1
|
Khadem S, Berry D, Al-Khlifeh E. Climate influences the gut eukaryome of wild rodents in the Great Rift Valley of Jordan. Parasit Vectors 2024; 17:358. [PMID: 39180136 PMCID: PMC11342738 DOI: 10.1186/s13071-024-06451-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND The mammalian gut microbiome includes a community of eukaryotes with significant taxonomic and functional diversity termed the eukaryome. The molecular analysis of eukaryotic diversity in microbiomes of wild mammals is still in its early stages due to the recent emergence of interest in this field. This study aimed to fill this knowledge gap by collecting data on eukaryotic species found in the intestines of wild rodents. Because little is known about the influence of climate on the gut eukaryome, we compared the composition of the gut eukaryotes in two rodent species, Mus musculus domesticus and Acomys cahirinus, which inhabit a transect crossing a temperate and tropical zone on the Jordanian side of the Great Rift Valley (GRV). METHODS We used high-throughput amplicon sequencing targeting the 18S rRNA gene in fecal samples from rodents to identify eukaryotic organisms, their relative abundance, and their potential for pathogenicity. RESULTS Nematodes and protozoa were the most prevalent species in the eukaryome communities, whereas fungi made up 6.5% of the total. Sixty percent of the eukaryotic ASVs belonged to taxa that included known pathogens. Eighty percent of the rodents were infected with pinworms, specifically Syphacia obvelata. Eukaryotic species diversity differed significantly between bioclimatic zones (p = 0.001). Nippostrongylus brasiliensis and Aspiculuris tetraptera were found to be present exclusively in the Sudanian zone rodents. This area has not reported any cases of Trichuris infections. Yet, Capillaria infestations were unique to the Mediterranean region, while Trichuris vulpis infestations were also prevalent in the Mediterranean and Irano-Turanian regions. CONCLUSIONS This study highlights the importance of considering host species diversity and environmental factors when studying eukaryome composition in wild mammals. These data will be valuable as a reference to eukaryome study.
Collapse
Affiliation(s)
- Sanaz Khadem
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Enas Al-Khlifeh
- Laboratory of Immunology, Department of Medical Laboratory Science, Al-Balqa Applied University, Al-Salt, Jordan.
| |
Collapse
|
2
|
Bendová B, Bímová BV, Čížková D, Daniszová K, Ďureje Ľ, Hiadlovská Z, Macholán M, Piálek J, Schmiedová L, Kreisinger J. The strength of gut microbiota transfer along social networks and genealogical lineages in the house mouse. FEMS Microbiol Ecol 2024; 100:fiae075. [PMID: 38730559 PMCID: PMC11134300 DOI: 10.1093/femsec/fiae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/23/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
The gut microbiota of vertebrates is acquired from the environment and other individuals, including parents and unrelated conspecifics. In the laboratory mouse, a key animal model, inter-individual interactions are severely limited and its gut microbiota is abnormal. Surprisingly, our understanding of how inter-individual transmission impacts house mouse gut microbiota is solely derived from laboratory experiments. We investigated the effects of inter-individual transmission on gut microbiota in two subspecies of house mice (Mus musculus musculus and M. m. domesticus) raised in a semi-natural environment without social or mating restrictions. We assessed the correlation between microbiota composition (16S rRNA profiles), social contact intensity (microtransponder-based social networks), and mouse relatedness (microsatellite-based pedigrees). Inter-individual transmission had a greater impact on the lower gut (colon and cecum) than on the small intestine (ileum). In the lower gut, relatedness and social contact independently influenced microbiota similarity. Despite female-biased parental care, both parents exerted a similar influence on their offspring's microbiota, diminishing with the offspring's age in adulthood. Inter-individual transmission was more pronounced in M. m. domesticus, a subspecies, with a social and reproductive network divided into more closed modules. This suggests that the transmission magnitude depends on the social and genetic structure of the studied population.
