacteria where food is gathered.
Collapse
Affiliation(s)
| | - Brigitta Kurenbach
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Deborah J Paull
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | | - Gayle C Ferguson
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Jack A Heinemann
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
7
|
Desdouits M, Reynaud Y, Philippe C, Guyader FSL. A Comprehensive Review for the Surveillance of Human Pathogenic Microorganisms in Shellfish. Microorganisms 2023; 11:2218. [PMID: 37764063 PMCID: PMC10537662 DOI: 10.3390/microorganisms11092218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Bivalve molluscan shellfish have been consumed for centuries. Being filter feeders, they may bioaccumulate some microorganisms present in coastal water, either naturally or through the discharge of human or animal sewage. Despite regulations set up to avoid microbiological contamination in shellfish, human outbreaks still occur. After providing an overview showing their implication in disease, this review aims to highlight the diversity of the bacteria or enteric viruses detected in shellfish species, including emerging pathogens. After a critical discussion of the available methods and their limitations, we address the interest of technological developments using genomics to anticipate the emergence of pathogens. In the coming years, further research needs to be performed and methods need to be developed in order to design the future of surveillance and to help risk assessment studies, with the ultimate objective of protecting consumers and enhancing the microbial safety of bivalve molluscan shellfish as a healthy food.
Collapse
Affiliation(s)
| | | | | | - Françoise S. Le Guyader
- Ifremer, Unité Microbiologie Aliment Santé et Environnement, RBE/LSEM, 44311 Nantes, France; (M.D.); (Y.R.); (C.P.)
| |
Collapse
|
8
|
Puljko A, Rozman SD, Barišić I, Maravić A, Jelić M, Babić I, Milaković M, Petrić I, Udiković-Kolić N. Resistance to critically important antibiotics in hospital wastewater from the largest Croatian city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161805. [PMID: 36708818 DOI: 10.1016/j.scitotenv.2023.161805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The emergence of extended-spectrum β-lactamase (ESBL)- and especially carbapenemases in Enterobacterales has led to limited therapeutic options. Therefore, it is critical to fully understand all potential routes of transmission, especially in high-risk sources such as hospital wastewater. This study aimed to quantify four enteric opportunistic pathogens (EOPs), total, ESBL- and carbapenem-resistant coliforms and their corresponding resistance genes (two ESBL and five carbapenemase genes) and to characterize enterobacterial isolates from hospital wastewater from two large hospitals in Zagreb over two seasons. Culturing revealed similar average levels of total and carbapenem-resistant coliforms (3.4 × 104 CFU/mL), and 10-fold lower levels of presumptive ESBL coliforms (3 × 103 CFU/mL). Real-time PCR revealed the highest E. coli levels among EOPs (105 cell equivalents/mL) and the highest levels of the blaKPC gene (up to 10-1 gene copies/16S copies) among all resistance genes examined. Of the 69 ESBL- and 90 carbapenemase-producing Enterobacterales (CPE) isolates from hospital wastewater, all were multidrug-resistant and most were identified as Escherichia coli, Citrobacter, Enterobacter, and Klebsiella. Among ESBL isolates, blaCTX-M-15 was the most prevalent ESBL gene, whereas in CPE isolates, blaKPC-2 and blaNDM-1 were the most frequently detected CP genes, followed by blaOXA-48. Molecular epidemiology using PFGE, MLST and whole-genome sequencing (WGS) revealed that clinically relevant variants such as E. coli ST131 (blaCTX-M-15/blaTEM-116) and ST541 (blaKPC-2), K. pneumoniae ST101 (blaOXA-48/blaNDM-1), and Enterobacter cloacae complex ST277 (blaKPC-2/blaNDM-1) were among the most frequently detected clone types. WGS also revealed a diverse range of resistance genes and plasmids in these and other isolates, as well as transposons and insertion sequences in the flanking regions of the blaCTX-M, blaOXA-48, and blaKPC-2 genes, suggesting the potential for mobilization. We conclude that hospital wastewater is a potential secondary reservoir of clinically important pathogens and resistance genes and therefore requires effective pretreatment before discharge to the municipal sewer system.
