1
|
Cidan Y, Wang J, Wang H, Xu C, Zhu Y, Khan MK, Basang W, Li K. Composition and diversity of rumen mycobiota in Jiani yaks ( Bos grunniens jiani): insights into microbial ecology and functions. Anim Biotechnol 2025; 36:2476539. [PMID: 40070274 DOI: 10.1080/10495398.2025.2476539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 03/03/2025] [Indexed: 05/13/2025]
Abstract
This study aimed to explore the diversity and functions of rumen mycobiota in 14‑ (PLf) and 15‑rib (DLf) Jiani yaks using ITS sequencing. A total of 1,079,105 and 1,086,799 filtered sequences were obtained for the PLf and DLf groups, respectively, with 491 ASVs common to both. No significant difference regarding the α‑diversity of mycobiota within the two groups was observed. While β‑diversity analysis indicated that the abundance of fifteen (15) genera in the PLf group and two (2) genera in the DLf group was found to be significantly different (p < 0.05). 16S rRNA sequencing results indicated that at the phylum level, in 14 ribs yaks Ascomycota, Basidiomycota, and Olpidiomycota, while in 15 rib yaks, Neocallimastigomycota, Mortierellomycota, and Rozellomycota were found to be significantly different (p < 0.05). At the genus level, Rhodotorula, Kluyveromyces, Comoclathris, Arthrinium, Cladophialophora, Seimatosporium, Lambertella, and Sphacelotheca in 14 rib yaks, and Orpinomyces, Ustilago, Fusarium, Aspergillus, Caecomyces, Alternaria, Trichoderma and Acremonium in 15 rib yaks were found to be significantly (p < 0.05) different. Predictive functional analysis based on ruminal fungal DNA sequences from 15‑rib yaks (DLf) demonstrated that genes involved in energy metabolism were upregulated. This study sheds novel insights into how genetic variations influence gut mycobiota in Jiani yak.
Collapse
Affiliation(s)
- Yangji Cidan
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Jia Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Hongzhuang Wang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Chang Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Yanbin Zhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | | | - Wangdui Basang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
2
|
Li N, Li J, Feng Z, Wu Z, Gao Q, Wang J, Zhang Y, Chen SL, Xing R. Culture-dependent and -independent analyses reveal unique community structure and function in the external mycelial cortices of Ophiocordyceps sinensis. BMC Microbiol 2025; 25:78. [PMID: 39962392 PMCID: PMC11834595 DOI: 10.1186/s12866-025-03793-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
Ophiocordyceps sinensis, also known as DongChong XiaCao (DCXC) in China, is a complex of the parasitic fungus Hirsutella sinensis and its caterpillars host living in extreme alpine environments on the Qinghai-Tibetan Plateau. Wild resources of O. sinensis are threatened by over-harvesting due to its perceived high medicinal value. In recent years, numerous studies have pointed out that endofungal bacteria play an important role in fungal spore germination and zygote formation. In this sense, studying the endofungal bacteria of O. sinensis is of great interest regarding the conservation of this species. In this study, we investigated the community structure (abundance and rare sub-communities) and function of the soil-mycelial-sclerotia-stromata continuum endofungal bacteria in O. sinensis from the Qilian Mountain region of the Tibetan Plateau by using amplicon and macro-genome sequencing technologies. Based on the results, rare taxa exhibited more differences among the components, and enrichment and co-occurrence network analyses revealed that abundant taxa played a more important role. We further found that endofungal bacteria in external mycelial cortices have unique community structures and functions. In particular, they play an important role in material cycling, potentially providing essential nutrients during the lifecycle of O. sinensis. We successfully isolated 52 endofungal bacterial strains using high-throughput isolation techniques, some of them were undetected by high-throughput sequencing. We systematically investigated the structure and function of endofungal bacteria of the O. sinensis, providing a solid foundation for the cultivation and conservation of wild resources of this species at an industrial scale.
