1
|
Yadav B, Karad DD, Kharat KR, Makwana N, Jaiswal A, Chawla R, Mani M, Boro HH, Joshi PR, Kamble DP, Mercier C, Kharat AS. Environmental and clinical impacts of antibiotics' sub-minimum inhibitory concentrations on the development of resistance in acinetobacter baumannii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 979:179521. [PMID: 40288165 DOI: 10.1016/j.scitotenv.2025.179521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Acinetobacter baumannii has emerged as a critical nosocomial and environmental pathogen associated with high mortality rates and alarming levels of antibiotic resistance. The World Health Organization has classified A. baumannii as a top-priority pathogen due to its ability to rapidly acquire and disseminate resistance mechanisms. Prevalent in environmental reservoirs such as hospital effluents, agricultural runoff and pharmaceutical effluents, antibiotics' sub-minimum inhibitory concentrations (sub-MICs) drive resistance evolution in A. baumannii, posing challenges to treatment and public health strategies. This review examines the role of antibiotics' sub-MICs in driving resistance in A. baumannii across environmental and clinical contexts. Antibiotics' sub-MICs enhance bacterial resistance by inducing genetic and phenotypic adaptations. These include upregulated efflux pump activities, biofilm formation, horizontal gene transfers, and altered gene expression, enabling A. baumannii to persist in adverse conditions. Environmental reservoirs further exacerbate resistance, with antibiotics' sub-MICs of tigecycline and colistin promoting adaptive changes in bacterial physiology and virulence. Understanding these pathways in both environmental and clinical settings is essential to develop integrated strategies that mitigate resistance and improve therapeutic options against A. baumannii. This review emphasizes the need to address environmental reservoirs alongside clinical interventions to keep control on the resistance in a one health's approach.
Collapse
Affiliation(s)
- Bipin Yadav
- Laboratory of Applied Microbiology & Cancer Remedies, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Dilip D Karad
- Department of Microbiology, Shri Shivaji Mahavidyalaya, Barshi, MS 413401, India
| | - Kiran R Kharat
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796004, India.
| | - Nilesh Makwana
- Laboratory of Applied Microbiology & Cancer Remedies, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Anjali Jaiswal
- Laboratory of Applied Microbiology & Cancer Remedies, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Richa Chawla
- Laboratory of Applied Microbiology & Cancer Remedies, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Meenakshi Mani
- Laboratory of Applied Microbiology & Cancer Remedies, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Hathorkhi H Boro
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796004, India.
| | - Prashant R Joshi
- Laboratory of Applied Microbiology & Cancer Remedies, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Chemistry, S.B.E.S's Science College, Chhatrapati Sambhainagar, MS 431001, India.
| | - Dhanraj P Kamble
- Department of Chemistry, S.B.E.S's Science College, Chhatrapati Sambhainagar, MS 431001, India
| | - Corinne Mercier
- Translational Innovation in Medicine and Complexity (TIMC), Université Grenoble Alpes, CNRS UMR 5525, VetAgro Sup, Grenoble INP, 38000 Grenoble, France.
| | - Arun S Kharat
- Laboratory of Applied Microbiology & Cancer Remedies, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
2
|
Oh MH, Islam MM, Kim N, Choi CH, Shin M, Shin WS, Lee JC. AbOmpA in Acinetobacter baumannii: exploring virulence mechanisms of outer membrane-integrated and outer membrane vesicle-associated AbOmpA and developing anti-infective agents targeting AbOmpA. J Biomed Sci 2025; 32:53. [PMID: 40426208 DOI: 10.1186/s12929-025-01147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Acinetobacter baumannii is notorious for its antimicrobial resistance and its potential to cause epidemics in hospital settings, which pose a global health threat. Although this microorganism is traditionally considered a low-virulence pathogen, extensive research has been conducted on its virulence and pathogenesis in recent years. Advances in understanding the virulence mechanisms of A. baumannii have prompted a shift in the development of anti-infective agents. The outer membrane protein A (AbOmpA) of A. baumannii is a key virulence factor both in vitro and in vivo. AbOmpA exists in three forms: outer membrane-integrated AbOmpA, outer membrane vesicle (OMV)-associated AbOmpA, and free proteins. Given that outer membrane-integrated AbOmpA has been implicated in the virulence and antimicrobial resistance of A. baumannii, many studies have focused on outer membrane-integrated AbOmpA as a therapeutic target for combating drug-resistant A. baumannii, and have led to the discovery of small molecules, polypeptides, and antimicrobial peptides targeting AbOmpA. However, the pathophysiological role of OMV-associated AbOmpA and its impact on AbOmpA-targeting agents remain unclear. This review summarizes the current knowledge of AbOmpA and critically discusses OMV-associated AbOmpA in relation to virulence and its potential impact on AbOmpA-targeted therapies to provide a better understanding of AbOmpA for the development of novel therapeutics against A. baumannii.
