1
|
Siddiqui A, Yahya S, Fatima S, Khadim M. Molecular and fluorometric based approach for the detection and isolation of aflatoxin producing Aspergillus sp. in chewing or smokeless tobacco. Toxicon 2025; 261:108377. [PMID: 40288447 DOI: 10.1016/j.toxicon.2025.108377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/17/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Tobacco contains many harmful chemicals, toxins, and carcinogens that can cause serious health hazards. Mycotoxins are present in all forms of tobacco, including smokeless tobacco (SLT) which are harmful for human health and associated with different types of cancer. Using microbial and molecular techniques, we identified aflatoxigenic Aspergillus species in SLT. Fifty samples of chewing tobacco were collected randomly from different locations of Karachi. Fungi were grown on Sabouraud Dextrose agar (SDA) by spread plate method and A. flavus was identified macroscopically, microscopically and by amplifying the ITS region. Confirmed isolates of A. flavus were analyzed for aflatoxin production by Ammonia vapor test and by UV on coconut agar medium (CAM). The regulatory genes (aflR and aflS) associated with aflatoxins in A. flavus were also amplified. Different fungal species were identified from SLT samples in which A. flavus was the most dominant. Aflatoxin production analysis by ammonia vapor test revealed that 64 % isolates were aflatoxigenic while on Coconut agar medium (CAM) 43 % isolates were aflatoxigenic. Aflatoxins were quantified in only A. flavus positive samples which were in the range of 10-47 μg/kg. Aflatoxin concentration detected in SLT was above the recommended level of FDA standard in majority of the samples.
Collapse
Affiliation(s)
- Adeena Siddiqui
- Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Institute of Science and Technology, 99 3rd Ave, Block 5 Clifton, 75600, Karachi City, Sindh, Pakistan.
| | - Saira Yahya
- Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Institute of Science and Technology, 99 3rd Ave, Block 5 Clifton, 75600, Karachi City, Sindh, Pakistan
| | - Shaista Fatima
- Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Institute of Science and Technology, 99 3rd Ave, Block 5 Clifton, 75600, Karachi City, Sindh, Pakistan
| | - Misbah Khadim
- Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Institute of Science and Technology, 99 3rd Ave, Block 5 Clifton, 75600, Karachi City, Sindh, Pakistan
| |
Collapse
|
2
|
Liu T, Deng S, Liu W, Zhang J, Wang P, Yang Z. Targeted next-generation sequencing enhances precision and rapid detection in healthcare-associated infection Surveillance: Unveiling multidrug-resistant colonization in ICUs. New Microbes New Infect 2025; 65:101589. [PMID: 40371002 PMCID: PMC12076801 DOI: 10.1016/j.nmni.2025.101589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/05/2025] [Accepted: 04/23/2025] [Indexed: 05/16/2025] Open
Abstract
Objectives This study aims to evaluate the potential advantages of targeted next-generation sequencing (tNGS) over conventional bacterial culture methods for pathogen detection in hospital-associated infections (HAIs). Methods All EICU medical staff and all medical staff from the Physical Examination Centre completed a questionnaire. Nasopharyngeal specimens were collected from medical staff who met all of the inclusion criteria and none of the exclusion criteria. EICU medical staff provided 2 samples each, while Physical Examination Centre staff provided 1 sample each. For EICU medical staff, one of their two nasopharyngeal swabs was subjected to tNGS testing, and the other to bacterial culture testing. For the PEC staff, their nasopharyngeal swabs were subjected to tNGS testing. Additionally, six pairs of spectacles and six keyboards used by EICU medical staff were randomly selected, and the surfaces were swabbed with sterile swabs for tNGS testing. Results In 23 nasal swab samples from EICU group, tNGS detected 14 species of microorganism in 29 instances within 19 h. Bacterial culture detected 2 species of microorganism in 4 instances, 2 positive samples within 19 h and confirmed another 2 positive samples within 69 h. A total of 42 samples with 14 different microorganism species were collected from the nasopharyngeal swabs of 23 EICU members and 15 PEC members. Among them, 29 cases (69 %) of 14 different microorganisms were detected in EICU staff, with an average of 1.3 microorganism species detected per person, while 13 cases (28 %) of 6 different microorganisms were detected in PEC staff, with an average of 0.9 microorganism species detected per person. The most common colonizing bacteria included Staphylococcus aureus, Acinetobacter baumannii, and Klebsiella spp. Compared to bacterial culture, tNGS offers advantages in monitoring HAIs, including a broad range of detectable microorganisms, high sensitivity of results, and shorter reporting time for positive results. Bacteria colonizing the EICU carry more antibiotic resistance genes. Conclusions tNGS outperforms conventional culture in healthcare-associated infection surveillance, with higher sensitivity and accelerated pathogen identification. Simultaneously, tNGS revealed extensive colonization of multidrug-resistant (MDR) pathogens (e.g., Acinetobacter baumannii, MRSA) in EICU environments, highlighting its utility in monitoring complex antimicrobial resistance patterns.
