1
|
Daniel N, Farinella R, Belluomini F, Fajkic A, Rizzato C, Souček P, Campa D, Hughes DJ. The relationship of the microbiome, associated metabolites and the gut barrier with pancreatic cancer. Semin Cancer Biol 2025; 112:43-57. [PMID: 40154652 DOI: 10.1016/j.semcancer.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Pancreatic cancers have high mortality and rising incidence rates which may be related to unhealthy western-type dietary and lifestyle patterns as well as increasing body weights and obesity rates. Recent data also suggest a role for the gut microbiome in the development of pancreatic cancer. Here, we review the experimental and observational evidence for the roles of the oral, gut and intratumoural microbiomes, impaired gut barrier function and exposure to inflammatory compounds as well as metabolic dysfunction as contributors to pancreatic disease with a focus on pancreatic ductal adenocarcinoma (PDAC) initiation and progression. We also highlight some emerging gut microbiome editing techniques currently being investigated in the context of pancreatic disease. Notably, while the gut microbiome is significantly altered in PDAC and its precursor diseases, its utility as a diagnostic and prognostic tool is hindered by a lack of reproducibility and the potential for reverse causality in case-control cohorts. Future research should emphasise longitudinal and mechanistic studies as well as integrating lifestyle exposure and multi-omics data to unravel complex host-microbiome interactions. This will allow for deeper aetiologic and mechanistic insights that can inform treatments and guide public health recommendations.
Collapse
Affiliation(s)
- Neil Daniel
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | | | | | - Almir Fajkic
- Department of Pathophysiology Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | - Pavel Souček
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - David J Hughes
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Wang L, Zhao H, Wu F, Chen J, Xu H, Gong W, Wen S, Yang M, Xia J, Chen Y, Chen D. Bile-Liver phenotype: Exploring the microbiota landscape in bile and intratumor of cholangiocarcinoma. Comput Struct Biotechnol J 2025; 27:1173-1186. [PMID: 40206347 PMCID: PMC11981758 DOI: 10.1016/j.csbj.2025.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
Cholangiocarcinoma (CCA) arises within the peritumoral bile microenvironment, yet microbial translocation from bile to intracholangiocarcinoma (IntraCCA) tissues remains poorly understood. Previous studies on bile microbiota alterations from biliary benign disease (BBD) to CCA have yielded inconsistent results, highlighting the need for cross-study analysis. We presented a comprehensive analysis of five cohorts (N = 266), including our newly established 16S rRNA gene profiling (n = 42), to elucidate these microbiota transitions. The concordance of bacteria between CCA bile and intraCCA tissue, represented by Enterococcus and Staphylococcus, suggested microbiota migration from bile to intratumoral tissues. A computational random forest machine learning model effectively distinguished intraCCA tissue from CCA bile, identifying Rhodococcus and Ralstonia as diagnostically significant. The model also excelled in differentiating CCA bile from BBD bile, achieving an AUC value of 0.931 in external validation. Using unsupervised hierarchical clustering, we established Biletypes based on microbial signatures in our cohort. A combination of 17 genera effectively stratified patients into Biletype A and Biletype B. Biletype B robustly discerned CCA from BBD, with Sub-Biletype B1 correlating with advanced TNM stage and poorer prognosis. Among the 17 genera, bacterial Cluster 1, composed of Sphingomonas, Staphylococcus, Massilia, Paenibacillus, Porphyrobacter, Lawsonella, and Aerococcus, was enriched in Biletype B1 and predicted CCA with an AUC of 0.96. Staphylococcus emerged as a promising single-genus predictor for CCA diagnosis and staging. In conclusion, this study delineates a potential microbiota transition pathway from the gut through CCA bile to intra-CCA tissue, proposing Biletypes and Staphylococcus as biomarkers for CCA prognosis.