Collapse
Affiliation(s)
- Barbora Bendová
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno 603 00, Czech Republic
| | | | - Dagmar Čížková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno 603 00, Czech Republic
| | - Kristina Daniszová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Ľudovít Ďureje
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno 603 00, Czech Republic
| | - Zuzana Hiadlovská
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Miloš Macholán
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Jaroslav Piálek
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno 603 00, Czech Republic
| | - Lucie Schmiedová
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno 603 00, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| |
Collapse
|
3
|
Liu X, Li M, Jian C, Qin X. Characterization of "microbiome-metabolome-immunity" in depressed rats with divergent responses to Paroxetine. J Affect Disord 2024; 352:201-213. [PMID: 38346646 DOI: 10.1016/j.jad.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
OBJECTIVES Selective serotonin reuptake inhibitors (SSRIs) are the first-line anti-depressants. Unfortunately, about 30 % depressed patients do not effectively respond to SSRIs. It is still unclear that the gastrointestinal characteristics of responders and non-responders, and the differences. METHODS Herein, we characterized gut microbiome and metabolome of depressed rats with differential responses to Paroxetine (PX) by 16S rRNA sequencing and 1H NMR-based metabolomics, respectively. On top of this, we constructed both inter- and inner-layer networks, intuitively showing the correlations among behavioral indicators, immune factors, intestinal bacteria, and differential metabolites. RESULTS Consequently, we found that depressed rats differently responded to PX, which could be divided into PX responsive (PX-R) and non-responsive (PX-N) groups. Firstly, the depressive behaviors of PX-R rats and PX-N rats significantly differed. Meanwhile, inflammatory balance was also characterized for depressed rats with different responses to PX. Overall, PX-R rats and PX-N rats exhibited differential gut microbiome and metabolome, including intestinal structures, intestinal functions, metabolic profiles, metabolites, and metabolic pathways. LIMITATIONS Metabolites that identified by metabolomics based on 1H NMR are not comprehensive enough. CONCLUSIONS Taken together, our study demonstrated that gut microbiome and metabolome, as well as related functions, are of significance in differential responses of depressed rats to PX, which might be novel insights in uncovering the mechanisms of differences in efficacies of antidepressants.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China.
| | - Mengyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China
| | - Chen Jian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
4
|
García-Gamboa R, Díaz-Torres O, Senés-Guerrero C, Gradilla-Hernández MS, Moya A, Pérez-Brocal V, Garcia-Gonzalez A, González-Avila M. Associations between bacterial and fungal communities in the human gut microbiota and their implications for nutritional status and body weight. Sci Rep 2024; 14:5703. [PMID: 38459054 PMCID: PMC10923939 DOI: 10.1038/s41598-024-54782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024] Open
Abstract
This study examined the interplay between bacterial and fungal communities in the human gut microbiota, impacting on nutritional status and body weight. Cohorts of 10 participants of healthy weight, 10 overweight, and 10 obese individuals, underwent comprehensive analysis, including dietary, anthropometric, and biochemical evaluations. Microbial composition was studied via gene sequencing of 16S and ITS rDNA regions, revealing bacterial (bacteriota) and fungal (mycobiota) profiles. Bacterial diversity exceeded fungal diversity. Statistically significant differences in bacterial communities were found within healthy-weight, overweight, and obese groups. The Bacillota/Bacteroidota ratio (previously known as the Firmicutes/Bacteroidetes ratio) correlated positively with body mass index. The predominant fungal phyla were Ascomycota and Basidiomycota, with the genera Nakaseomyces, Kazachstania, Kluyveromyces, and Hanseniaspora, inversely correlating with weight gain; while Saccharomyces, Debaryomyces, and Pichia correlated positively with body mass index. Overweight and obese individuals who harbored a higher abundance of Akkermansia muciniphila, demonstrated a favorable lipid and glucose profiles in contrast to those with lower abundance. The overweight group had elevated Candida, positively linked to simple carbohydrate consumption. The study underscores the role of microbial taxa in body mass index and metabolic health. An imbalanced gut bacteriota/mycobiota may contribute to obesity/metabolic disorders, highlighting the significance of investigating both communities.