Collapse
Affiliation(s)
| | | | - Wandi Liu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinzhao Zhang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | | | - Zhengfei Yang
- Corresponding author. Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120, China.
| |
Collapse
|
3
|
Andrade MJ, Delgado J, Rodríguez M, Núñez F, Córdoba JJ, Peromingo B. Mycotoxins in meat products. Meat Sci 2025; 227:109850. [PMID: 40382901 DOI: 10.1016/j.meatsci.2025.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 05/09/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025]
Abstract
Mycotoxin presence in meat products is principally due to the development of toxigenic moulds during ripening, which concretely affect the dry-cured ones. Ochratoxin A (OTA) is the most prevalent mycotoxin in dry-cured hams and fermented sausages. Apart from collecting information on the main toxigenic moulds in dry-cured meat products, the objective of this review is to compile data about the mycotoxin prevalence and the tools for their mitigation. Although no very extensive studies have been performed on the mycotoxin occurrence in such products, much research has been conducted over the last 15 years, particularly in the European Mediterranean countries. Large differences in OTA incidence and amount have been reported, which can be due to differences in the processing followed, the climatic conditions of the producing region, the mould population present or the used detection method. Nevertheless, most of the mean and maximum OTA values observed in dry-cured meat products are above the maximum level of 1 μg/kg recommended officially for pork products in Italy. Aflatoxin B1, cyclopiazonic acid, sterigmatocystin and citrinin are only occasionally reported from dry-cured meat products. To control mycotoxin contamination, manufacturers have several strategies available, with the biopreservation ones being the most appropriate, since the modification of environmental parameters is not feasible, especially in products with long ripening. Native microorganisms alone or in combination with plant extracts are sustainable biopreservatives with a special interest in dry-cured meat products to mitigate the mycotoxin contamination. All these strategies are extensively described in this review, with special attention paid to OTA.
Collapse
Affiliation(s)
- María J Andrade
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain.
| | - Josué Delgado
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Mar Rodríguez
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Félix Núñez
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Juan J Córdoba
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Belén Peromingo
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain
| |
Collapse
|
4
|
Zhang S, Xiao K, Zhang K, Li P, Wang L, Wu C, Xu K. Ultrasensitive aflatoxin B1 detection based on vertical organic electrochemical transistor. Food Chem 2025; 464:141648. [PMID: 39423541 DOI: 10.1016/j.foodchem.2024.141648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/21/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Herein, we presented an ultrasensitive Aflatoxin B1 (AFB1) detection platform based on vertical organic electrochemical transistor (vOECT) first time. Chitosan-graphene nanosheets nanocomposites and AFB1 antibodies were modified on commercial electrodes as immunosensors, in series with gate electrodes of vOECT, operated at enhancement mode with ultrahigh transconductance gm 94 mS to amplify current signals. When AFB1 is added, the impedance of the immunosensors increased due to antigen-antibody immune binding, resulting in a potential decrease in reaction cell. Then, the potential decrease leads to an effective gate voltage VGeff increase, contributing to a significant drain-source current IDS decrease as a consequence of ultrahigh gm of vOECT. As a result, the presented vOECT platform exhibited an ultrahigh sensitivity of ∼1 mA/dec, and an ultralow detection limit of 0.01 fg/mL (S/N = 3), superior to all previous reported values. Furthermore, the platform exhibited satisfactory stability and specificity, and was applied to detect AFB1 in corn samples.