Collapse
Affiliation(s)
- Lei Wang
- Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
- Department of Hepatopancreatobiliary Surgery, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China
- Department of Hepatopancreatobiliary Surgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Hui Zhao
- Department of Hepatopancreatobiliary Surgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Fan Wu
- Department of Hepatopancreatobiliary Surgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Jiale Chen
- Department of Hospital Infection Management,Wujin Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Changzhou 213161, China
| | - Hanjie Xu
- Institute for Reproductive Health and Genetic Diseases, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, China
| | - Wanwan Gong
- Department of Hepatopancreatobiliary Surgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Sijia Wen
- Department of Hepatopancreatobiliary Surgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Mengmeng Yang
- Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Jiazeng Xia
- Department of General Surgery, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China
- Department of General Surgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Yu Chen
- Institute for Reproductive Health and Genetic Diseases, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, China
| | - Daozhen Chen
- Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
- Institute for Reproductive Health and Genetic Diseases, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, China
| |
Collapse
|
3
|
Yang HS, Zhang J, Feng HX, Qi F, Kong FJ, Zhu WJ, Liang CY, Zhang ZR. Characterizing microbial communities and their correlation with genetic mutations in early-stage lung adenocarcinoma: implications for disease progression and therapeutic targets. Front Oncol 2025; 14:1498524. [PMID: 39845316 PMCID: PMC11752883 DOI: 10.3389/fonc.2024.1498524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Background Lung adenocarcinoma (LUAD), the most prevalent form of lung cancer. The transition from adenocarcinoma in situ (AIS), and minimally invasive adenocarcinoma (MIA) to invasive adenocarcinoma (IAC) is not fully understood. Intratumoral microbiota may play a role in LUAD progression, but comprehensive stage-wise analysis is lacking. Methods Tumor and bronchoalveolar lavage fluid (BALF) samples from patients with AIS/MIA or IAC were collected for next-generation sequencing to characterize microbial diversity and composition. DNA extraction involved lysing samples with nuclease and protease, followed by homogenization and elution. Sequencing libraries were prepared and sequenced on the Illumina platform. Whole exome sequencing was performed to identify somatic mutations and genetic variants. Bioinformatics analysis, including taxonomic annotation with Kraken2 and de novo assembly with MEGAHIT, was conducted to process metagenomic data. Correlation analysis was performed to link microbial species with mutated genes using custom R scripts. Results Metagenomic analysis revealed a distinct microbial profile in IAC compared to AIS/MIA, with increased abundance of Bacteroidetes and Firmicutes in the IAC group. Bosea sp. and Microbacterium paludicola, were less abundant in IAC, suggesting a potential protective role in early-stage disease. Conversely, Mycolicibacterium species were more prevalent in IAC, indicating a possible contribution to disease progression. Genetic sequencing identified PTPRZ1 strongly correlating with microbial composition, suggesting a mechanistic link between microbiota and genetic alterations in LUAD. Conclusion This study characterizes microbial communities in various stages of LUAD, revealing links between microbiota and genetic mutations. The unique microbiota suggests its role in LUAD progression and as a therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chao-Yang Liang
- Department of Thoracic Surgery, China-Japan Friendship Hospital,
Beijing, China
| | - Zhen-Rong Zhang
- Department of Thoracic Surgery, China-Japan Friendship Hospital,
Beijing, China
| |
Collapse
|
4
|
Miao W, Liu F, Guo Y, Zhang R, Wang Y, Xu J. Research progress on prognostic factors of gallbladder carcinoma. J Cancer Res Clin Oncol 2024; 150:447. [PMID: 39369366 PMCID: PMC11456552 DOI: 10.1007/s00432-024-05975-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Gallbladder carcinoma is the most common malignant tumor of the biliary system, and has a poor overall prognosis. Poor prognosis in patients with gallbladder carcinoma is associated with the aggressive nature of the tumor, subtle clinical symptoms, ineffective adjuvant treatment, and lack of reliable biomarkers. PURPOSE Therefore, evaluating the prognostic factors of patients with gallbladder carcinoma can help improve diagnostic and treatment methods, allowing for tailored therapies that could benefit patient survival. METHODS This article systematically reviews the factors affecting the prognosis of gallbladder carcinoma, with the aim of evaluating prognostic risk in patients. CONCLUSION A comprehensive and in-depth understanding of prognostic indicators affecting patient survival is helpful for assessing patient survival risk and formulating personalized treatment plans.