Collapse
Affiliation(s)
- Na Li
- Northwest institute of plateau biology, the Chinese Academy of Sciences, 23# Xinning Lu, Xining, Qinghai, 810008, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jiani Li
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100039, China
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhilin Feng
- Northwest institute of plateau biology, the Chinese Academy of Sciences, 23# Xinning Lu, Xining, Qinghai, 810008, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhihua Wu
- Northwest institute of plateau biology, the Chinese Academy of Sciences, 23# Xinning Lu, Xining, Qinghai, 810008, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Qingbo Gao
- Northwest institute of plateau biology, the Chinese Academy of Sciences, 23# Xinning Lu, Xining, Qinghai, 810008, China
| | - Jiuli Wang
- Qinghai Nationalities University, 3# Bayizhonglu, Xining, Qinghai, 810007, China
| | - Yuying Zhang
- Northwest institute of plateau biology, the Chinese Academy of Sciences, 23# Xinning Lu, Xining, Qinghai, 810008, China
| | - Shi-Long Chen
- Northwest institute of plateau biology, the Chinese Academy of Sciences, 23# Xinning Lu, Xining, Qinghai, 810008, China
| | - Rui Xing
- Northwest institute of plateau biology, the Chinese Academy of Sciences, 23# Xinning Lu, Xining, Qinghai, 810008, China.
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, 23# Xinning Lu, Xining, Qinghai, 810008, China.
| |
Collapse
|
3
|
Sharma A, Ranout AS, Kaur R, Kumari P, Nadda G. Unearthing diverse culturable fungal communities associated with Ophiocordyceps indica sp. nov. from Indian Western Himalaya. J Basic Microbiol 2024; 64:e2300461. [PMID: 38115562 DOI: 10.1002/jobm.202300461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/04/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
Fungal communities colonizing Ophiocordyceps spp. plays a crucial ecological role in their natural habitat, contributing to infect the host larvae, and influencing their occurrence. Although associated fungi with the newly described Ophiocordyceps indica, from the Indian Western Himalaya remains unclear. Therefore, we untangled the culturable fungal communities associated with O. indica and soil adhered to it, collected from low-height areas of Himachal Pradesh, India. The study resulted in the identification of 111 fungal isolates representing 17 families, with maximum fungal isolates (36.03%) within Cordycipitaceae. Interestingly, a total of 24 genera were found associated with O. indica and adhered soil, of which 12 were common, 8 were exclusive to O. indica and 4 were only limited to soil. Additionally, the influence of soil physicochemical parameters on fungal diversity indices revealed a positive correlation with humidity and available nitrogen and a negative correlation with pH and available phosphorus. These findings provide insights into the culturable fungal diversity of O. indica and the soil adhering to it, thus can contribute to the understanding of host-microbial interactions. Furthermore, these associations can be explored as a source of bioactive metabolites to combat the unending industrial demands.
Collapse
Affiliation(s)
- Aakriti Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
| | - Aditya Singh Ranout
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
| | - Rupinder Kaur
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
| | - Pooja Kumari
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
| | - Gireesh Nadda
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
| |
Collapse
|
4
|
Zha H, Tang R, Li S, Zhuge A, Xia J, Lv J, Wang S, Wang K, Zhang H, Li L. Effects of partial reduction of polystyrene micro-nanoplastics on the immunity, gut microbiota and metabolome of mice. CHEMOSPHERE 2024; 349:140940. [PMID: 38101478 DOI: 10.1016/j.chemosphere.2023.140940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Microplastic (MP) and nanoplastic (NP) could cause gut microbiota alterations. Although micro/nanoplastic (MNP) degradation is attracting increasing scientific interest, the evaluation of MNP reduction in gut needs to be further investigated. This study aimed to determine whether partial reduction of polystyrene MNP in gut could affect the immunity, gut microbiota and metabolome of mice. Serum eotaxin/CCL11 was at a lower level in the mice exposed to 200 μg and 500 μg NP (i.e., 2NP and 5NP groups, respectively) compared to those exposed to 500 μg MP (i.e., 5 MP group), while serum IL-2 and IL-4 were both greater in the 5NP group compared to the 5 MP group. The gut bacterial alpha diversity, fungal diversity and evenness were all similar among the MNP and control groups. However, the gut fungal richness was greater in both the 5NP and 5 MP groups compared to the control group. The gut bacterial and fungal compositions were both different between the MNP and control groups. Multiple gut bacteria and fungi showed different levels between the 2NP and 5NP groups, as well as between the 2NP and 5 MP groups. Increased Staphylococcus and decreased Glomus were determined in the 2NP group compared to both the 5NP and 5 MP groups. A Lactobacillus phylotype was found as the sole gatekeeper in the bacterial network of the 2NP group, while a Bifidobacterium phylotype contributed most to the stability of the bacterial networks of both the 5NP and 5 MP groups. Multiple differential gut metabolic pathways were found between the 2NP and 5NP/5 MP groups, and mTOR signaling pathway was largely upregulated in the 2NP group compared to both the 5NP and 5 MP groups. The relevant results could help with the evaluation of partial reduction of MNP in gut.
