1
|
Cao G, Li X, Zhang C, Xiong Y, Li X, Li T, He S, Cui Z, Yu J. Physiological response mechanism of heavy metal-resistant endophytic fungi isolated from the roots of Polygonatum kingianum. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:568-581. [PMID: 37604512 PMCID: PMC10667662 DOI: 10.1111/1758-2229.13194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
This study aims to evaluate the tolerance of endophytic fungi isolated from the fibrous roots of Polygonatum kingianum to arsenic (As) and cadmium (Cd) and their physiological response mechanisms. Five isolated strains were obtained with EC50 values for As(V) ranging from 421 to 1281 mg/L, while the other three strains tolerated Cd(II) with an EC50 range of 407-1112 mg/L. Morphological and molecular identification indicated that these eight strains were Cladosporium spp. belonging to dark septate endophytes (DSEs). The contents of metal ions in mycelium sharply increased, reaching 38.87 mg/kg for strain MZ-11 under As(V) stress and 0.33 mg/kg for fungus PR-2 under Cd(II). The physiological response revealed that the biomass decreased with increasing concentrations of As(V) or Cd(II), and the activity of superoxide dismutase significantly improved under the corresponding EC50 -concentration As/Cd of the strains, as well as the contents of antioxidant substances, including metallothionein, glutathione, malondialdehyde, melanin, and proline. Taken together, the filamentous fungi of Cladosporium spp. accounted for a high proportion of fungi isolated from the fibrous roots of P. kingianum and had a strong capacity to tolerate As(V) or Cd(II) stress by improving antioxidase activities and the content of antioxidant substances, and immobilization of metal ions in hyphae.
Collapse
Affiliation(s)
- Guan‐Hua Cao
- School of Chinese Materia MedicaYunnan University of Chinese MedicineKunmingChina
| | - Xiao‐Gang Li
- School of Chinese Materia MedicaYunnan University of Chinese MedicineKunmingChina
| | - Chen‐Rui Zhang
- School of Chinese Materia MedicaYunnan University of Chinese MedicineKunmingChina
| | - Yi‐Ran Xiong
- School of Chinese Materia MedicaYunnan University of Chinese MedicineKunmingChina
| | - Xue Li
- School of Chinese Materia MedicaYunnan University of Chinese MedicineKunmingChina
| | - Tong Li
- School of Chinese Materia MedicaYunnan University of Chinese MedicineKunmingChina
| | - Sen He
- School of Chinese Materia MedicaYunnan University of Chinese MedicineKunmingChina
- Department of Environmental HealthUniversity of Fukui School of Medical SciencesFukuiJapan
| | - Zheng‐Guo Cui
- Department of Environmental HealthUniversity of Fukui School of Medical SciencesFukuiJapan
| | - Jie Yu
- School of Chinese Materia MedicaYunnan University of Chinese MedicineKunmingChina
| |
Collapse
|
2
|
Gharsallah H, Ksentini I, Frikha-Gargouri O, Hadj Taieb K, Ben Gharsa H, Schuster C, Chatti-Kolsi A, Triki MA, Ksantini M, Leclerque A. Exploring Bacterial and Fungal Biodiversity in Eight Mediterranean Olive Orchards ( Olea europaea L.) in Tunisia. Microorganisms 2023; 11:microorganisms11041086. [PMID: 37110509 PMCID: PMC10145363 DOI: 10.3390/microorganisms11041086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
A wide array of bacteria and fungi are known for their association with pests that impact the health of the olive tree. The latter presents the most economically important cultivation in Tunisia. The microbial diversity associated with olive orchards in Tunisia remains unknown and undetermined. This study investigated microbial diversity to elucidate the microbial interactions that lead to olive disease, and the bio-prospects for potential microbial biocontrol agents associated with insect pests of economic relevance for olive cultivation in the Mediterranean area. Bacterial and fungal isolation was made from soil and olive tree pests. A total of 215 bacterial and fungal strains were randomly isolated from eight different biotopes situated in Sfax (Tunisia), with different management practices. 16S rRNA and ITS gene sequencing were used to identify the microbial community. The majority of the isolated bacteria, Staphylococcus, Bacillus, Alcaligenes, and Providencia, are typical of the olive ecosystem and the most common fungi are Penicillium, Aspergillus, and Cladosporium. The different olive orchards depicted distinct communities, and exhibited dissimilar amounts of bacteria and fungi with distinct ecological functions that could be considered as promising resources in biological control.