Collapse
Affiliation(s)
- Wentao Miao
- First Clinical Medical School, Shanxi Medical University, Taiyuan, 030001, China
| | - Feng Liu
- Department of Head and Neck Surgery, Shanxi Provincial Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 031000, Shanxi Province, China
| | - Yarong Guo
- Department of Digestive System Oncology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Rui Zhang
- Department of Hepatobiliary Surgery, Liver Transplantation Center, The First Hospital of Shanxi Medical University, 56 Xinjian South Road, Taiyuan City, 030001, Shanxi Province, China
| | - Yan Wang
- First Clinical Medical School, Shanxi Medical University, Taiyuan, 030001, China
| | - Jun Xu
- Department of Hepatobiliary Surgery, Liver Transplantation Center, The First Hospital of Shanxi Medical University, 56 Xinjian South Road, Taiyuan City, 030001, Shanxi Province, China.
| |
Collapse
|
5
|
Merali N, Chouari T, Sweeney C, Halle-Smith J, Jessel MD, Wang B, O’ Brien J, Suyama S, Jiménez JI, Roberts KJ, Velliou E, Sivakumar S, Rockall TA, Demirkan A, Pedicord V, Deng D, Giovannetti E, Annels NE, Frampton AE. The microbial composition of pancreatic ductal adenocarcinoma: a systematic review of 16S rRNA gene sequencing. Int J Surg 2024; 110:6771-6799. [PMID: 38874485 PMCID: PMC11487005 DOI: 10.1097/js9.0000000000001762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC), continues to pose a significant clinical and scientific challenge. The most significant finding of recent years is that PDAC tumours harbour their specific microbiome, which differs amongst tumour entities and is distinct from healthy tissue. This review aims to evaluate and summarise all PDAC studies that have used the next-generation technique, 16S rRNA gene amplicon sequencing within each bodily compartment. As well as establishing a causal relationship between PDAC and the microbiome. MATERIALS AND METHODS This systematic review was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. A comprehensive search strategy was designed, and 1727 studies were analysed. RESULTS In total, 38 studies were selected for qualitative analysis and summarised significant PDAC bacterial signatures. Despite the growing amount of data provided, we are not able to state a universal 16S rRNA gene microbial signature that can be used for PDAC screening. This is most certainly due to the heterogeneity of the presentation of results, lack of available datasets, and the intrinsic selection bias between studies. CONCLUSION Several key studies have begun to shed light on causality and the influence the microbiome constituents and their produced metabolites could play in tumorigenesis and influencing outcomes. The challenge in this field is to shape the available microbial data into targetable signatures. Making sequenced data readily available is critical, coupled with the coordinated standardisation of data and the need for consensus guidelines in studies investigating the microbiome in PDAC.
Collapse
Affiliation(s)
- Nabeel Merali
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Tarak Chouari
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Casie Sweeney
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
| | - James Halle-Smith
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Bing Wang
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam
| | - James O’ Brien
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
| | - Satoshi Suyama
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge
| | | | - Keith J. Roberts
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Eirini Velliou
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London (UCL), London
| | - Shivan Sivakumar
- Oncology Department and Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham
| | - Timothy A. Rockall
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
| | - Ayse Demirkan
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
- Surrey Institute for People-Centred AI, University of Surrey, Guildford, Surrey
| | - Virginia Pedicord
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam
- Fondazione Pisa per la Scienza, San Giuliano, Italy
| | - Nicola E. Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Adam E. Frampton
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| |
Collapse
|
6
|
Xu Y, Le J, Qin J, Zhang Y, Yang J, Chen Z, Li C, Qian X, Zhang A. Decoding the microbiota metabolome in hepatobiliary and pancreatic cancers: Pathways to precision diagnostics and targeted therapeutics. Pharmacol Res 2024; 208:107364. [PMID: 39181345 DOI: 10.1016/j.phrs.2024.107364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/31/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
We delve into the critical role of the gut microbiota and its metabolites in the pathogenesis and progression of hepatobiliary and pancreatic (HBP) cancers, illuminating an urgent need for breakthroughs in diagnostic and therapeutic strategies. Given the high mortality rates associated with HBP cancers, which are attributed to aggressive recurrence, metastasis, and poor responses to chemotherapy, exploring microbiome research presents a promising frontier. This research highlights how microbial metabolites, including secondary bile acids, short-chain fatty acids, and lipopolysaccharides, crucially influence cancer cell behaviors such as proliferation, apoptosis, and immune evasion, significantly contributing to the oncogenesis and progression of HBP cancers. By integrating the latest findings, we discuss the association of microbial alterations with HBP cancers, key metabolites, and their implications, and how metabolomics and microbiomics can enhance diagnostic precision. Furthermore, the paper explores strategies for targeted therapies through microbiome metabolomics, including the direct therapeutic effects of microbiome metabolites and potential synergistic effects on conventional therapies. We also recognize that the field of microbial metabolites for the diagnosis and treatment of tumors still has a lot of problems to be solved. The aim of this study is to pioneer microbial metabolite research and provide a reference for HBP cancer diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Yuemiao Xu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiahan Le
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiangjiang Qin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yuhua Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Jiaying Yang
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhuo Chen
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Changyu Li
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiang Qian
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China.