Collapse
Affiliation(s)
- Shuai Zhang
- Institute for Complexity Science, Henan University of Technology, Zhengzhou 450001, China; College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Kai Xiao
- College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Kejie Zhang
- College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Peng Li
- Institute for Complexity Science, Henan University of Technology, Zhengzhou 450001, China.
| | - Li Wang
- College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Caizhang Wu
- College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Kun Xu
- Institute for Complexity Science, Henan University of Technology, Zhengzhou 450001, China; College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China; School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
5
|
Schwarz MCR, Moskaluk AE, Daniels JB, VandeWoude S, Reynolds MM. Current Analytical Methods and Challenges for the Clinical Diagnosis of Invasive Pulmonary Aspergillosis Infection. J Fungi (Basel) 2024; 10:829. [PMID: 39728325 DOI: 10.3390/jof10120829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
In the last decade, pulmonary fungal infections such as invasive pulmonary aspergillosis (IPA) have increased in incidence due to the increased number of immunocompromised individuals. This increase is especially problematic when considering mortality rates associated with IPA are upwards of 70%. This high mortality rate is due to, in part, the length of time it takes to diagnose a patient with IPA. When diagnosed early, mortality rates of IPA decrease by as much as 30%. In this review, we discuss current technologies employed in both medical and research laboratories to diagnose IPA, including culture, imaging, polymerase chain reaction, peptide nucleic acid-fluorescence in situ hybridization, enzyme-linked immunosorbent assay, lateral flow assay, and liquid chromatography mass spectrometry. For each technique, we discuss both promising results and potential areas for improvement that would lead to decreased diagnosis time for patients suspected of contracting IPA. Further study into methods that offer increased speed and both analytical and clinical sensitivity to decrease diagnosis time for IPA is warranted.
Collapse
Affiliation(s)
- Madeline C R Schwarz
- Department of Chemistry, Colorado State University, 1801 Campus Delivery, Fort Collins, CO 80523, USA
| | - Alex E Moskaluk
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA
- Department of Pathobiology, University of Guelph, 50 Stone Road East, Guelph, ON N1G2W1, Canada
| | - Joshua B Daniels
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA
| | - Melissa M Reynolds
- Department of Chemistry, Colorado State University, 1801 Campus Delivery, Fort Collins, CO 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
6
|
Hussein MA, Gherbawy YA, Abd El-sadek MS, F. Al-Harthi H, GAM El-Dawy E. Phylogeny of Aspergillus section Circumdati and inhibition of ochratoxins potential by green synthesised ZnO nanoparticles. Mycology 2024; 16:891-902. [PMID: 40415920 PMCID: PMC12096659 DOI: 10.1080/21501203.2024.2379480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/07/2024] [Indexed: 05/27/2025] Open
Abstract
Contamination of agricultural and industrial products by Aspergillus section Circumdati becomes a true problem, especially, because a lot of species in this section can yield ochratoxins and other toxins. In this study, morphological criteria and partial calmodulin gene were used to identify 34 strains belonging to Aspergillus section Circumdati isolated from Vitis vinifera and Calotropis procera plants. The population is characterised by A. insulicola, A. ochraceopetaliformis, A. ochraceus, and A. pseudoelegans. The polyketide synthase (pks) gene involved in ochratoxins (OTA) production was investigated by Aopks1, 2 and AoLc35-12L, R primers. Fifteen strains belonging to A. ochraceus were positive for pks gene, whilst A. insulicola, A. ochraceopetaliformis, and A. pseudoelegans were negative. All tested strains were able to produce ochratoxin A with different levels of 0.020-53 ppm except one isolate of A. ochraceus (IAEMAo6). The green synthesised ZnO-NPs have a significant inhibitory effect on OTA production by A. insulicola and A. pseudoelegans.