Collapse
Affiliation(s)
- Ana Puljko
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Svjetlana Dekić Rozman
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Ivan Barišić
- Molecular Diagnostics, Austrian Institute of Technology, Giefinggasse 4, 1210 Vienna, Austria
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21 000 Split, Croatia
| | - Marko Jelić
- Department of Clinical Microbiology, University Hospital for Infectious Diseases, Mirogojska 8, 10 000 Zagreb, Croatia
| | - Ivana Babić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Milena Milaković
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Ines Petrić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Nikolina Udiković-Kolić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia.
| |
Collapse
|
9
|
Sewage-based surveillance shows presence of Klebsiella pneumoniae resistant against last resort antibiotics in the population in Bergen, Norway. Int J Hyg Environ Health 2023; 248:114075. [PMID: 36521369 DOI: 10.1016/j.ijheh.2022.114075] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022]
Abstract
The aim of this study was to understand the prevalence of antibiotic resistance in Klebsiella pneumoniae present in the population in Bergen city, Norway using city-scale sewage-based surveillance, as well as the potential spread of K. pneumoniae into the marine environment through treated sewage. From a total of 30 sewage samples collected from five different sewage treatment plants (STPs), 563 presumptive K. pneumoniae isolates were obtained on Simmons Citrate Agar with myo-Inositol (SCAI) plates, and 44 presumptive K. pneumoniae isolates on SCAI plates with cefotaxime. Colistin resistance was observed in 35 isolates, while cefotaxime resistance and tigecycline resistance was observed in only five isolates each, out of 563 presumptive K. pneumoniae isolates. All 44 isolates obtained on cefotaxime-containing plates were multidrug-resistant, with 25% (n = 11) showing resistance against tigecycline. Clinically important acquired antibiotic resistance genes (ARGs), like blaCTX-M-14, blaCTX-M-15, qnrS1, aac(3)-IIe, tet(A), and sul1, were detected in several sequenced Klebsiella spp. isolates (n = 53). All sequenced colistin-resistant isolates (n = 13) had a mutation in the mgrB gene with nucleotide substitution at position C88T creating a premature stop codon. All sequenced tigecycline-resistant isolates (n = 4) harbored a Tet(A) variant with 22 amino acid (aa) substitutions compared to the reference protein. The sequenced K. pneumoniae isolates (n = 44) belonged to 22 different sequence types (STs) with ST730 (29.5%) as most prevalent, followed by pathogenic ST307 (11.4%). Virulence factors, including aerobactin (iutA), enterobactin (entABCDEFS and fepABCDG), salmochelin (iro), and yersiniabactin (ybt) were detected in several sequenced K. pneumoniae isolates, suggesting pathogenicity potential. Heavy metal resistance genes were common in sequenced K. pneumoniae isolates (n = 44) with silver (silABCEFPRS) and copper (pcoABDRS) resistance genes present in 79.5% of the isolates. Sewage-based surveillance can be a useful tool for understanding antibiotic resistance in pathogens present within a population and to provide up-to date information on the current resistance situation. Our study presents a framework for population-based surveillance of resistance in K. pneumoniae.
Collapse
|
10
|
Marathe NP, Salvà-Serra F, Nimje PS, Moore ERB. Novel Plasmid Carrying Mobile Colistin Resistance Gene mcr-4.3 and Mercury Resistance Genes in Shewanella baltica: Insights into Mobilization of mcr-4.3 in Shewanella Species. Microbiol Spectr 2022; 10:e0203722. [PMID: 36374025 PMCID: PMC9769806 DOI: 10.1128/spectrum.02037-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Shewanella species have been identified as progenitors of several clinically important antibiotic resistance genes. The aim of our study was to analyze Shewanella baltica strains isolated from the gut contents of wild Atlantic mackerel (Scomber scombrus) for the presence of both known and novel variants of antibiotic resistance genes (ARGs), using Illumina-based whole-genome sequencing (WGS). Thirty-three S. baltica strains were isolated from Atlantic mackerel collected in the northern North Sea. WGS revealed the presence of several new variants of class C and class D beta-lactamases. Nearly 42% (14/33) of the strains carried the mobile colistin resistance gene mcr-4.3. To understand the genetic context of mcr-4.3, we determined the complete genome sequence of strain 11FHM2, using a combination of Oxford Nanopore- and Illumina-based sequencing. The complete genome sequence is 5,406,724 bp long, with one contig representing a chromosome of 5,068,880 bp and three contigs representing novel plasmids (pSBP1, 194,145 bp; pSBP2_mcr4, 86,727 bp; and pSBP3, 56,972 bp). Plasmid pSBP2_mcr4 contains the mobile colistin resistance gene mcr-4.3, as well as the mercury resistance operon merRPAT. Plasmid pSBP1 carries genes encoding resistance against copper, zinc, chromium, and arsenic. Plasmid pSBP3 does not carry any antibiotic or heavy metal resistance genes. Analysis of the flanking region of mcr-4.3 suggests that a phage integrase may be involved in the mobilization of mcr-4.3 in Shewanella spp. Our results provide insights into the mobile mcr-4.3 present in Shewanella spp. and highlight the importance of the marine environment in the emergence and dissemination of clinically important resistance genes. IMPORTANCE We identified two new plasmids in Shewanella baltica isolated from wild Atlantic mackerel (Scomber scombrus) collected from the northern North Sea, one plasmid carrying the mcr-4.3 gene for colistin resistance and the operon merRPAT for mercury resistance and the other carrying multiple heavy metal resistance genes. The marine environment has been recognized as a source of new resistance genes that are found in human pathogens. Selection pressure from heavy metals is seen in the marine environment, especially associated with human activities, such as waste discharge, mining, and in aquaculture settings. This would help maintain and disseminate these plasmids in the environment. Our study provides insights into the mobilization of colistin resistance genes in Shewanella spp. and highlights the importance of the marine environment in the emergence and dissemination of clinically important antibiotic resistance genes.