| | - Aiqin Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China.
| |
Collapse
|
7
|
Phumthanakorn N, Potivanakul S, Kitjarak S, Lopnapun T, Moonkaew N, Changtrakul T, Chotimol W, Soonthornsit J. Characteristics of gallbladder microbiome in healthy dogs and cats, dogs with gallbladder mucocele, and cats with suspected cholangitis/cholangiohepatitis. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2024; 88:77-86. [PMID: 38988335 PMCID: PMC11232090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/07/2024] [Indexed: 07/12/2024]
Abstract
The aim of this study was to investigate and characterize the microbiome in bile samples obtained from dogs with gallbladder mucocele (6), cats with suspected cholangitis/cholangiohepatitis (4), as well as from healthy dogs (6) and cats (4). Our goal was to compare the microbiome patterns with clinical findings and bacterial culture results in diseases of the gallbladder and to identify a potential microbial biomarker of diseased groups. The microbial taxa composition revealed that Proteobacteria were the most dominant phylum in healthy and diseased individuals in all groups. Individuals from six families including Burkholderiaceae, Phyllobacteriaceae, Bradyrhizobiaceae, Sphingomonadaceae, Moraxellaceae, and Caulobacteraceae, constituted the core microbiome in the gallbladder of healthy dogs. A combination of LEfSe analysis and Taxa2ASV decomposer revealed that Pseudomonaceae and Ruminococcaceae exclusively occurred in the mucocele group. In conclusion, this study determined the core microbiome in the gallbladder of healthy dogs and the possible biomarkers (Pseudomonaceae and Ruminococcaceae) of gallbladder mucocele in dogs.
Collapse
Affiliation(s)
- Nathita Phumthanakorn
- Department of Pre-Clinic and Applied Animal Science (Phumthanakorn) and Department of Clinical Sciences and Public Health (Soonthornsit), Faculty of Veterinary Science (Potivanakul, Kitjarak, Lopnapun, Moonkaew, Changtrakul, Chotimol), Mahidol University, Salaya Campus, 999 Phutthamonthon Sai 4 Road Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Seenam Potivanakul
- Department of Pre-Clinic and Applied Animal Science (Phumthanakorn) and Department of Clinical Sciences and Public Health (Soonthornsit), Faculty of Veterinary Science (Potivanakul, Kitjarak, Lopnapun, Moonkaew, Changtrakul, Chotimol), Mahidol University, Salaya Campus, 999 Phutthamonthon Sai 4 Road Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Siripassorn Kitjarak
- Department of Pre-Clinic and Applied Animal Science (Phumthanakorn) and Department of Clinical Sciences and Public Health (Soonthornsit), Faculty of Veterinary Science (Potivanakul, Kitjarak, Lopnapun, Moonkaew, Changtrakul, Chotimol), Mahidol University, Salaya Campus, 999 Phutthamonthon Sai 4 Road Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Thanadol Lopnapun
- Department of Pre-Clinic and Applied Animal Science (Phumthanakorn) and Department of Clinical Sciences and Public Health (Soonthornsit), Faculty of Veterinary Science (Potivanakul, Kitjarak, Lopnapun, Moonkaew, Changtrakul, Chotimol), Mahidol University, Salaya Campus, 999 Phutthamonthon Sai 4 Road Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Nutchawara Moonkaew
- Department of Pre-Clinic and Applied Animal Science (Phumthanakorn) and Department of Clinical Sciences and Public Health (Soonthornsit), Faculty of Veterinary Science (Potivanakul, Kitjarak, Lopnapun, Moonkaew, Changtrakul, Chotimol), Mahidol University, Salaya Campus, 999 Phutthamonthon Sai 4 Road Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Thawanchay Changtrakul
- Department of Pre-Clinic and Applied Animal Science (Phumthanakorn) and Department of Clinical Sciences and Public Health (Soonthornsit), Faculty of Veterinary Science (Potivanakul, Kitjarak, Lopnapun, Moonkaew, Changtrakul, Chotimol), Mahidol University, Salaya Campus, 999 Phutthamonthon Sai 4 Road Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Wichunee Chotimol
- Department of Pre-Clinic and Applied Animal Science (Phumthanakorn) and Department of Clinical Sciences and Public Health (Soonthornsit), Faculty of Veterinary Science (Potivanakul, Kitjarak, Lopnapun, Moonkaew, Changtrakul, Chotimol), Mahidol University, Salaya Campus, 999 Phutthamonthon Sai 4 Road Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Jeerawat Soonthornsit
- Department of Pre-Clinic and Applied Animal Science (Phumthanakorn) and Department of Clinical Sciences and Public Health (Soonthornsit), Faculty of Veterinary Science (Potivanakul, Kitjarak, Lopnapun, Moonkaew, Changtrakul, Chotimol), Mahidol University, Salaya Campus, 999 Phutthamonthon Sai 4 Road Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| |