Collapse
Affiliation(s)
- Mohamed A. Hussein
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, Egypt
- Applied and Environmental Microbiology Center, South Valley University, Qena, Egypt
| | - Youssuf A. Gherbawy
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, Egypt
- Applied and Environmental Microbiology Center, South Valley University, Qena, Egypt
| | - Mahmoud S. Abd El-sadek
- Physics Department, Faculty of Science, South Valley University, Qena, Egypt
- Department of Physics, Faculty of Science, Galala University, Suez, Egypt
| | - Helal F. Al-Harthi
- Biology Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Eman GAM El-Dawy
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, Egypt
- Applied and Environmental Microbiology Center, South Valley University, Qena, Egypt
| |
Collapse
|
7
|
Wang R, Lu Y, Qi J, Xi Y, Shen Z, Twumasi G, Bai L, Hu J, Wang J, Li L, Liu H. Genome-wide association analysis explores the genetic loci of amino acid content in duck's breast muscle. BMC Genomics 2024; 25:486. [PMID: 38755558 PMCID: PMC11097541 DOI: 10.1186/s12864-024-10287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Amino acids are the basic components of protein and an important index to evaluate meat quality. With the rapid development of genomics, candidate regions and genes affecting amino acid content in livestock and poultry have been gradually revealed. Hence, genome-wide association study (GWAS) can be used to screen candidate loci associated with amino acid content in duck meat. RESULT In the current study, the content of 16 amino acids was detected in 358 duck breast muscles. The proportion of Glu to the total amino acid content was relatively high, and the proportion was 0.14. However, the proportion of Met content was relatively low, at just 0.03. By comparative analysis, significant differences were found between males and females in 3 amino acids, including Ser, Met, and Phe. In addition, 12 SNPs were significantly correlated with Pro content by GWAS analysis, and these SNPs were annotated by 7 protein-coding genes; 8 significant SNPs were associated with Tyr content, and these SNPs were annotated by 6 protein-coding genes. At the same time, linkage disequilibrium (LD) analysis was performed on these regions with significant signals. The results showed that three SNPs in the 55-56 Mbp region of chromosome 3 were highly correlated with the leader SNP (chr3:55526954) that affected Pro content (r2 > 0.6). Similarly, LD analysis showed that there were three SNPs in the 21.2-21.6 Mbp region of chromosome 13, which were highly correlated with leader SNP (chr13:21421661) (r2 > 0.6). Moreover, Through functional enrichment analysis of all candidate genes. The results of GO enrichment analysis showed that several significant GO items were associated with amino acid transport function, including amino acid transmembrane transport and glutamine transport. The results further indicate that these candidate genes are closely associated with amino acid transport. Among them, key candidate genes include SLC38A1. For KEGG enrichment analysis, CACNA2D3 and CACNA1D genes were covered by significant pathways. CONCLUSION In this study, GWAS analysis found a total of 28 significant SNPs affecting amino acid content. Through gene annotation, a total of 20 candidate genes were screened. In addition, Through LD analysis and enrichment analysis, we considered that SERAC1, CACNA2D3 and SLC38A1 genes are important candidate genes affecting amino acid content in duck breast muscle.
Collapse
Affiliation(s)
- Rui Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, 611130, Chengdu, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Chengdu, P.R. China
| | - Yinjuan Lu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, 611130, Chengdu, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Chengdu, P.R. China
| | - Jingjing Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, 611130, Chengdu, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Chengdu, P.R. China
| | - Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, 611130, Chengdu, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Chengdu, P.R. China
| | - Zhenyang Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, 611130, Chengdu, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Chengdu, P.R. China
| | - Grace Twumasi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, 611130, Chengdu, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Chengdu, P.R. China
| | - Lili Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, 611130, Chengdu, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Chengdu, P.R. China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, 611130, Chengdu, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Chengdu, P.R. China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, 611130, Chengdu, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Chengdu, P.R. China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, 611130, Chengdu, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Chengdu, P.R. China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, 611130, Chengdu, Sichuan, P.R. China.
- National Key Laboratory for Swine and Poultry Breeding, Chengdu, P.R. China.
| |
Collapse
|
8
|
Bastidas-Caldes C, Vasco-Julio D, Huilca-Ibarra M, Guerrero-Freire S, Ledesma-Bravo Y, de Waard JH. Addressing the Concern of Orange-Yellow Fungus Growth on Palm Kernel Cake: Safeguarding Dairy Cattle Diets for Mycotoxin-Producing Fungi. Microorganisms 2024; 12:937. [PMID: 38792767 PMCID: PMC11124023 DOI: 10.3390/microorganisms12050937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Palm kernel cake (PKC), a byproduct of palm oil extraction, serves an important role in Ecuador's animal feed industry. The emergence of yellow-orange fungal growth in PKC on some cattle farms in Ecuador sparked concerns within the cattle industry regarding a potential mycotoxin-producing fungus on this substrate. Due to the limited availability of analytical chemistry techniques in Ecuador for mycotoxin detection, we chose to isolate and identify the fungus to determine its association with mycotoxin-producing genera. Through molecular identification via ITS region sequencing, we identified the yellow-orange fungus as the yeast Candida ethanolica. Furthermore, we isolated two other fungi-the yeast Pichia kudriavzevii, and the fungus Geotrichum candidum. Molecular identification confirmed that all three species are not classified as mycotoxin-producing fungi but in contrast, the literature indicates that all three have demonstrated antifungal activity against Aspergillus and Penicillium species, genera associated with mycotoxin production. This suggests their potential use in biocontrol to counter the colonization of harmful fungi. We discuss preventive measures against the fungal invasion of PKC and emphasize the importance of promptly identifying fungi on this substrate. Rapid recognition of mycotoxin-producing and pathogenic genera holds the promise of mitigating cattle intoxication and the dissemination of mycotoxins throughout the food chain.