Collapse
Affiliation(s)
| | - Francisco Salvà-Serra
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | | | - Edward R. B. Moore
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Piergiacomo F, Brusetti L, Pagani L. Understanding the Interplay between Antimicrobial Resistance, Microplastics and Xenobiotic Contaminants: A Leap towards One Health? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:42. [PMID: 36612363 PMCID: PMC9819104 DOI: 10.3390/ijerph20010042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
According to the World Health Organization, the two major public health threats in the twenty-first century are antibiotic-resistant bacteria and antibiotic-resistant genes. The reason for the global prevalence and the constant increase of antibiotic-resistant bacteria is owed to the steady rise in overall antimicrobial consumption in several medical, domestic, agricultural, industrial, and veterinary applications, with consequent environmental release. These antibiotic residues may directly contaminate terrestrial and aquatic environments in which antibiotic-resistance genes are also present. Reports suggest that metal contamination is one of the main drivers of antimicrobial resistance (AMR). Moreover, the abundance of antibiotic-resistance genes is directly connected to the predominance of metal concentrations in the environment. In addition, microplastics have become a threat as emerging contaminants because of their ubiquitous presence, bio-inertness, toughness, danger to aquatic life, and human health implications. In the environment, microplastics and AMR are interconnected through biofilms, where genetic information (e.g., ARGs) is horizontally transferred between bacteria. From this perspective, we tried to summarize what is currently known on this topic and to propose a more effective One Health policy to tackle these threats.
Collapse
Affiliation(s)
- Federica Piergiacomo
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Piazza Università 1, 39100 Bolzano, Italy
| | - Lorenzo Brusetti
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Piazza Università 1, 39100 Bolzano, Italy
| | - Leonardo Pagani
- Antimicrobial Stewardship Project, Provincial Hospital of Bolzano (SABES-ASDAA), Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, 39100 Bolzano, Italy
| |
Collapse
|
12
|
Chen Z, Erickson DL, Meng J. Polishing the Oxford Nanopore long-read assemblies of bacterial pathogens with Illumina short reads to improve genomic analyses. Genomics 2021; 113:1366-1377. [PMID: 33716184 DOI: 10.1016/j.ygeno.2021.03.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 11/18/2022]
Abstract
Oxford Nanopore sequencing has been widely used to achieve complete genomes of bacterial pathogens. However, the error rates of Oxford Nanopore long reads are high. Various polishing algorithms using Illumina short reads to correct the errors in Oxford Nanopore long-read assemblies have been developed. The impact of polishing the Oxford Nanopore long-read assemblies of bacterial pathogens with Illumina short reads on improving genomic analyses was evaluated using both simulated and real reads. Ten species (10 strains) were selected for simulated reads, while real reads were tested on 11 species (11 strains). Oxford Nanopore long reads were assembled with Unicycler to produce a draft assembly, followed by three rounds of polishing with Illumina short reads using two polishing tools, Pilon and NextPolish. One round of NextPolish polishing generated genome completeness and accuracy parameters similar to the reference genomes, whereas two or three rounds of Pilon polishing were needed, though contiguity remained unchanged after polishing. The polished assemblies of Escherichia coli O157:H7, Salmonella Typhimurium, and Cronobacter sakazakii with simulated reads did not provide accurate plasmid identifications. One round of NextPolish polishing was needed for accurately identifying plasmids in Staphylococcus aureus and E. coli O26:H11 with real reads, whereas one and two rounds of Pilon polishing were necessary for these two strains, respectively. Polishing failed to provide an accurate antimicrobial resistance (AMR) genotype for S. aureus with real reads. One round of polishing recovered an accurate AMR genotype for Klebsiella pneumoniae with real reads. The reference genome and draft assembly of Citrobacter braakii with real reads differed, which carried blaCMY-83 and fosA6, respectively, while both genes were present after one round of polishing. However, polishing did not improve the assembly of E. coli O26:H11 with real reads to achieve numbers of virulence genes similar to the reference genome. The draft and polished assemblies showed a phylogenetic tree topology comparable with the reference genomes. For multilocus sequence typing and pan-genome analyses, one round of NextPolish polishing was sufficient to obtain accurate results, while two or three rounds of Pilon polishing were needed. Overall, NextPolish outperformed Pilon for polishing the Oxford Nanopore long-read assemblies of bacterial pathogens, though both polishing strategies improved genomic analyses compared to the draft assemblies.