Collapse
|
8
|
Kang F, Chen Z, Liao C, Wu Y, Li G, Xie C, Lin H, Huang L, Tian Y, Wang Z, Chen S. Escherichia coli-Induced cGLIS3-Mediated Stress Granules Activate the NF-κB Pathway to Promote Intrahepatic Cholangiocarcinoma Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306174. [PMID: 38368261 PMCID: PMC11040339 DOI: 10.1002/advs.202306174] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Patients with concurrent intrahepatic cholangiocarcinoma (ICC) and hepatolithiasis generally have poor prognoses. Hepatolithiasis is once considered the primary cause of ICC, although recent insights indicate that bacteria in the occurrence of hepatolithiasis can promote the progression of ICC. By constructing in vitro and in vivo ICC models and patient-derived organoids (PDOs), it is shown that Escherichia coli induces the production of a novel RNA, circGLIS3 (cGLIS3), which promotes tumor growth. cGLIS3 binds to hnRNPA1 and G3BP1, resulting in the assembly of stress granules (SGs) and suppression of hnRNPA1 and G3BP1 ubiquitination. Consequently, the IKKα mRNA is blocked in SGs, decreasing the production of IKKα and activating the NF-κB pathway, which finally results in chemoresistance and produces metastatic phenotypes of ICC. This study shows that a combination of Icaritin (ICA) and gemcitabine plus cisplatin (GP) chemotherapy can be a promising treatment strategy for ICC.
Collapse
Affiliation(s)
- Feng‐Ping Kang
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Zhi‐Wen Chen
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Cheng‐Yu Liao
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
- Department of Hepatobiliary Pancreatic SurgeryFujian Provincial HospitalFuzhou350001China
| | - Yong‐Ding Wu
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Ge Li
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary SurgeryFujian Medical University Union HospitalFuzhou350001China
| | - Cheng‐Ke Xie
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Hong‐Yi Lin
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Long Huang
- Department of Hepatobiliary Pancreatic SurgeryFujian Provincial HospitalFuzhou350001China
| | - Yi‐Feng Tian
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
- Department of Hepatobiliary Pancreatic SurgeryFujian Provincial HospitalFuzhou350001China
| | - Zu‐Wei Wang
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
- Department of Hepatobiliary Pancreatic SurgeryFujian Provincial HospitalFuzhou350001China
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
- Department of Hepatobiliary Pancreatic SurgeryFujian Provincial HospitalFuzhou350001China
- Fujian Key Laboratory of GeriatricsFujian Provincial HospitalFuzhou350001China
| |
Collapse
|
9
|
Yao R, Ai B, Wang Z, Shen B, Xue G, Yu D. Uncovering Microbial Composition of the Tissue Microenvironment in Bladder Cancer using RNA Sequencing Data. J Cancer 2024; 15:2431-2441. [PMID: 38495492 PMCID: PMC10937280 DOI: 10.7150/jca.93055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/27/2024] [Indexed: 03/19/2024] Open
Abstract
Purpose: Bladder cancer (BC) is one of the top 10 common tumors in the world. It has been reported that microbiota can colonize tissues and play important roles in tumorigenesis and progression. However, the current understanding of microorganisms in the BC tissue microenvironment remains unclear. Methods: In this study, we integrated the RNA-seq data of 479 BC tissue samples from seven datasets combined with a range of bioinformatics tools to explore the landscape of microbiome in the BC tissue microenvironment. Results: The pan-microbiome was estimated to surpass 1,400 genera. A total of seven core microbiota (Bacillus, Corynebacterium, Cutibacterium, Escherichia, Halomonas, Pasteurella, and Streptomyces) were identified. Among them, Bacillus was widely distributed in all datasets with a high relative abundance (10.11% of all samples on average). Moreover, some biological factors, including tissue source and tumor grade, were found significant effects on the microbial composition of the bladder tissue. Pseudomonas, Porphyrobacter, and Acinetobacter were enriched in tumor tissues, while Mycolicibacterium and Streptomyces were enriched in patients who showed durable response to BCG therapy. In addition, we established microbial co-occurrence networks and found that the BCG therapy may attenuate the microbiological interactions. Conclusions: This study clearly provided a microbial landscape of the BC tissue microenvironment, which was important for exploring the interactions between microorganisms and BC tissues. The identified specific taxa might be potential biomarkers for BC.