Collapse
Affiliation(s)
- Ricardo García-Gamboa
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Av. Normalistas No. 800, col Colinas de la Normal, 44270, Guadalajara, Jalisco, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. General Ramon Corona 2514, Nuevo Mexico, 45138, Zapopan, Jalisco, Mexico
| | - Osiris Díaz-Torres
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramon Corona 2514, 45138, Zapopan, Jalisco, Mexico
| | - Carolina Senés-Guerrero
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramon Corona 2514, 45138, Zapopan, Jalisco, Mexico
| | - Misael Sebastián Gradilla-Hernández
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramon Corona 2514, 45138, Zapopan, Jalisco, Mexico
| | - Andrés Moya
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), The University of Valencia and The Spanish National Research Council (CSIC-UVEG), Valencia, Spain
| | - Vicente Pérez-Brocal
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - Alejandro Garcia-Gonzalez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. General Ramon Corona 2514, Nuevo Mexico, 45138, Zapopan, Jalisco, Mexico
| | - Marisela González-Avila
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Av. Normalistas No. 800, col Colinas de la Normal, 44270, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
5
|
James SA, Parker A, Purse C, Telatin A, Baker D, Evans R, Holmes S, Funnell SGP, Carding SR. Draft Genome Sequence of a Primate Isolate of Kazachstania pintolopesii. Mycopathologia 2023; 188:821-823. [PMID: 37589873 PMCID: PMC10564811 DOI: 10.1007/s11046-023-00772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/18/2023]
Abstract
Kazachstania pintolopesii is an opportunistic mammalian pathobiont from the K. telluris species complex. No draft genomes of this species are currently available. Here, we report the first draft genome sequence of a primate isolate of K. pintolopesii (NCYC 4417).
Collapse
Affiliation(s)
- Steve A James
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich, UK.
| | - Aimee Parker
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich, UK
| | - Catherine Purse
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich, UK
| | - Andrea Telatin
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich, UK
| | - David Baker
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich, UK
| | - Rhiannon Evans
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich, UK
| | - Sandy Holmes
- UK Health Security Agency, Porton Down, Salisbury, UK
| | - Simon G P Funnell
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich, UK
- UK Health Security Agency, Porton Down, Salisbury, UK
| | - Simon R Carding
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
6
|
Taxonomic, Genomic, and Functional Variation in the Gut Microbiomes of Wild Spotted Hyenas Across 2 Decades of Study. mSystems 2023; 8:e0096522. [PMID: 36533929 PMCID: PMC9948708 DOI: 10.1128/msystems.00965-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The gut microbiome provides vital functions for mammalian hosts, yet research on its variability and function across adult life spans and multiple generations is limited in large mammalian carnivores. Here, we used 16S rRNA gene and metagenomic high-throughput sequencing to profile the bacterial taxonomic composition, genomic diversity, and metabolic function of fecal samples collected from 12 wild spotted hyenas (Crocuta crocuta) residing in the Masai Mara National Reserve, Kenya, over a 23-year period spanning three generations. The metagenomic data came from four of these hyenas and spanned two 2-year periods. With these data, we determined the extent to which host factors predicted variation in the gut microbiome and identified the core microbes present in the guts of hyenas. We also investigated novel genomic diversity in the mammalian gut by reporting the first metagenome-assembled genomes (MAGs) for hyenas. We found that gut microbiome taxonomic composition varied temporally, but despite this, a core set of 14 bacterial genera were identified. The strongest predictors of the microbiome were host identity and age, suggesting that hyenas possess individualized microbiomes and that these may change with age during adulthood. The gut microbiome functional profiles of the four adult hyenas were also individual specific and were associated with prey abundance, indicating that the functions of the gut microbiome vary with host diet. We recovered 149 high-quality MAGs from the hyenas' guts; some MAGs were classified as taxa previously reported for other carnivores, but many were novel and lacked species-level matches to genomes in existing reference databases. IMPORTANCE There is a gap in knowledge regarding the genomic diversity and variation of the gut microbiome across a host's life span and across multiple generations of hosts in wild mammals. Using two types of sequencing approaches, we found that although gut microbiomes were individualized and temporally variable among hyenas, they correlated similarly to large-scale changes in the ecological conditions experienced by their hosts. We also recovered 149 high-quality MAGs from the hyena gut, greatly expanding the microbial genome repertoire known for hyenas, carnivores, and wild mammals in general. Some MAGs came from genera abundant in the gastrointestinal tracts of canid species and other carnivores, but over 80% of MAGs were novel and from species not previously represented in genome databases. Collectively, our novel body of work illustrates the importance of surveying the gut microbiome of nonmodel wild hosts, using multiple sequencing methods and computational approaches and at distinct scales of analysis.