Collapse
Affiliation(s)
- Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiqi Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengjie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Aoxiang Zhuge
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiawen Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuting Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaiceng Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Shi B, Hou K, Cheng C, Bai Y, Liu C, Du Z, Wang J, Wang J, Li B, Zhu L. Effects of the polyhalogenated carbazoles 3-bromocarbazole and 1,3,6,8-tetrabromocarbazole on soil microbial communities. ENVIRONMENTAL RESEARCH 2023; 239:117379. [PMID: 37832772 DOI: 10.1016/j.envres.2023.117379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Soil ecosystems are being more contaminated with polyhalogenated carbazoles (PHCZs), which raising much attention about their impact on soil microorganisms. 3-Bromocarbazole (3-BCZ) and 1,3,6,8-tetrabromocarbazole (1,3,6,8-TBCZ) are two typical PHCZs with high detection rates in the soil environment. However, ecological risk research on these two PHCZs in soil is still lacking. In the present study, after 80 days of exposure, the ecological influence of 3-BCZ and 1,3,6,8-TBCZ was investigated based on 16S rDNA sequencing, ITS sequencing, gene (16S rDNA, ITS, amoA, nifH, narG and cbbL) abundance and soil enzyme activity. The results showed that the bacterial 16S rDNA gene abundance significantly decreased under 3-BCZ and 1,3,6,8-TBCZ exposure after 80 days of incubation. The fungal ITS gene abundance significantly decreased under 1,3,6,8-TBCZ (10 mg/kg) exposure. PHCZs contributed to the alteration of bacteria and fungi community abundance. Bacteria Sphingomonas, RB41 and fungus Mortierella, Cercophora were identified as the most dominant genera. The two PHCZs consistently decreased the relative abundance of Sphingomonas, Lysobacter, Dokdonella, Mortierella and Cercophora etc at 80th day. These keystone taxa are related to the degradation of organic compounds, carbon metabolism, and nitrogen metabolism and may thus have influence on soil ecological functions. Bacterial and fungal functions were estimated using functional annotation of prokaryotic taxa (FAPROTAX) and fungi functional guild (FUNGuild), respectively. The nitrogen and carbon metabolism pathway were affected by 3-BCZ and 1,3,6,8-TBCZ. The soil nitrogen-related functions of aerobic ammonia oxidation were decreased but the soil carbon-related functions of methanol oxidation, fermentation, and hydrocarbon degradation were increased at 80th day. The effects of 3-BCZ and 1,3,6,8-TBCZ on the abundances of the amoA, nifH, narG, and cbbL genes showed a negative trend. These results elucidate the ecological effects of PHCZs and extend our knowledge on the structure and function of soil microorganisms in PHCZ-contaminated ecosystems.
Collapse
Affiliation(s)
- Baihui Shi
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Kaixuan Hou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China; College of Biological and Environmental Engineering, Binzhou University, Binzhou, 256603, PR China.
| | - Chao Cheng
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, PR China.
| | - Yao Bai
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Changrui Liu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| |
Collapse
|
6
|
Xu W, Sun T, Du J, Jin S, Zhang Y, Bai G, Li W, Yin D. Structure and ecological function of the soil microbiome associated with 'Sanghuang' mushrooms suffering from fungal diseases. BMC Microbiol 2023; 23:218. [PMID: 37573330 PMCID: PMC10422728 DOI: 10.1186/s12866-023-02965-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND The most serious challenges in medicinal 'Sanghuang' mushroom production are the fungal diseases caused by various molds. Application of biological agents has been regarded as a potential crop disease management strategy. Here, the soil microbiome associated with 'Sanghuang' mushroom affected by fungal diseases grown under field cultivation (FC) and hanging cultivation (HC) was characterized using culture-dependent and culture-independent methods. RESULTS A total of 12,525 operational taxonomic units (OTUs) and 168 pure cultures were obtained using high-throughput sequencing and a culture-dependent method, respectively. From high-throughput sequencing, we found that HC samples had more OTUs, higher α-diversity, and greater microbial community complexity than FC samples. Analysis of β-diversity divided the soil microbes into two groups according to cultivation mode. Basidiomycota (48.6%) and Ascomycota (46.5%) were the two dominant fungal phyla in FC samples, with the representative genera Trichoderma (56.3%), Coprinellus (29.4%) and Discosia (4.8%), while only the phylum Ascomycota (84.5%) was predominant in HC samples, with the representative genera Discosia (34.0%), Trichoderma (30.2%), Penicillium (14.9%), and Aspergillus (7.8%). Notably, Trichoderma was predominant in both the culture-independent and culture-dependent analyses, with Trichoderma sp. FZ0005 showing high host pathogenicity. Among the 87 culturable bacteria, 15 exhibited varying extents of antifungal activity against Trichoderma sp. FZ0005, with three strains of Bacillus spp. (HX0037, HX0016, and HX0039) showing outstanding antifungal capacity. CONCLUSIONS Overall, our results suggest that Trichoderma is the major causal agent of 'Sanghuang' fungal diseases and that Bacillus strains may be used as biocontrol agents in 'Sanghuang' cultivation.