Collapse
Affiliation(s)
- Houda Gharsallah
- Laboratory of Improvement and Protection of Olive Tree Genetic Resources, Olive Tree Institute, University of Sfax, Sfax 3038, Tunisia
| | - Ines Ksentini
- Laboratory of Improvement and Protection of Olive Tree Genetic Resources, Olive Tree Institute, University of Sfax, Sfax 3038, Tunisia
| | - Olfa Frikha-Gargouri
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, Sfax 3038, Tunisia
| | - Karama Hadj Taieb
- Laboratory of Improvement and Protection of Olive Tree Genetic Resources, Olive Tree Institute, University of Sfax, Sfax 3038, Tunisia
| | - Haifa Ben Gharsa
- Department of Biology, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Christina Schuster
- Department of Biology, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Amel Chatti-Kolsi
- Laboratory of Improvement and Protection of Olive Tree Genetic Resources, Olive Tree Institute, University of Sfax, Sfax 3038, Tunisia
| | - Mohamed Ali Triki
- Laboratory of Improvement and Protection of Olive Tree Genetic Resources, Olive Tree Institute, University of Sfax, Sfax 3038, Tunisia
| | - Mohieddine Ksantini
- Laboratory of Improvement and Protection of Olive Tree Genetic Resources, Olive Tree Institute, University of Sfax, Sfax 3038, Tunisia
| | - Andreas Leclerque
- Department of Biology, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
3
|
Dab A, Hasnaoui I, Mechri S, Allala F, Bouacem K, Noiriel A, Bouanane-Darenfed A, Saalaoui E, Asehraou A, Wang F, Abousalham A, Jaouadi B. Biochemical characterization of an alkaline and detergent-stable Lipase from Fusarium annulatum Bugnicourt strain CBS associated with olive tree dieback. PLoS One 2023; 18:e0286091. [PMID: 37205651 DOI: 10.1371/journal.pone.0286091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/07/2023] [Indexed: 05/21/2023] Open
Abstract
This work describes a novel extracellular lipolytic carboxylester hydrolase named FAL, with lipase and phospholipase A1 (PLA1) activity, from a newly isolated filamentous fungus Ascomycota CBS strain, identified as Fusarium annulatum Bunigcourt. FAL was purified to about 62-fold using ammonium sulphate precipitation, Superdex® 200 Increase gel filtration and Q-Sepharose Fast Flow columns, with a total yield of 21%. The specific activity of FAL was found to be 3500 U/mg at pH 9 and 40°C and 5000 U/mg at pH 11 and 45°C, on emulsions of triocanoin and egg yolk phosphatidylcholine, respectively. SDS-PAGE and zymography analysis estimated the molecular weight of FAL to be 33 kDa. FAL was shown to be a PLA1 with a regioselectivity to the sn-1 position of surface-coated phospholipids esterified with α-eleostearic acid. FAL is a serine enzyme since its activity on triglycerides and phospholipids was completely inhibited by the lipase inhibitor Orlistat (40 μM). Interestingly, compared to Fusarium graminearum lipase (GZEL) and the Thermomyces lanuginosus lipase (Lipolase®), this novel fungal (phospho)lipase showed extreme tolerance to the presence of non-polar organic solvents, non-ionic and anionic surfactants, and oxidants, in addition to significant compatibility and stability with some available laundry detergents. The analysis of washing performance showed that it has the capability to efficiently eliminate oil-stains. Overall, FAL could be an ideal choice for application in detergents.
Collapse
Affiliation(s)
- Ahlem Dab
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), Université Lyon, Université Lyon 1, UMR 5246 CNRS, Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires (GEMBAS), Villeurbanne, France
- Laboratoire de Biotechnologie Microbienne et d'Ingénierie des Enzymes (LBMIE), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Sfax, Tunisia
| | - Ismail Hasnaoui
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), Université Lyon, Université Lyon 1, UMR 5246 CNRS, Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires (GEMBAS), Villeurbanne, France
- Faculté des Sciences d'Oujda (FSO), Laboratoire de Bioressources, Biotechnologie, Ethnopharmacologie et Santé (LBBES), Université Mohammed Premier (UMP), Oujda, Morocco
| | - Sondes Mechri
- Laboratoire de Biotechnologie Microbienne et d'Ingénierie des Enzymes (LBMIE), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Sfax, Tunisia
| | - Fawzi Allala
- Faculté des Sciences Biologiques (FSB), Laboratoire de Biologie Cellulaire et Moléculaire (LCMB), Equipe de Microbiologie, Université des Sciences et de la Technologie Houari Boumediene (USTHB), El Alia, Bab Ezzouar, Alger, Algeria
| | - Khelifa Bouacem
- Faculté des Sciences Biologiques (FSB), Laboratoire de Biologie Cellulaire et Moléculaire (LCMB), Equipe de Microbiologie, Université des Sciences et de la Technologie Houari Boumediene (USTHB), El Alia, Bab Ezzouar, Alger, Algeria
| | - Alexandre Noiriel
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), Université Lyon, Université Lyon 1, UMR 5246 CNRS, Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires (GEMBAS), Villeurbanne, France
| | - Amel Bouanane-Darenfed
- Faculté des Sciences Biologiques (FSB), Laboratoire de Biologie Cellulaire et Moléculaire (LCMB), Equipe de Microbiologie, Université des Sciences et de la Technologie Houari Boumediene (USTHB), El Alia, Bab Ezzouar, Alger, Algeria
| | - Ennouamane Saalaoui
- Faculté des Sciences d'Oujda (FSO), Laboratoire de Bioressources, Biotechnologie, Ethnopharmacologie et Santé (LBBES), Université Mohammed Premier (UMP), Oujda, Morocco
| | - Abdeslam Asehraou
- Faculté des Sciences d'Oujda (FSO), Laboratoire de Bioressources, Biotechnologie, Ethnopharmacologie et Santé (LBBES), Université Mohammed Premier (UMP), Oujda, Morocco
| | - Fanghua Wang
- School of Food Science and Engineering (SFSE), South China University of Technology (SCUT), Guangzhou, China
| | - Abdelkarim Abousalham