Collapse
Affiliation(s)
- Ruiqian Yao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Department of Medical Genetics, Naval Medical University, Xiang-Yin Road, 800, Shanghai 200433, China
| | - Bin Ai
- Department of Precision Medicine, Translational Medicine Research Center, Naval Medical University, Xiang-Yin Road, 800, Shanghai 200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Zeyi Wang
- Department of Urology, Huadong Hospital, Fudan University, Shanghai, China
| | - Bing Shen
- Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai, 200080, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Geng Xue
- Department of Medical Genetics, Naval Medical University, Xiang-Yin Road, 800, Shanghai 200433, China
| | - Dong Yu
- Department of Precision Medicine, Translational Medicine Research Center, Naval Medical University, Xiang-Yin Road, 800, Shanghai 200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| |
Collapse
|
10
|
Pourali G, Kazemi D, Chadeganipour AS, Arastonejad M, Kashani SN, Pourali R, Maftooh M, Akbarzade H, Fiuji H, Hassanian SM, Ghayour-Mobarhan M, Ferns GA, Khazaei M, Avan A. Microbiome as a biomarker and therapeutic target in pancreatic cancer. BMC Microbiol 2024; 24:16. [PMID: 38183010 PMCID: PMC10768369 DOI: 10.1186/s12866-023-03166-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
Studying the effects of the microbiome on the development of different types of cancer has recently received increasing research attention. In this context, the microbial content of organs of the gastrointestinal tract has been proposed to play a potential role in the development of pancreatic cancer (PC). Proposed mechanisms for the pathogenesis of PC include persistent inflammation caused by microbiota leading to an impairment of antitumor immune surveillance and altered cellular processes in the tumor microenvironment. The limited available diagnostic markers that can currently be used for screening suggest the importance of microbial composition as a non-invasive biomarker that can be used in clinical settings. Samples including saliva, stool, and blood can be analyzed by 16 s rRNA sequencing to determine the relative abundance of specific bacteria. Studies have shown the potentially beneficial effects of prebiotics, probiotics, antibiotics, fecal microbial transplantation, and bacteriophage therapy in altering microbial diversity, and subsequently improving treatment outcomes. In this review, we summarize the potential impact of the microbiome in the pathogenesis of PC, and the role these microorganisms might play as biomarkers in the diagnosis and determining the prognosis of patients. We also discuss novel treatment methods being used to minimize or prevent the progression of dysbiosis by modulating the microbial composition. Emerging evidence is supportive of applying these findings to improve current therapeutic strategies employed in the treatment of PC.
Collapse
Affiliation(s)
- Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Danial Kazemi
- Student Research Committee, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, Iran
| | | | - Mahshid Arastonejad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Roozbeh Pourali
- Student Research Committee, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Akbarzade
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq.