Collapse
Affiliation(s)
- Weifang Xu
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Tao Sun
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiahui Du
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shuqing Jin
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Ying Zhang
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Guofa Bai
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wanyu Li
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Dengke Yin
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
7
|
Dong F, Zhu Y, Zhu X, Zhang C, Tao Y, Shao T, Wang Y, Luo X. Fungal community remediate quartz tailings soil under plant combined with urban sludge treatments. Front Microbiol 2023; 14:1160960. [PMID: 37152723 PMCID: PMC10157048 DOI: 10.3389/fmicb.2023.1160960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Tailings can cause extensive damage to soil structure and microbial community. Phytoremediation is an effective strategy for remedied tailings soil due to its environmentally friendly and low-cost advantage. Fungi play a crucial role in nutrient cycling, stress resistance, stabilizing soil structure, and promoting plant growth. However, the fungal community variation in phytoremediation remains largely unexplored. Methods We analyzed soil fungal community based on high-throughput sequencing during three plant species combined with urban sludge to remediate quartz tailings soil. Results The results indicated that the fungal diversity was significantly increased with plant diversity, and the highest fungal diversity was in the three plant species combination treatments. Moreover, the fungal diversity was significantly decreased with the addition of urban sludge compared with plant treatments, while the abundance of potential beneficial fungi such as Cutaneotrichosporon, Apiotrichum, and Alternaria were increased. Notably, the fungal community composition in different plant species combination treatments were significant difference at the genus level. The addition of urban sludge increased pH, available phosphorus (AP), and available nitrogen (AN) content that were the main drivers for fungal community composition. Furthermore, the fungal networks of the plant treatments had more nodes and edges, higher connectedness, and lower modularity than plant combined with urban sludge treatments. Conclusion Our results showed that three plant species combined with urban sludge treatments improved fungal community and soil properties. Our results provide insights for quartz tailings soil remediation using plant-fungi- urban sludge.
Collapse
Affiliation(s)
- Fabao Dong
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| | - Yujia Zhu
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Xunmei Zhu
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Chengzhi Zhang
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Yingying Tao
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Taotao Shao
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Yue Wang
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Xia Luo
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| |
Collapse
|
8
|
Liu J, Zhang X, Tian J, Li Y, Liu Q, Chen X, Feng F, Yu X, Yang C. Multiomics analysis reveals that peach gum colouring reflects plant defense responses against pathogenic fungi. Food Chem 2022; 383:132424. [PMID: 35182869 DOI: 10.1016/j.foodchem.2022.132424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/22/2021] [Accepted: 02/08/2022] [Indexed: 11/29/2022]
Abstract
In the present study, the differences in the antioxidant capability, metabolite composition and fungal diversity in peach gum with various colours were investigated. Metabolomics revealed that peach gum comprised many small-molecule metabolites (including primary and secondary metabolites), and most polyphenols (such as flavonoids and phenolic acids) showed a significantly positive relationship with the colour deepening, total phenol content and antioxidant capability. Using fungal diversity analysis, the abundance of five fungi at the genus level increased with peach gum colour deepening, and these fungi demonstrated a significantly positive relationship with two defense hormones (salicylic acid and abscisic acid) and most polyphenols (particularly flavonoids). The gummosis pathogenic fungus Botryosphaeria was among the five fungi, suggesting that peach gum colouring may reflect plant defense responses against pathogenic fungi. Additionally, the concentrations of 12 flavonoids in peach gum samples were detected based on LC-QQQ/MS, among which hesperetin, naringenin and eriodictyol were the most abundant.