Collapse
Affiliation(s)
- Zhao Chen
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA
| | - David L Erickson
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA; Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
13
|
Li W, Li Y, Jia Y, Sun H, Zhang C, Hu G, Yuan L. Genomic characteristics of mcr-1 and bla CTX-M-type in a single multidrug-resistant Escherichia coli ST93 from chicken in China. Poult Sci 2021; 100:101074. [PMID: 33774373 PMCID: PMC8025056 DOI: 10.1016/j.psj.2021.101074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 11/18/2022] Open
Abstract
This study was undertaken to discern the transmission characteristics of mcr-1 and blaCTX-M-type in one multidrug-resistant Escherichia coli LWY24 from chicken in China. The genetic profiles of LWY24 isolate were determined by conjugation, S1-pulsed-field gel electrophoresis, southern blot hybridization, and whole genome sequencing analysis. Meanwhile, co-transfer of plasmids in LWY24 isolate was screened by dual conjugation assays. The LWY24 isolate was identified as ST93, and harbored 3 conjugative plasmids, pLWY24J-3 (blaCTX-M-55-bearing IncFⅡ), pLWY24J-mcr-1 (mcr-1-carrying IncI2), and pLWY24J-4 (non-resistance-conferring IncI1), and one nonconjugative plasmid pLWY24 (blaCTX-M-14-containing IncHI2/IncHI2A). Numerous resistance genes, insertion sequences (especially IS26), and transposons were found in the 4 plasmids, suggesting that horizontal transmission have occurred by plasmid mating, homologous recombination, and transpositions. Under the selection pressure of cefotaxime and colistin or cefotaxime alone, the mcr-1-bearing plasmid and the blaCTX-M-55-harboring plasmid could be co-transferred at a similar frequency, with 8.00 × 10−4 or 9.00 × 10−4 transconjugants per donor cell, respectively. The specific shufflon region in mcr-1-encoding plasmid could generate up to 6 diverse PilV structures, which may further accelerate the horizontal transfer of plasmid. In conclusion, the transmission characteristics of mcr-1 and blaCTX-M-type in LWY24 isolate could due to clonal spread of ST93, selective pressure of cefotaxime, IS26-mediate homologous recombination and transposition, and the specific shufflon region.
Collapse
Affiliation(s)
- Wenya Li
- College of Animal Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yinshu Li
- College of Animal Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yating Jia
- College of Animal Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Huarun Sun
- College of Animal Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Chunhui Zhang
- College of Animal Medicine, Henan University of Animal Husbandry & Economy, Zhengzhou 450046, China
| | - Gongzheng Hu
- College of Animal Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Li Yuan
- College of Animal Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
14
|
Antibiotic Sensitivity Screening of Klebsiella spp. and Raoultella spp. Isolated from Marine Bivalve Molluscs Reveal Presence of CTX-M-Producing K. pneumoniae. Microorganisms 2020; 8:microorganisms8121909. [PMID: 33266320 PMCID: PMC7761178 DOI: 10.3390/microorganisms8121909] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 01/01/2023] Open
Abstract
Klebsiella spp. are a major cause of both nosocomial and community acquired infections, with K. pneumoniae being responsible for most human infections. Although Klebsiella spp. are present in a variety of environments, their distribution in the sea and the associated antibiotic resistance is largely unknown. In order to examine prevalence of K. pneumoniae and related species in the marine environment, we sampled 476 batches of marine bivalve molluscs collected along the Norwegian coast. From these samples, K. pneumoniae (n = 78), K. oxytoca (n = 41), K. variicola (n = 33), K. aerogenes (n = 1), Raoultella ornithinolytica (n = 38) and R. planticola (n = 13) were isolated. The number of positive samples increased with higher levels of faecal contamination. We found low prevalence of acquired resistance in all isolates, with seven K. pneumoniae isolates showing resistance to more than one antibiotic class. The complete genome sequence of cefotaxime-resistant K. pneumoniae sensu stricto isolate 2016-1400 was obtained using Oxford Nanopore and Illumina MiSeq based sequencing. The 2016-1400 genome had two contigs, one chromosome of 5,088,943 bp and one plasmid of 191,744 bp and belonged to ST1035. The β-lactamase genes blaCTX-M-3 and blaTEM-1, as well as the heavy metal resistance genes pco, ars and sil were carried on a plasmid highly similar to one found in K. pneumoniae strain C17KP0055 from South-Korea recovered from a blood stream infection. The present study demonstrates that K. pneumoniae are prevalent in the coastal marine environment and that bivalve molluscs may act as a potential reservoir of extended spectrum β-lactamase (ESBL)-producing K. pneumoniae that may be transmitted through the food chain.
Collapse
|