Collapse
|
7
|
James SA, Parker A, Purse C, Telatin A, Baker D, Holmes S, Durham J, Funnell SGP, Carding SR. The Cynomolgus Macaque Intestinal Mycobiome Is Dominated by the Kazachstania Genus and K. pintolopesii Species. J Fungi (Basel) 2022; 8:1054. [PMID: 36294619 PMCID: PMC9605169 DOI: 10.3390/jof8101054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/30/2022] [Indexed: 08/10/2023] Open
Abstract
The cynomolgus macaque, Macaca fascicularis, is a non-human primate (NHP) widely used in biomedical research as its genetics, immunology and physiology are similar to those of humans. They may also be a useful model of the intestinal microbiome as their prokaryome resembles that of humans. However, beyond the prokaryome relatively little is known about other constituents of the macaque intestinal microbiome including the mycobiome. Here, we conducted a region-by-region taxonomic survey of the cynomolgus intestinal mycobiota, from duodenum to distal colon, of sixteen captive animals of differing age (from young to old). Using a high-throughput ITS1 amplicon sequencing-based approach, the cynomolgus gut mycobiome was dominated by fungi from the Ascomycota phylum. The budding yeast genus Kazachstania was most abundant, with the thermotolerant species K. pintolopesii highly prevalent, and the predominant species in both the small and large intestines. This is in marked contrast to humans, in which the intestinal mycobiota is characterised by other fungal genera including Candida and Saccharomyces, and Candida albicans. This study provides a comprehensive insight into the fungal communities present within the captive cynomolgus gut, and for the first time identifies K. pintolopesii as a candidate primate gut commensal.
Collapse
Affiliation(s)
- Steve A. James
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Aimee Parker
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Catherine Purse
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Andrea Telatin
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - David Baker
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Sandy Holmes
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - James Durham
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Simon G. P. Funnell
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Simon R. Carding
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
8
|
Mesnage R, Panzacchi S, Bourne E, Mein CA, Perry MJ, Hu J, Chen J, Mandrioli D, Belpoggi F, Antoniou MN. Glyphosate and its formulations Roundup Bioflow and RangerPro alter bacterial and fungal community composition in the rat caecum microbiome. Front Microbiol 2022; 13:888853. [PMID: 36274693 PMCID: PMC9580462 DOI: 10.3389/fmicb.2022.888853] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
The potential health consequences of glyphosate-induced gut microbiome alterations have become a matter of intense debate. As part of a multifaceted study investigating toxicity, carcinogenicity and multigenerational effects of glyphosate and its commercial herbicide formulations, we assessed changes in bacterial and fungal populations in the caecum microbiota of rats exposed prenatally until adulthood (13 weeks after weaning) to three doses of glyphosate (0.5, 5, 50 mg/kg body weight/day), or to the formulated herbicide products Roundup Bioflow and RangerPro at the same glyphosate-equivalent doses. Caecum bacterial microbiota were evaluated by 16S rRNA sequencing whilst the fungal population was determined by ITS2 amplicon sequencing. Results showed that both fungal and bacterial diversity were affected by the Roundup formulations in a dose-dependent manner, whilst glyphosate alone significantly altered only bacterial diversity. At taxa level, a reduction in Bacteroidota abundance, marked by alterations in the levels of Alloprevotella, Prevotella and Prevotellaceae UCG-003, was concomitant to increased levels of Firmicutes (e.g., Romboutsia, Dubosiella, Eubacterium brachy group or Christensenellaceae) and Actinobacteria (e.g., Enterorhabdus, Adlercreutzia, or Asaccharobacter). Treponema and Mycoplasma also had their levels reduced by the pesticide treatments. Analysis of fungal composition indicated that the abundance of the rat gut commensal Ascomycota Kazachstania was reduced while the abundance of Gibberella, Penicillium, Claviceps, Cornuvesica, Candida, Trichoderma and Sarocladium were increased by exposure to the Roundup formulations, but not to glyphosate. Altogether, our data suggest that glyphosate and its Roundup RangerPro and Bioflow caused profound changes in caecum microbiome composition by affecting the fitness of major commensals, which in turn reduced competition and allowed opportunistic fungi to grow in the gut, in particular in animals exposed to the herbicide formulations. This further indicates that changes in gut microbiome composition might influence the long-term toxicity, carcinogenicity and multigenerational effects of glyphosate-based herbicides.
