1
|
Li JJ, Fang YH, Zhan JC, Yang XJ, Huang CB, Li YP, Tan K, Huang ZP, Cui LW, Xiao W. Watershed: a more efficient sampling unit for mountain camera traps. Sci Rep 2025; 15:4270. [PMID: 39905129 PMCID: PMC11794890 DOI: 10.1038/s41598-025-86031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025] Open
Abstract
Wildlife camera trap (CT) surveys typically employ two-dimensional equal-area grid sampling, which often neglects the influence of complex mountainous terrain on species distribution, potentially yielding misleading outcomes. A watershed, incorporating diverse habitats from high to low elevations and from rivers to ridges, aligns with complex mountains. Monitoring based on watersheds might address this. In southwest China's mountain forests, under comparable sampling intensities, we contrasted the capture rate (CR), species richness, and relative abundance index (RAI) of dominant species among watershed, 1 × 1 km² grid, and elevation gradient patterns. Also, habitat factor correlations and heterogeneities were analyzed. Results reveal higher CR, species richness, and habitat heterogeneity in the watershed pattern. The elevation gradient pattern shows more stable species and RAI than the grid pattern. In small-scale mountains, topographic factors indirectly affect CT survey results via vegetation distribution. Analysis of similarities (ANOSIM) indicates significant differences in species and community among watersheds. Using watersheds as sampling units for CTs can match the mountains' elevation differences and complex topography well, aids in capturing wildlife diversity and understanding mountain species distribution. Therefore, we recommend that the spatial sample design in mountainous areas should be based on watersheds, taking elevation gradients and topography into consideration.
Collapse
Affiliation(s)
- Jun-Jie Li
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
| | - Yi-Hao Fang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
- Yunling black-and-white snub-nosed monkey observation and research station of Yunnan province, Dali, 671003, Yunnan, China
| | - Ji-Cong Zhan
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
| | - Xue-Jun Yang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
| | - Can-Bin Huang
- Jianchuan Forestry and Grassland Bureau, Dali, 671300, Yunnan, China
| | - Yan-Peng Li
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
- Yunling black-and-white snub-nosed monkey observation and research station of Yunnan province, Dali, 671003, Yunnan, China
- The provincial innovation team of biodiversity conservation and utility of the three parallel rivers region from Dali University, Dali, 671003, Yunnan, China
| | - Kun Tan
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China.
- Yunling black-and-white snub-nosed monkey observation and research station of Yunnan province, Dali, 671003, Yunnan, China.
- The provincial innovation team of biodiversity conservation and utility of the three parallel rivers region from Dali University, Dali, 671003, Yunnan, China.
| | - Zhi-Pang Huang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China.
- Yunling black-and-white snub-nosed monkey observation and research station of Yunnan province, Dali, 671003, Yunnan, China.
- The provincial innovation team of biodiversity conservation and utility of the three parallel rivers region from Dali University, Dali, 671003, Yunnan, China.
| | - Liang-Wei Cui
- Key Laboratory of Extremely Small Populations of Wildlife in Universities of Yunnan, Southwest Forestry University, Kunming, 650233, Yunnan, China
| | - Wen Xiao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
- Yunling black-and-white snub-nosed monkey observation and research station of Yunnan province, Dali, 671003, Yunnan, China
- The provincial innovation team of biodiversity conservation and utility of the three parallel rivers region from Dali University, Dali, 671003, Yunnan, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, 671003, Yunnan, China
| |
Collapse
|
2
|
Deng W, Zhang F, Li YP, Zhang X, Fornacca D, Yang XY, Xiao W. Uncovering the biogeographic pattern of the widespread nematode-trapping fungi Arthrobotrys oligospora: watershed is the key. Front Microbiol 2023; 14:1152751. [PMID: 37152762 PMCID: PMC10156993 DOI: 10.3389/fmicb.2023.1152751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Studies of biogeographic patterns of fungi have long been behind those of plants and animals. The presence of worldwide species, the lack of systematic sampling design and adequate sampling effort, and the lack of research units are responsible for this status. This study investigates the biogeographical patterns of Arthrobotrys oligospora, the most widespread globally distributed nematode-trapping fungi (NTF), by stratified collecting and analyzing 2,250 samples from 228 sites in Yunnan Province, China. The A. oligospora was isolated, and 149 strains were subjected to ITS, TUB, TEF and RPB2 gene sequencing and multi-gene association phylogeographic analysis. The results show that at population level A. oligospora is randomly distributed throughout Yunnan Province and has no biogeographical distribution pattern. At the genetic level, the phylogenetic tree of A. oligospora diverges into five major evolutionary clades, with a low degree of gene flow between the five clades. However, the correlation between the phylogenetic diversity of A. oligospora and geographical factors was low. There was no clear pattern in the phylogenetic clades distribution of A. oligospora either without dividing the study unit or when the grid was used as the study unit. When watersheds were used as the study unit, 67.4%, 63.3%, 65.9%, 83.3%, and 66.7% of clade 1-5 strains were distributed in the Jinsha river, Red river, Peal river, Lancang river, and Nujiang-Irawaddy river watersheds, respectively. The clades distribution of A. oligospora was highly consistent with the watersheds distribution. Training predictions of the clades distributions using randomly generated polygons were also less accurate than watersheds. These results suggest that watersheds are key to discovering the biogeographic distribution patterns of A. oligospora. The A. oligospora populations are blocked by mountains in the watershed, and gene flow barriers have occurred, which may have resulted in the formation of multiple cryptic species. Watersheds are also ideal for understanding such speciation processes, explaining factors affecting biodiversity distribution and coupling studies of plant and animal and microbial diversity.