Collapse
Affiliation(s)
- Carlos Bastidas-Caldes
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de Las Américas, Quito 170530, Ecuador; (C.B.-C.); (M.H.-I.); or (S.G.-F.); (Y.L.-B.)
| | - David Vasco-Julio
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Ciudad de México 04510, Mexico;
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62050, Mexico
| | - Maria Huilca-Ibarra
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de Las Américas, Quito 170530, Ecuador; (C.B.-C.); (M.H.-I.); or (S.G.-F.); (Y.L.-B.)
| | - Salomé Guerrero-Freire
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de Las Américas, Quito 170530, Ecuador; (C.B.-C.); (M.H.-I.); or (S.G.-F.); (Y.L.-B.)
- Programa de Doctorado, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1063ACV, Argentina
| | - Yanua Ledesma-Bravo
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de Las Américas, Quito 170530, Ecuador; (C.B.-C.); (M.H.-I.); or (S.G.-F.); (Y.L.-B.)
| | - Jacobus H. de Waard
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de Las Américas, Quito 170530, Ecuador; (C.B.-C.); (M.H.-I.); or (S.G.-F.); (Y.L.-B.)
| |
Collapse
|
9
|
Xu D, Zhang J, Luo Z, Zhao Y, Zhu Y, Yang H, Zhou Y. Ratiometric fluorescence and absorbance dual-model immunoassay based on 2,3-diaminophenazine and carbon dots for detecting Aflatoxin B1. Food Chem 2024; 439:138125. [PMID: 38061303 DOI: 10.1016/j.foodchem.2023.138125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
In this work, a dual-model immunoassay for detecting Aflatoxin B1 (AFB1) was developed based on 2,3-diaminophenazine (DAP) and carbon dots (CDs). Under the catalysis of horseradish peroxidase (HRP), the o-phthalylenediamine (OPD) was oxidized to DAP which had a yellow color and intense fluorescence. The color changes form colorless to yellow was used to design absorbance model immunoassay. Meanwhile, the absorption spectrum of DAP overlapped with the emission spectrum of CDs which caused the fluorescence of CDs to be quenched. The fluorescence changes of DAP and CDs were used to develop ratiometric fluorescence immunoassay. The dual-model immunoassay showed excellent sensitivity with the limits of detection (LODs) of 0.013 ng/mL for fluorescence mode and 0.062 ng/mL for absorbance mode. Meanwhile, both models exhibited great selectivity for AFB1. Additionally, the recovery rates suggested the proposed dual-model immunoassay had great potential in actual samples detection.
Collapse
Affiliation(s)
- Die Xu
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Junxiang Zhang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Zhenzhen Luo
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Yanan Zhao
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Yuanhua Zhu
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Hualin Yang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China.
| | - Yu Zhou
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China; College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China.
| |
Collapse
|
10
|
Abdallah MF, Gado M, Abdelsadek D, Zahran F, El-Salhey NN, Mehrez O, Abdel-Hay S, Mohamed SM, De Ruyck K, Yang S, Gonzales GB, Varga E. Mycotoxin contamination in the Arab world: Highlighting the main knowledge gaps and the current legislation. Mycotoxin Res 2024; 40:19-44. [PMID: 38117428 DOI: 10.1007/s12550-023-00513-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
Since the discovery of aflatoxins in the 1960s, knowledge in the mycotoxin research field has increased dramatically. Hundreds of review articles have been published summarizing many different aspects, including mycotoxin contamination per country or region. However, mycotoxin contamination in the Arab world, which includes 22 countries in Africa and Asia, has not yet been specifically reviewed. To this end, the contamination of mycotoxins in the Arab world was reviewed not only to profile the pervasiveness of the problem in this region but also to identify the main knowledge gaps imperiling the safety of food and feed in the future. To the best of our knowledge, 306 (non-)indexed publications in English, Arabic, or French were published from 1977 to 2021, focusing on the natural occurrence of mycotoxins in matrices of 14 different categories. Characteristic factors (e.g., detected mycotoxins, concentrations, and detection methods) were extracted, processed, and visualized. The main results are summarized as follows: (i) research on mycotoxin contamination has increased over the years. However, the accumulated data on their occurrences are scarce to non-existent in some countries; (ii) the state-of-the-art technologies on mycotoxin detection are not broadly implemented neither are contemporary multi-mycotoxin detection strategies, thus showing a need for capacity-building initiatives; and (iii) mycotoxin profiles differ among food and feed categories, as well as between human biofluids. Furthermore, the present work highlights contemporary legislation in the Arab countries and provides future perspectives to mitigate mycotoxins, enhance food and feed safety, and protect the consumer public. Concluding, research initiatives to boost mycotoxin research among Arab countries are strongly recommended.