Collapse
Affiliation(s)
- Robin Mesnage
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, Gene Expression and Therapy Group, King's College London, Guy's Hospital, London, United Kingdom
| | | | - Emma Bourne
- Genome Centre, Barts and the London School of Medicine and Dentistry, Blizard Institute, London, United Kingdom
| | - Charles A. Mein
- Genome Centre, Barts and the London School of Medicine and Dentistry, Blizard Institute, London, United Kingdom
| | - Melissa J. Perry
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - Jianzhong Hu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jia Chen
- Department of Environmental Medicine and Public Heath, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | | | - Michael N. Antoniou
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, Gene Expression and Therapy Group, King's College London, Guy's Hospital, London, United Kingdom
- *Correspondence: Michael N. Antoniou,
| |
Collapse
|
9
|
Parker A, James SA, Purse C, Brion A, Goldson A, Telatin A, Baker D, Carding SR. Absence of Bacteria Permits Fungal Gut-To-Brain Translocation and Invasion in Germfree Mice but Ageing Alone Does Not Drive Pathobiont Expansion in Conventionally Raised Mice. Front Aging Neurosci 2022; 14:828429. [PMID: 35923548 PMCID: PMC9339909 DOI: 10.3389/fnagi.2022.828429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Age-associated changes in the structure of the intestinal microbiome and in its interaction with the brain via the gut-brain axis are increasingly being implicated in neurological and neurodegenerative diseases. Intestinal microbial dysbiosis and translocation of microbes and microbial products including fungal species into the brain have been implicated in the development of dementias such as Alzheimer's disease. Using germ-free mice, we investigated if the fungal gut commensal, Candida albicans, an opportunistic pathogen in humans, can traverse the gastrointestinal barrier and disseminate to brain tissue and whether ageing impacts on the gut mycobiome as a pre-disposing factor in fungal brain infection. C. albicans was detected in different regions of the brain of colonised germ-free mice in both yeast and hyphal cell forms, often in close association with activated (Iba-1+) microglial cells. Using high-throughput ITS1 amplicon sequencing to characterise the faecal gut fungal composition of aged and young SPF mice, we identified several putative gut commensal fungal species with pathobiont potential although their abundance was not significantly different between young and aged mice. Collectively, these results suggest that although some fungal species can travel from the gut to brain where they can induce an inflammatory response, ageing alone is not correlated with significant changes in gut mycobiota composition which could predispose to these events. These results are consistent with a scenario in which significant disruptions to the gut microbiota or intestinal barrier, beyond those which occur with natural ageing, are required to allow fungal escape and brain infection.