Collapse
Affiliation(s)
- Wei Deng
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, Yunnan, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, Yunnan, China
| | - Fa Zhang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, Yunnan, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, Yunnan, China
| | - Yan-Peng Li
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, Yunnan, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, Yunnan, China
- Yunling Black-and-White Snub-Nosed Monkey Observation and Research Station of Yunnan Province, Dali, Yunnan, China
| | - Xin Zhang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, Yunnan, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, Yunnan, China
| | - Davide Fornacca
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, Yunnan, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, Yunnan, China
| | - Xiao-Yan Yang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, Yunnan, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, Yunnan, China
| | - Wen Xiao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, Yunnan, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, Yunnan, China
- Yunling Black-and-White Snub-Nosed Monkey Observation and Research Station of Yunnan Province, Dali, Yunnan, China
| |
Collapse
|
3
|
Deng W, Zhang F, Fornacca D, Yang XY, Xiao W. Those Nematode-Trapping Fungi That are not Everywhere: Hints Towards Soil Microbial Biogeography. J Microbiol 2023:10.1007/s12275-023-00043-7. [PMID: 37022590 DOI: 10.1007/s12275-023-00043-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Abstract
The existence of biogeography for microorganisms is a raising topic in ecology and researchers are employing better distinctions between single species, including the most rare ones, to reveal potential hidden patterns. An important volume of evidence supporting heterogeneous distributions for bacteria, archaea and protists is accumulating, and more recently a few efforts have targeted microscopic fungi. We propose an insight into this latter kingdom by looking at a group of soil nematode-trapping fungi whose species are well-known and easily recognizable. We chose a pure culture approach because of its reliable isolation procedures for this specific group. After morphologically and molecularly identifying all species collected from 2250 samples distributed in 228 locations across Yunnan province of China, we analyzed occurrence frequencies and mapped species, genera, and richness. Results showed an apparent cosmopolitan tendency for this group of fungi, including species richness among sites. However, only four species were widespread across the region, while non-random heterogeneous distributions were observed for the remaining 40 species, both in terms of statistical distribution of species richness reflected by a significant variance-to-mean ratio, as well as in terms of visually discernible spatial clusters of rare species and genera on the map. Moreover, several species were restricted to only one location, raising the question of whether endemicity exists for this microbial group. Finally, environmental heterogeneity showed a marginal contribution in explaining restricted distributions, suggesting that other factors such as geographical isolation and dispersal capabilities should be explored. These findings contribute to our understanding of the cryptic geographic distribution of microorganisms and encourage further research in this direction.
Collapse
Affiliation(s)
- Wei Deng
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, People's Republic of China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, 671003, Yunnan, People's Republic of China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, 671003, Yunnan, People's Republic of China
| | - Fa Zhang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, People's Republic of China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, 671003, Yunnan, People's Republic of China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, 671003, Yunnan, People's Republic of China
| | - Davide Fornacca
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, People's Republic of China.
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, 671003, Yunnan, People's Republic of China.
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, 671003, Yunnan, People's Republic of China.
- The Key Laboratory of Yunnan Education Department on Er'hai Catchment Conservation and Sustainable Development, Dali, 671003, Yunnan, People's Republic of China.
| | - Xiao-Yan Yang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, People's Republic of China.
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, 671003, Yunnan, People's Republic of China.
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, 671003, Yunnan, People's Republic of China.