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane City, QLD, 4000, Australia.
| |
Collapse
|
11
|
Thomas SC, Miller G, Li X, Saxena D. Getting off tract: contributions of intraorgan microbiota to cancer in extraintestinal organs. Gut 2023; 73:175-185. [PMID: 37918889 PMCID: PMC10842768 DOI: 10.1136/gutjnl-2022-328834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
The gastrointestinal ecosystem has received the most attention when examining the contributions of the human microbiome to health and disease. This concentration of effort is logical due to the overwhelming abundance of microbes in the gut coupled with the relative ease of sampling compared with other organs. However, the intestines are intimately connected to multiple extraintestinal organs, providing an opportunity for homeostatic microbial colonisation and pathogenesis in organs traditionally thought to be sterile or only transiently harbouring microbiota. These habitats are challenging to sample, and their low microbial biomass among large amounts of host tissue can make study challenging. Nevertheless, recent findings have shown that many extraintestinal organs that are intimately linked to the gut harbour stable microbiomes, which are colonised from the gut in selective manners and have highlighted not just the influence of the bacteriome but that of the mycobiome and virome on oncogenesis and health.
Collapse
Affiliation(s)
- Scott C Thomas
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - George Miller
- Cancer Center, Holy Name Medical Center, Teaneck, NJ, USA
| | - Xin Li
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
- Perlmutter Cancer Institute, New York University Langone Medical Center, New York, NY, USA
- Department of Urology, New York University Grossman School of Medicine, New York, NY, USA
| | - Deepak Saxena
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
- Perlmutter Cancer Institute, New York University Langone Medical Center, New York, NY, USA
- Department of Surgery, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
12
|
Merali N, Chouari T, Terroire J, Jessel MD, Liu DSK, Smith JH, Wooldridge T, Dhillon T, Jiménez JI, Krell J, Roberts KJ, Rockall TA, Velliou E, Sivakumar S, Giovannetti E, Demirkan A, Annels NE, Frampton AE. Bile Microbiome Signatures Associated with Pancreatic Ductal Adenocarcinoma Compared to Benign Disease: A UK Pilot Study. Int J Mol Sci 2023; 24:16888. [PMID: 38069211 PMCID: PMC10706407 DOI: 10.3390/ijms242316888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/18/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a very poor survival. The intra-tumoural microbiome can influence pancreatic tumourigenesis and chemoresistance and, therefore, patient survival. The role played by bile microbiota in PDAC is unknown. We aimed to define bile microbiome signatures that can effectively distinguish malignant from benign tumours in patients presenting with obstructive jaundice caused by benign and malignant pancreaticobiliary disease. Prospective bile samples were obtained from 31 patients who underwent either Endoscopic Retrograde Cholangiopancreatography (ERCP) or Percutaneous Transhepatic Cholangiogram (PTC). Variable regions (V3-V4) of the 16S rRNA genes of microorganisms present in the samples were amplified by Polymerase Chain Reaction (PCR) and sequenced. The cohort consisted of 12 PDAC, 10 choledocholithiasis, seven gallstone pancreatitis and two primary sclerosing cholangitis patients. Using the 16S rRNA method, we identified a total of 135 genera from 29 individuals (12 PDAC and 17 benign). The bile microbial beta diversity significantly differed between patients with PDAC vs. benign disease (Permanova p = 0.0173). The separation of PDAC from benign samples is clearly seen through unsupervised clustering of Aitchison distance. We found three genera to be of significantly lower abundance among PDAC samples vs. benign, adjusting for false discovery rate (FDR). These were Escherichia (FDR = 0.002) and two unclassified genera, one from Proteobacteria (FDR = 0.002) and one from Enterobacteriaceae (FDR = 0.011). In the same samples, the genus Streptococcus (FDR = 0.033) was found to be of increased abundance in the PDAC group. We show that patients with obstructive jaundice caused by PDAC have an altered microbiome composition in the bile compared to those with benign disease. These bile-based microbes could be developed into potential diagnostic and prognostic biomarkers for PDAC and warrant further investigation.