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), Université Lyon, Université Lyon 1, UMR 5246 CNRS, Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires (GEMBAS), Villeurbanne, France
| | - Bassem Jaouadi
- Laboratoire de Biotechnologie Microbienne et d'Ingénierie des Enzymes (LBMIE), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Sfax, Tunisia
| |
Collapse
|
4
|
Talaromyces-Insect Relationships. Microorganisms 2021; 10:microorganisms10010045. [PMID: 35056494 PMCID: PMC8780841 DOI: 10.3390/microorganisms10010045] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022] Open
Abstract
Facing the urgent need to reduce the input of agrochemicals, in recent years, the ecological relationships between plants and their associated microorganisms have been increasingly considered as an essential tool for improving crop production. New findings and data have been accumulated showing that the application of fungi can go beyond the specific role that has been traditionally assigned to the species, employed in integrated pest management as entomopathogens or mycoparasites, and that strains combining both aptitudes can be identified and possibly used as multipurpose biocontrol agents. Mainly considered for their antagonistic relationships with plant pathogenic fungi, species in the genus Talaromyces have been more and more widely reported as insect associates in investigations carried out in various agricultural and non-agricultural contexts. Out of a total of over 170 species currently accepted in this genus, so far, 27 have been found to have an association with insects from 9 orders, with an evident increasing trend. The nature of their mutualistic and antagonistic relationships with insects, and their ability to synthesize bioactive compounds possibly involved in the expression of the latter kind of interactions, are analyzed in this paper with reference to the ecological impact and applicative perspectives in crop protection.
Collapse
|
5
|
Pecundo MH, dela Cruz TEE, Chen T, Notarte KI, Ren H, Li N. Diversity, Phylogeny and Antagonistic Activity of Fungal Endophytes Associated with Endemic Species of Cycas (Cycadales) in China. J Fungi (Basel) 2021; 7:572. [PMID: 34356951 PMCID: PMC8304459 DOI: 10.3390/jof7070572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/28/2022] Open
Abstract
The culture-based approach was used to characterize the fungal endophytes associated with the coralloid roots of the endemic Cycas debaoensis and Cycas fairylakea from various population sites in China. We aim to determine if the assemblages of fungal endophytes inside these endemic plant hosts are distinct and could be explored for bioprospecting. The isolation method yielded a total of 284 culturable fungal strains. Identification based on the analysis of the internal transcribed spacer (ITS) rDNA showed that they belonged to two phyla, five classes, eight orders and 22 families. At least 33 known genera and 62 different species were confirmed based on >97% ITS sequence similarity. The most frequent and observed core taxa in the two host species regardless of their population origin were Talaromyces, Penicillium, Fusarium, Pochonia and Gliocladiopsis. Seventy percent was a rare component of the fungal communities with only one or two recorded isolates. Contrary to common notions, diversity and fungal richness were significantly higher in C. debaoensis and C. fairylakea collected from a botanical garden, while the lowest was observed in C. debaoensis from a natural habitat; this provides evidence that garden management, and to a minor extent, ex-situ conservation practice, could influence fungal endophyte communities. We further selected nineteen fungal isolates and screened for their antagonistic activities via a co-cultivation approach against the phytopathogens, Diaporthe sp. and Colletotrichum sp. Among these, five isolates with high ITS similarity matches with Hypoxylon vinosupulvinatum (GD019, 99.61%), Penicillium sp. (BD022, 100%), Penicillifer diparietisporus (GD008, 99.46%), Clonostachys rogersoniana (BF024, 99.46%) and C. rosea (BF011, 99.1%), which showed exceptional antagonistic activities against the phytopathogenic fungi with a significant inhibition rate of 70-80%. Taken together, our data presented the first and most comprehensive molecular work on culturable fungal endophytes associated with the coralloid roots of cycads. Our study also demonstrated that about 5% of fungal endophytes were not detected by the high-throughput sequencing approach, implying the equal importance of a culture-dependent approach to study fungal communities of cycads. We further highlighted the potential role of endemic and rare plants to discover and isolate unique plant-associated fungal taxa with excellent biocontrol properties.
Collapse
Affiliation(s)
- Melissa H. Pecundo
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (M.H.P.); (H.R.)
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen 518004, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Thomas Edison E. dela Cruz
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila 1008, Philippines;
- Fungal Biodiversity, Ecogenomics and Systematics (FBeS) Group, Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1008, Philippines;
| | - Tao Chen
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen 518004, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kin Israel Notarte
- Fungal Biodiversity, Ecogenomics and Systematics (FBeS) Group, Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1008, Philippines;
| | - Hai Ren
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (M.H.P.); (H.R.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Li
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen 518004, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|