- The Key Laboratory of Yunnan Education Department on Er'hai Catchment Conservation and Sustainable Development, Dali, 671003, Yunnan, People's Republic of China.
| | - Wen Xiao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, People's Republic of China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, 671003, Yunnan, People's Republic of China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, 671003, Yunnan, People's Republic of China
- The Key Laboratory of Yunnan Education Department on Er'hai Catchment Conservation and Sustainable Development, Dali, 671003, Yunnan, People's Republic of China
- Yunling Black-and-White Snub-Nosed Monkey Observation and Research Station of Yunnan Province, Dali, 671003, Yunnan, People's Republic of China
| |
Collapse
|
4
|
Liu X, Zhou W, Wang X, Wu H, Dong W. Microbial gradual shifts during the process of species replacement in Taihang Mountain. Front Microbiol 2023; 14:1158731. [PMID: 37089536 PMCID: PMC10113637 DOI: 10.3389/fmicb.2023.1158731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
IntroductionUnderstanding microbial gradual shifts along species replacement can help elucidate the mechanisms driving secondary succession, and predict microbial responses to changing environments. However, how climate-induced species replacement alters microbial processes, and whether microbial shifts follow predictable assembly trajectories remain unclear.MethodsUsing space-for-time substitution approach, we studied shifts in bacterial and fungal communities in the succession from Leptodermis oblonga to Vitex negundo var. heterophylla shrubland in Taihang Mountain.Results and DiscussionSpecies replacement, induced by climate related environmental change, significantly increased the above-ground biomass of shrublands, and TP and TK contents in topsoil. The succession from L. oblonga to V. negundo var. heterophylla communities resulted in the gradually replacement of cold-tolerant microbes with warm-affinity ones, and alterations of microbial communities involved in soil biogeochemical processes. Soil and plant variables, such as above-ground biomass, soil pH, total phosphorus, and total potassium, well explained the variations in microbial communities, indicating that the coordinated changes in plant communities and soil properties during secondary succession caused accompanied shifts in microbial diversity and composition.
Collapse
Affiliation(s)
- Xiuping Liu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Wangming Zhou
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Xinzhen Wang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Hongliang Wu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Wenxu Dong
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- *Correspondence: Wenxu Dong,
| |
Collapse
|
5
|
Yan P, Hou H, Lv Y, Zhang H, Li J, Shao L, Xie Q, Liang Y, Li J, Ni X. Diversity characteristics of arbuscular mycorrhizal fungi communities in the soil along successional altitudes of Helan Mountain, arid, and semi-arid regions of China. Front Microbiol 2023; 14:1099131. [PMID: 36937292 PMCID: PMC10017989 DOI: 10.3389/fmicb.2023.1099131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Arbuscular mycorrhizal fungi (AMF) perform a vital role in terrestrial ecosystems. Methods To investigate the diversity of AMF communities on the western slope of Helan Mountain at different altitudes and their influence factors, high-throughput sequencing was used to study the structure and diversity of soil AMF communities under different environments and their interrelationships between AMF and environmental factors. Results The results revealed that there were significant differences (p < 0.05) in the physical and chemical properties of the soil along the different altitudes. A total of 1,145 OTUs were obtained by high-throughput sequencing, belonging to 1 phylum, 4 class, 6 orders, 13 families, 18 genera and 135 species, with the dominant genus being Glomus, which accounted for 75.27% of the relative abundance of the community. Soil AMF community structure was shown to be variable at the generic level according to NMDS analysis. Correlation analysis showed that soil pH, water content (WC), organic matter (OM), available K, available P and N were significantly correlated with AMF community diversity and species abundance (p < 0.05, p < 0.01). Based on redundancy analysis (RDA) and Monte Carlo test results, soil pH, WC and OM had highly significant effects (p < 0.01) on AMF community diversity and species abundance. Discussion This study investigates the relationship between AMF community structure and diversity and soil physicochemical properties at different elevations on the western slope of Helan Mountain, which is of great significance to the study of the Helan Mountain ecosystem.