Collapse
Affiliation(s)
- Aimée Parker
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - Steve A. James
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - Catherine Purse
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - Arlaine Brion
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - Andrew Goldson
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - Andrea Telatin
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - David Baker
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - Simon R. Carding
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
10
|
Bendová B, Mikula O, Bímová BV, Čížková D, Daniszová K, Ďureje Ľ, Hiadlovská Z, Macholán M, Martin JF, Piálek J, Schmiedová L, Kreisinger J. Divergent gut microbiota in two closely related house mouse subspecies under common garden conditions. FEMS Microbiol Ecol 2022; 98:6620832. [PMID: 35767862 DOI: 10.1093/femsec/fiac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/02/2022] [Accepted: 06/27/2022] [Indexed: 11/14/2022] Open
Abstract
The gastrointestinal microbiota (GM) is considered an important component of the vertebrate holobiont. GM-host interactions influence the fitness of holobionts and are therefore an integral part of evolution. The house mouse is a prominent model for GM-host interactions, and evidence suggests a role for GM in mouse speciation. However, previous studies based on short 16S rRNA GM profiles of wild house mouse subspecies failed to detect GM divergence, which is a prerequisite for the inclusion of GM in Dobzhansky-Muller incompatibilities. Here, we used standard 16S rRNA GM profiling in two mouse subspecies, Mus musculus musculus and M. m. domesticus, including the intestinal mucosa and content of three gut sections (ileum, caecum, and colon). We reduced environmental variability by sampling GM in the offspring of wild mice bred under semi-natural conditions. Although the breeding conditions allowed a contact between the subspecies, we found a clear differentiation of GM between them, in all three gut sections. Differentiation was mainly driven by several Helicobacters and two H. ganmani variants showed a signal of co-divergence with their hosts. Helicobacters represent promising candidates for studying GM-host co-adaptations and the fitness effects of their interactions.
Collapse
Affiliation(s)
- Barbora Bendová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.,Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Ondřej Mikula
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.,Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | | | - Dagmar Čížková
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Kristina Daniszová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Ľudovít Ďureje
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Zuzana Hiadlovská
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Miloš Macholán
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | | | - Jaroslav Piálek
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Lucie Schmiedová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.,Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
11
|
Intestinal Microecology of Mice Exposed to TiO 2 Nanoparticles and Bisphenol A. Foods 2022; 11:foods11121696. [PMID: 35741895 PMCID: PMC9222895 DOI: 10.3390/foods11121696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 02/01/2023] Open
Abstract
Exposure to titanium dioxide nanoparticles (TiO2 NPs) and bisphenol A (BPA) is ubiquitous, especially through dietary and other environmental pathways. In the present study, adult C57BL/6J mice were exposed to TiO2 NPs (100 mg/kg), BPA (0, 5, and 50 mg/kg), or their binary mixtures for 13 weeks. The 16S rDNA amplification sequence analysis revealed that co-exposure to TiO2 NPs and BPA altered the intestinal microbiota; however, this alteration was mainly caused by TiO2 NPs. Faecal metabolomics analysis revealed that 28 metabolites and 3 metabolic pathways were altered in the co-exposed group. This study is the first to reveal the combined effects of TiO2 NPs and BPA on the mammalian gut microbial community and metabolism dynamics, which is of great value to human health. The coexistence of TiO2 NPs and BPA in the gut poses a potential health risk due to their interaction with the gut microbiota.
Collapse
|
12
|
Lavrinienko A, Scholier T, Bates ST, Miller AN, Watts PC. Defining gut mycobiota for wild animals: a need for caution in assigning authentic resident fungal taxa. Anim Microbiome 2021; 3:75. [PMID: 34711273 PMCID: PMC8554864 DOI: 10.1186/s42523-021-00134-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Animal gut mycobiota, the community of fungi that reside within the gastrointestinal tract, make an important contribution to host health. Accordingly, there is an emerging interest to quantify the gut mycobiota of wild animals. However, many studies of wild animal gut mycobiota do not distinguish between the fungi that likely can reside within animal gastrointestinal tracts from the fungal taxa that are non-residents, such as macrofungi, lichens or plant symbionts/pathogens that can be ingested as part of the host's diet. Confounding the non-resident and resident gut fungi may obscure attempts to identify processes associated with the authentic, resident gut mycobiota per se. To redress this problem, we propose some strategies to filter the taxa identified within an apparent gut mycobiota based on an assessment of host ecology and fungal traits. Consideration of the different sources and roles of fungi present within the gastrointestinal tract should facilitate a more precise understanding of the causes and consequences of variation in wild animal gut mycobiota composition.
Collapse
Affiliation(s)
- Anton Lavrinienko
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Tiffany Scholier
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Scott T Bates
- Department of Biological Sciences, Purdue University Northwest, Westville, IN, 46391, USA
| | - Andrew N Miller
- University of Illinois Urbana-Champaign, Illinois Natural History Survey, 1816 South Oak Street, Champaign, IL, 61820-6970, USA
| | - Phillip C Watts
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland.
| |
Collapse
|