Collapse
Affiliation(s)
- Nabeel Merali
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| | - Tarak Chouari
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| | - Julien Terroire
- Surrey Institute for People-Centred AI, University of Surrey, Guildford GU2 7XH, UK
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| | - Daniel S. K. Liu
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - James-Halle Smith
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TH, UK
| | - Tyler Wooldridge
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| | - Tony Dhillon
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| | - José I. Jiménez
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Jonathan Krell
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Keith J. Roberts
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TH, UK
| | - Timothy A. Rockall
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
| | - Eirini Velliou
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London (UCL), London W1W 7TY, UK
| | - Shivan Sivakumar
- Oncology Department, Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, San Giuliano Terme PI, 56017 Pisa, Italy
| | - Ayse Demirkan
- Surrey Institute for People-Centred AI, University of Surrey, Guildford GU2 7XH, UK
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| | - Nicola E. Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| | - Adam E. Frampton
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| |
Collapse
|
13
|
Ye C, Dong C, Lin Y, Shi H, Zhou W. Interplay between the Human Microbiome and Biliary Tract Cancer: Implications for Pathogenesis and Therapy. Microorganisms 2023; 11:2598. [PMID: 37894256 PMCID: PMC10608879 DOI: 10.3390/microorganisms11102598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Biliary tract cancer, encompassing intrahepatic and extrahepatic cholangiocarcinoma as well as gallbladder carcinoma, stands as a prevalent malignancy characterized by escalating incidence rates and unfavorable prognoses. The onset of cholangiocarcinoma involves a multitude of risk factors and could potentially be influenced by microbial exposure. The human microbiome, encompassing the entirety of human microbial genetic information, assumes a pivotal role in regulating key aspects such as host digestion, absorption, immune responses, and metabolism. The widespread application of next-generation sequencing technology has notably propelled investigations into the intricate relationship between the microbiome and diseases. An accumulating body of evidence strongly suggests a profound interconnection between biliary tract cancer and the human microbiome. This article critically appraises the existing evidence pertaining to the microbiome milieu within patients afflicted by biliary tract cancer. Furthermore, it delves into potential mechanisms through which dysregulation of the human microbiome could contribute to the advancement of biliary tract cancer. Additionally, the article expounds on its role in the context of chemotherapy and immunotherapy for biliary tract cancer.
Collapse
Affiliation(s)
- Cheng Ye
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (C.Y.); (C.D.); (Y.L.); (H.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Chunlu Dong
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (C.Y.); (C.D.); (Y.L.); (H.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yanyan Lin
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (C.Y.); (C.D.); (Y.L.); (H.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Huaqing Shi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (C.Y.); (C.D.); (Y.L.); (H.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (C.Y.); (C.D.); (Y.L.); (H.S.)
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
14
|
Liu L, Zhao Z, Hou X, Wu J. Effect of sphincter of Oddi dysfunction on the abundance of biliary microbiota (biliary microecology) in patients with common bile duct stones. Front Cell Infect Microbiol 2022; 12:1001441. [PMID: 36569207 PMCID: PMC9768453 DOI: 10.3389/fcimb.2022.1001441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Objective Biliary calculi, a common benign disease of the gastrointestinal tract, are affected by multiple factors, including diet, lifestyle, living environment, and personal and genetic background. Its occurrence is believed to be related to a change in biliary microbiota. Approximately 10%-20% of symptomatic patients with cholecystolithiasis have choledocholithiasis, resulting in infection, abdominal pain, jaundice, and biliary pancreatitis. This study aimed to determine whether a dysfunction in the sphincter of Oddi, which controls the outflow of bile and separates the bile duct from the intestine, leads to a change in biliary microbiota and the occurrence of biliary calculi. Methods Forty patients with cholecystolithiasis and choledocholithiasis were prospectively recruited. Bile specimens were obtained, and biliary pressure was measured during and after surgery. The collected specimens were analyzed with 16S rRNA gene to characterize the biliary microbiota. The risk factors of common bile duct calculi were analyzed numerically combined with the pressure in the sphincter of Oddi. Results Different biliary microbiota were found in all cases. Patients with sphincter of Oddi dysfunction had significantly increased biliary microbiota as well as significantly higher level of systemic inflammation than patients with normal sphincter of Oddi. Conclusions The systemic inflammatory response of patients with sphincter of Oddi dysfunction is more severe, and their microbial community significantly differs from that of patients with normal sphincter of Oddi, which makes biliary tract infection more likely; furthermore, the biliary tract of patients with sphincter of Oddi dysfunction has more gallstone-related bacterial communities.
Collapse
Affiliation(s)
- Linxun Liu
- Department of General Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China,*Correspondence: Linxun Liu,
| | - Zhanxue Zhao
- Department of General Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Xiaofan Hou
- Graduate College of Qinghai University, Xining, Qinghai, China
| | - Jindu Wu
- Graduate College of Qinghai University, Xining, Qinghai, China
| |
Collapse
|