Collapse
Affiliation(s)
- Peixuan Yan
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Hui Hou
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, School of Ecological and Environment, Ningxia University, Yinchuan, China
- Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan, China
| | - Yingze Lv
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Haiying Zhang
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, School of Ecological and Environment, Ningxia University, Yinchuan, China
- Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan, China
| | - Jia Li
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Leilei Shao
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, School of Ecological and Environment, Ningxia University, Yinchuan, China
- Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan, China
| | - Qinmi Xie
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, School of Ecological and Environment, Ningxia University, Yinchuan, China
- Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan, China
| | - Yongliang Liang
- Ningxia Helan Mountain Forest Ecosystem Orientation Observation Research Station, Yinchuan, China
| | - Jingyao Li
- Ningxia Helan Mountain Forest Ecosystem Orientation Observation Research Station, Yinchuan, China
| | - Xilu Ni
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, School of Ecological and Environment, Ningxia University, Yinchuan, China
- Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan, China
- Ningxia Helan Mountain Forest Ecosystem Orientation Observation Research Station, Yinchuan, China
- *Correspondence: Xilu Ni,
| |
Collapse
|
6
|
Zhou D, Xu J, Dong J, Li H, Wang D, Gu J, Zhang KQ, Zhang Y. Historical Differentiation and Recent Hybridization in Natural Populations of the Nematode-Trapping Fungus Arthrobotrys oligospora in China. Microorganisms 2021; 9:1919. [PMID: 34576814 PMCID: PMC8465350 DOI: 10.3390/microorganisms9091919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/10/2023] Open
Abstract
Maintaining the effects of nematode-trapping fungi (NTF) agents in order to control plant-parasitic nematodes (PPNs) in different ecological environments has been a major challenge in biological control applications. To achieve such an objective, it is important to understand how populations of the biocontrol agent NTF are geographically and ecologically structured. A previous study reported evidence for ecological adaptation in the model NTF species Arthrobotrys oligospora. However, their large-scale geographic structure, patterns of gene flow, their potential phenotypic diversification, and host specialization remain largely unknown. In this study, we developed a new panel of 20 polymorphic short tandem repeat (STR) markers and analyzed 239 isolates of A. oligospora from 19 geographic populations in China. In addition, DNA sequences at six nuclear gene loci and strain mating types (MAT) were obtained for these strains. Our analyses suggest historical divergence within the A. oligospora population in China. The genetically differentiated populations also showed phenotypic differences that may be related to their ecological adaptations. Interestingly, our analyses identified evidence for recent dispersion and hybridization among the historically subdivided geographic populations in nature. Together, our results indicate a changing population structure of A. oligospora in China and that care must be taken in selecting the appropriate strains as biocontrol agents that can effectively reproduce in agriculture soil while maintaining their nematode-trapping ability.
Collapse
Affiliation(s)
- Duanyong Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
- School of Life Science, Yunnan University, Kunming 650032, China;
- School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi 562400, China
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jianyong Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
- School of Life Science, Yunnan University, Kunming 650032, China;
| | - Haixia Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
- School of Life Science, Yunnan University, Kunming 650032, China;
| | - Da Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
- School of Life Science, Yunnan University, Kunming 650032, China;
| | - Juan Gu
- School of Life Science, Yunnan University, Kunming 650032, China;
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
| | - Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
| |
Collapse
|
7
|
Musthafa MM, Abdullah F, Martínez-Falcón AP, de Bruyn M. How mountains and elevations shape the spatial distribution of beetles in Peninsular Malaysia. Sci Rep 2021; 11:5791. [PMID: 33707515 PMCID: PMC7970977 DOI: 10.1038/s41598-021-84965-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/15/2021] [Indexed: 11/15/2022] Open
Abstract
This study was conducted to assess the spatial distribution of beetles in mountain ecosystems and their elevational diversity. Malaise, pitfall and light traps were used to collect beetles from nine different mountains in Malaysia from September 2014 to September 2016, where from Gunung Angsi, Gunung Belumut, Gunung Basor and Gunung Tebu samples were collected at 500 m and 1000 m (above sea level) elevations, while beetles were sampled at 500 m, 1000 m and 1500 masl from Gunung Benom, Gunung Inas, Cameron Highland, Gunung Besar Hantu and Gunung Basor. In this study, 9628 beetles belonging to 879 different species were collected with highest representation from family Staphylinidae and Carabidae. Chamah Highland had the highest beetle diversity followed by Gunung Benom, Gunung Inas, Cameron Highland, Gunung Belumut, and Gunung Basor. Chamah Highland was different to all mountains on abundance and species richness. The highest species richness was observed at 1000 m, followed by 500 m and 1500 m. We identified characteristic species associated with habitat conditions at Gunung Benoum and Gunung Inas mountains, according to INDVAL values. The beetle diversity of the sampled mountains showed multiple alpha and beta patterns according to type of mountain ecosystem and elevation, providing guidelines for the scientific community to underpin conservation efforts in Malaysia.
Collapse
Affiliation(s)
- Muneeb M Musthafa
- Department of Biosystems Technology, Faculty of Technology, South Eastern University of Sri Lanka, University Park, Oluvil, 32360, Sri Lanka. .,Institute of Biological Science, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Fauziah Abdullah
- Institute of Biological Science, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ana Paola Martínez-Falcón
- Centro de Investigaciones Biológicas, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km 4.5, C.P. 42184, Mineral de La Reforma, Hidalgo, Mexico
| | - Mark de Bruyn
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|