Collapse
Affiliation(s)
- Mohamed F Abdallah
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Muhammad Gado
- Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | | - Fatma Zahran
- Faculty of Pharmacy, Menoufia University, Shibin El-Kom, Menoufia, Egypt
| | - Nada Nabil El-Salhey
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ohaila Mehrez
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara Abdel-Hay
- Faculty of Pharmacy, Tanta University, Tanta, Gharbia Governorate, Egypt
| | - Sahar M Mohamed
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Karl De Ruyck
- Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Shupeng Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Gerard Bryan Gonzales
- Nutrition, Metabolism and Genomics Group, Wageningen University, Wageningen, Netherlands
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
11
|
Mahmoud ALE, Kilany AHAM, Hassan EA. Antifungal activity of Lysinibacillus macroides against toxigenic Aspergillus flavus and Fusarium proliferatum and analysis of its mycotoxin minimization potential. BMC Microbiol 2023; 23:269. [PMID: 37752474 PMCID: PMC10521556 DOI: 10.1186/s12866-023-03007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Toxigenic fungi (Aspergillus and Fusarium) and their metabolites represent the major cause of corn and corn-based products contamination and consequently lead to severe economic and health issues. AIM Our current study aimed to investigate the efficacy of using L. macroides Bac6 as a biological control agent against the toxigenic fungi; A. flavus f10 and F. proliferatum f30 and their mycotoxins. RESULTS The results illustrated that A. flavus f10 produced the aflatoxins AFB1 and AFG2 with concentrations of 21.239 and 13.593 ppb, respectively. While F. proliferatum f30 produced fumonisin B1 (9600 ppb). Furthermore, L. macroides showed a high potential for inhibition of toxigenic fungal growth using a dual culture method. F. proliferatum f30 and A. flavus f10 were found to be inhibited by a percentage of 80 and 62.5%, respectively. The results were confirmed using the scanning electron microscope. The antagonistic bacteria, L. macroides, showed chitinase productivity and activity of 26.45 U/L and 0.12 U/mL/min, respectively, which illustrates its potential application as a biocontrol agent. The GC-MS analysis revealed an abundance of Pyrrolo[1,2-a] pyrazine-1,4-dione, Hexahydro in the bacterial supernatant that exhibited antifungal characteristics. L. macroides had a significant reduction of AFB1 and AFG2 produced by A. flavus f10, recording 99.25% and 99% inhibition, respectively. It also showed strong inhibition of fumonisin B1 (90% inhibition) produced by F. proliferatum f30. CONCLUSION Thus, the current study is a prospective study evaluating for the first time the potential impact of L. macroides Bac6 against the toxigenic fungi and their toxins.
Collapse
Affiliation(s)
- Ahmed Lotfy E Mahmoud
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Ayat H A Mohamed Kilany
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Elhagag A Hassan
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
12
|
Hetta HF, Ramadan YN, Al-Kadmy IMS, Ellah NHA, Shbibe L, Battah B. Nanotechnology-Based Strategies to Combat Multidrug-Resistant Candida auris Infections. Pathogens 2023; 12:1033. [PMID: 37623993 PMCID: PMC10458664 DOI: 10.3390/pathogens12081033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
An emerging multidrug-resistant pathogenic yeast called Candida auris has a high potential to spread quickly among hospitalized patients and immunodeficient patients causing nosocomial outbreaks. It has the potential to cause pandemic outbreaks in about 45 nations with high mortality rates. Additionally, the fungus has become resistant to decontamination techniques and can survive for weeks in a hospital environment. Nanoparticles might be a good substitute to treat illnesses brought on by this newly discovered pathogen. Nanoparticles have become a trend and hot topic in recent years to combat this fatal fungus. This review gives a general insight into the epidemiology of C. auris and infection. It discusses the current conventional therapy and mechanism of resistance development. Furthermore, it focuses on nanoparticles, their different types, and up-to-date trials to evaluate the promising efficacy of nanoparticles with respect to C. auris.