Collapse
Affiliation(s)
- Jia Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Zhenjiang City University Road, Zhenjiang 212001, China
| | - Xiping Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Ju Tian
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Yong Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Zhenjiang City University Road, Zhenjiang 212001, China.
| | - Qiyue Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Xiaolong Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Fayun Feng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Xiangyang Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Chenye Yang
- Central Laboratory in Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| |
Collapse
|
9
|
Contrasting Responses of Rhizosphere Fungi of
Scutellaria tsinyunensis
, an Endangered Plant in Southwestern China. Microbiol Spectr 2022; 10:e0022522. [PMID: 35863021 PMCID: PMC9430849 DOI: 10.1128/spectrum.00225-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Scutellaria tsinyunensis is an endangered species in southwest China, distributed sporadically in mountainous areas at an elevation of approximately 200 to 900 m. Rhizosphere soil properties and fungal communities play critical roles in plant survival and expansion. Nevertheless, understanding of soil properties and fungal communities in the S. tsinyunensis distribution areas is extremely limited. The present study examined soil properties and fungal communities in nearly all extant S. tsinyunensis populations at two altitudinal gradients (low and high groups). Our findings indicated that soil characteristics (i.e., soil pH, water content, and available phosphorus) were affected distinctively by altitudes (P < 0.05). In addition, the low altitude group harbored higher fungal richness and diversity than the high altitude. Co-occurrence network analysis identified six key genera that proved densely connected interactions with many genera. Further analysis represented that the low altitude group harbored three beneficial genera belonging to Ascomycota (Archaeorhizomyces, Dactylella, and Helotiales), whereas the high altitude showed more pathogenic fungi (Apiosporaceae, Colletotrichum, and Fusarium). Correlation analysis found that soil water content was highly correlated with Hydnodontaceae and Lophiostoma. Besides, plants’ canopy density was negatively correlated with four pathogenic fungi, indicating that the high abundance of the pathogen at high altitudes probably inhibited the survival of S. tsinyunensis. To sum up, this comprehensive analysis generates novel insights to explore the contrasting responses of S. tsinyunensis rhizosphere fungal communities and provides profound references for S. tsinyunensis habitat restoration and species conservation. IMPORTANCE Our study highlighted the importance of rhizosphere fungal communities in an endangered plant, S. tsinyunensis. Comparative analysis of soil samples in nearly all extant S. tsinyunensis populations identified that soil properties, especially soil water content, might play essential roles in the survival and expansion of S. tsinyunensis. Our findings proved that a series of fungal communities (e.g., Archaeorhizomyces, Dactylella, and Helotiales) could be essential indicators for S. tsinyunensis habitat restoration and protection for the first time. In addition, further functional and correlation analyses revealed that pathogenic fungi might limit the plant expansion into high altitudes. Collectively, our findings displayed a holistic picture of the rhizosphere microbiome and environmental factors associated with S. tsinyunensis.
Collapse
|
10
|
Ling Z, Zhu M, Liu X, Shao L, Cheng Y, Yan X, Jiang R, Wu S. Fecal Fungal Dysbiosis in Chinese Patients With Alzheimer's Disease. Front Cell Dev Biol 2021; 8:631460. [PMID: 33585471 PMCID: PMC7876328 DOI: 10.3389/fcell.2020.631460] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Gut bacterial dysbiosis plays a vital role in the development of Alzheimer's disease (AD). However, our understanding of alterations to the gut fungal microbiota and their correlations with host immunity in AD is still limited. Samples were obtained from 88 Chinese patients with AD, and 65 age- and gender-matched, cognitively normal controls. Using these samples, we investigated the fungal microbiota targeting internal transcribed spacer 2 (ITS2) rRNA genes using MiSeq sequencing, and analyzed their associations with the host immune response. Our data demonstrated unaltered fungal diversity but altered taxonomic composition of the fecal fungal microbiota in the AD patients. The analysis of the fungal microbiota was performed using 6,585,557 high-quality reads (2,932,482 reads from the controls and 3,653,075 from the AD patients), with an average of 43,042 reads per sample. We found that several key differential fungi such as Candida tropicalis and Schizophyllum commune were enriched in the AD patients, while Rhodotorula mucilaginosa decreased significantly. Interestingly, C. tropicalis and S. commune were positively correlated with IP-10 and TNF-α levels. In contrast, C. tropicalis was negatively correlated with IL-8 and IFN-γ levels, and R. mucilaginosa was negatively correlated with TNF-α level. PiCRUSt analysis revealed that lipoic acid metabolism, starch and sucrose metabolism were significantly decreased in the AD fungal microbiota. This study is the first to demonstrate fecal fungal dysbiosis in stable AD patients at a deeper level, and to identify the key differential fungi involved in regulating host systemic immunity. The analysis of the fungal microbiota in AD performed here may provide novel insights into the etiopathogenesis of AD and pave the way for improved diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Manlian Zhu
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Shao
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou, China
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yiwen Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiumei Yan
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Ruilai Jiang
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Shaochang Wu
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| |
Collapse
|