Collapse
Affiliation(s)
- Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt;
| | - Israa M. S. Al-Kadmy
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, Baghdad P.O. Box 10244, Iraq;
| | - Noura H. Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt;
- Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Assiut, Naser City, Assiut 2014101, Egypt
| | - Lama Shbibe
- Faculty of Science, Damascus University, Damascus 97009, Syria;
| | - Basem Battah
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Syrian Private University (SPU), Daraa International Highway, Damascus 36822, Syria
| |
Collapse
|
13
|
Alameri MM, Kong ASY, Aljaafari MN, Ali HA, Eid K, Sallagi MA, Cheng WH, Abushelaibi A, Lim SHE, Loh JY, Lai KS. Aflatoxin Contamination: An Overview on Health Issues, Detection and Management Strategies. Toxins (Basel) 2023; 15:toxins15040246. [PMID: 37104184 PMCID: PMC10140874 DOI: 10.3390/toxins15040246] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Aflatoxins (AFs) represent one of the main mycotoxins produced by Aspergillus flavus and Aspergillus parasiticus, with the most prevalent and lethal subtypes being AFB1, AFB2, AFG1, and AFG2. AFs are responsible for causing significant public health issues and economic concerns that affect consumers and farmers globally. Chronic exposure to AFs has been linked to liver cancer, oxidative stress, and fetal growth abnormalities among other health-related risks. Although there are various technologies, such as physical, chemical, and biological controls that have been employed to alleviate the toxic effects of AF, there is still no clearly elucidated universal method available to reduce AF levels in food and feed; the only mitigation is early detection of the toxin in the management of AF contamination. Numerous detection methods, including cultures, molecular techniques, immunochemical, electrochemical immunosensor, chromatographic, and spectroscopic means, are used to determine AF contamination in agricultural products. Recent research has shown that incorporating crops with higher resistance, such as sorghum, into animal feed can reduce the risk of AF contamination in milk and cheese. This review provides a current overview of the health-related risks of chronic dietary AF exposure, recent detection techniques, and management strategies to guide future researchers in developing better detection and management strategies for this toxin.
Collapse
|
14
|
Hetta HF, Ramadan YN, Al-Harbi AI, A. Ahmed E, Battah B, Abd Ellah NH, Zanetti S, Donadu MG. Nanotechnology as a Promising Approach to Combat Multidrug Resistant Bacteria: A Comprehensive Review and Future Perspectives. Biomedicines 2023; 11:biomedicines11020413. [PMID: 36830949 PMCID: PMC9953167 DOI: 10.3390/biomedicines11020413] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
The wide spread of antibiotic resistance has been alarming in recent years and poses a serious global hazard to public health as it leads to millions of deaths all over the world. The wide spread of resistance and sharing resistance genes between different types of bacteria led to emergence of multidrug resistant (MDR) microorganisms. This problem is exacerbated when microorganisms create biofilms, which can boost bacterial resistance by up to 1000-fold and increase the emergence of MDR infections. The absence of novel and potent antimicrobial compounds is linked to the rise of multidrug resistance. This has sparked international efforts to develop new and improved antimicrobial agents as well as innovative and efficient techniques for antibiotic administration and targeting. There is an evolution in nanotechnology in recent years in treatment and prevention of the biofilm formation and MDR infection. The development of nanomaterial-based therapeutics, which could overcome current pathways linked to acquired drug resistance, is a hopeful strategy for treating difficult-to-treat bacterial infections. Additionally, nanoparticles' distinct size and physical characteristics enable them to target biofilms and treat resistant pathogens. This review highlights the current advances in nanotechnology to combat MDR and biofilm infection. In addition, it provides insight on development and mechanisms of antibiotic resistance, spread of MDR and XDR infection, and development of nanoparticles and mechanisms of their antibacterial activity. Moreover, this review considers the difference between free antibiotics and nanoantibiotics, and the synergistic effect of nanoantibiotics to combat planktonic bacteria, intracellular bacteria and biofilm. Finally, we will discuss the strength and limitations of the application of nanotechnology against bacterial infection and future perspectives.
Collapse
Affiliation(s)
- Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Correspondence: (H.F.H.); (M.G.D.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Alhanouf I. Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46411, Saudi Arabia
| | - Esraa A. Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Basem Battah
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Syrian Private University (SPU), Daraa International Highway, 36822 Damascus, Syria
| | - Noura H. Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Assiut, Naser City, Assiut 2014101, Egypt
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Matthew Gavino Donadu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Hospital Pharmacy, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy
- Correspondence: (H.F.H.); (M.G.D.)
| |
Collapse
|
15
|
Zahija I, Jeršek B, Demšar L, Polak ML, Polak T. Production of Aflatoxin B1 by Aspergillus parasiticus Grown on a Novel Meat-Based Media. Toxins (Basel) 2022; 15:25. [PMID: 36668845 PMCID: PMC9866511 DOI: 10.3390/toxins15010025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to develop meat-based media with compositions similar to those of dry-fermented meat products and to evaluate their use in studying the growth of Aspergillus parasiticus and the kinetics of aflatoxin B1 (AFB1) production. In our previous experiments, we found that the strain A. parasiticus ŽMJ7 produced a high amount of AFB1. Cooked meat agar (CMA2) was used as a novel complex meat-based medium with four variations: CMA2G (CMA2 supplemented with 1% glucose), CMA2YE (CMA2 supplemented with 0.2% yeast extract), and CMA2GYE (CMA2 supplemented with 1% glucose and 0.2% yeast extract). Media were inoculated with an A. parasiticus spore suspension (105 spores/mL) and incubated at 25 °C for up to 15 days. The A. parasiticus lag phase lasted less than 1 day, irrespective of the growth medium, with the exception of control medium CMA1 (cooked meat agar) as an already known meat-based medium. The highest mean colony growth rate was observed on CMA2 and CMA2G. Reversed-phase UPLC-MS/MS analysis was performed to determine the AFB1 concentration in combination with solid phase extraction (SPE). The highest AFB1 concentration in meat-based media was detected in CMA2GYE after 15 days of incubation (13,502 ± 2367 ng/mL media). The results showed that for studying AFB1 production in dry-fermented meat products, novel suitable media such as CMA2-based media are required. This finding could represent a potential concern with regard to the production of dry-fermented meat products.
Collapse
Affiliation(s)
| | | | | | | | - Tomaž Polak
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Guan X, Feng Y, Suo D, Xiao Z, Wang S, Liang Y, Fan X. Simultaneous Determination of 11 Mycotoxins in Maize via Multiple-Impurity Adsorption Combined with Liquid Chromatography-Tandem Mass Spectrometry. Foods 2022; 11:foods11223624. [PMID: 36429216 PMCID: PMC9689081 DOI: 10.3390/foods11223624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, multiple-impurity adsorption purification (MIA) technologies and liquid chromatography−tandem mass spectrometry (LC-MS/MS) were used to establish a method for detecting 11 mycotoxins in maize. The conditions for mass spectrometry and MIA were optimized. Maize was extracted with 70% acetonitrile solution, enriched, and purified using MIA technologies, and then, analyzed via LC-MS/MS. The results showed that the linear correlation coefficients of the 11 mycotoxins were >0.99, the sample recoveries ranged from 77.5% to 98.4%, and the relative standard deviations were <15%. The validated method was applied to investigate actual samples, and the results showed that the main contaminating toxins in maize were aflatoxins (AFs), deoxynivalenol (DON), fumonisins (FBs), ochratoxin A (OTA), and zearalenone (ZEN). Additionally, simultaneous contamination by multiple toxins was common. The maximum detection values of the mycotoxins were 77.65, 1280.18, 200,212.41, 9.67, and 526.37 μg/kg for AFs, DON, FBs, OTA, and ZEN, respectively. The method is simple in pre-treatment, convenient in operation, and suitable for the simultaneous determination of 11 types of mycotoxins in maize.
Collapse
Affiliation(s)
- Xin Guan
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163000, China
- Institute of Agricultural Quality Standards and Testing Technology, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuchao Feng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163000, China
- Institute of Agricultural Quality Standards and Testing Technology, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Decheng Suo
- Institute of Agricultural Quality Standards and Testing Technology, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiming Xiao
- Institute of Agricultural Quality Standards and Testing Technology, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shi Wang
- Institute of Agricultural Quality Standards and Testing Technology, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Liang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163000, China
- Correspondence: (Y.L.); (X.F.)
| | - Xia Fan
- Institute of Agricultural Quality Standards and Testing Technology, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.L.); (X.F.)
| |
Collapse
|