Collapse
Affiliation(s)
- Man Hwan Oh
- Department of Microbiology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Md Minarul Islam
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Nayeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Chul Hee Choi
- Department of Microbiology, School of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
3
|
Wang WB, Wan JY, Yu DJ, Du HX, Zhou HF, Wan HT, Yang JH. Chlorogenic acid inhibits virulence and resistance gene transfer in outer membrane vesicles of carbapenem-resistant Klebsiella pneumoniae. Front Pharmacol 2025; 16:1562096. [PMID: 40230687 PMCID: PMC11994928 DOI: 10.3389/fphar.2025.1562096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/07/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction Carbapenem-resistant Klebsiella pneumoniae (CRKp) infection poses a significant global public health challenge, with the misuse of antibiotics further contributing to the development of resistance and triggering harmful inflammatory responses. Outer membrane vesicles (OMVs) released by CRKp under sub-lethal concentration of MEM pressure (KOMV-MEM) exhibit enhanced virulence and greater efficiency in transferring resistance genes. Methods We investigated the inhibitory effects of chlorogenic acid (CA) on KOMV-MEM characteristics and its protective role in KOMV-MEM infected mice. Based on LC-MS proteomic analysis of vesicles, we screened for potential targets of KOMV-MEM in promoting macrophage (MØ) pyroptosis pathways and inducing resistance gene transfer. Subsequently, computational predictions and experimental validation were performed to determine how CA regulates these mechanisms. Results This study confirmed that, under MEM pressure, the exacerbated infection levels in CRKp-inoculated mice are attributable to the high virulence of KOMV-MEM. Computational and experimental results demonstrated that CA inhibits pyroptosis by reducing MØ capture of KOMV-MEM through blocking the interaction between GroEL and LOX-1. Furthermore, CA prevents the spread of resistance genes by disrupting the conjugation and transfer processes between KOMV-MEM and recipient bacteria. Finally, in vitro and in vivo assays showed that CA inhibits KOMV-MEM resistance enzymes, thereby preventing the hydrolysis of MEM in the environment and depriving susceptible bacteria of protection. Discussion These findings provide the first confirmation that CA can inhibit both the virulence and the transmission of drug resistance in KOMV-MEM. This underscores the potential of CA treatment as a promising antimicrobial strategy against CRKp infection.
Collapse
Affiliation(s)
- Wen-Ba Wang
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jia-Yang Wan
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dao-Jun Yu
- Department of Medical Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Xia Du
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hui-Fen Zhou
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hai-Tong Wan
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie-Hong Yang
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Che J, Fang Q, Hu S, Liu B, Wang L, Fang X, Li L, Luo T, Bao B. The Impact of Vp-Porin, an Outer Membrane Protein, on the Biological Characteristics and Virulence of Vibrio Parahaemolyticus. BIOLOGY 2024; 13:485. [PMID: 39056680 PMCID: PMC11273978 DOI: 10.3390/biology13070485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Porins are crucial proteins located in the outer membrane that directly influence antimicrobial resistance mechanisms and virulence in bacteria. In this study, a porin gene (Vp-porin) was cloned in V. parahaemolyticus, and the function of Vp-Porin in biological characteristics and virulence was investigated. The results of sequence analysis showed that Vp-Porin is highly conserved in Vibrio spp., and the predicted 3D structure showed it could form a 20-strand transmembrane β-barrel domian. Membrane permeabilization provides evidence that the membrane integrity of ∆Vp-porin was damaged and the sensitivity to tetracycline, polymyxin B, rifampicin and cephalothin of ∆Vp-porin obviously increased. In addition, loss of Vp-porin damaged motility due to downregulated flagellar synthesis. In addition, ∆Vp-porin exhibited attenuated cytotoxicity to Tetrahymena. The relative survival rate of Tetrahymena infection with ∆Vp-porin was 86%, which is much higher than that with WT (49%). Taken together, the results of this study indicate that Vp-Porin in V. parahaemolyticus plays various roles in biological characteristics in membrane integrity, antimicrobial resistance and motility and contributes to virulence.
Collapse
Affiliation(s)
- Jinyuan Che
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (J.C.); (L.W.)
| | - Qitong Fang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Q.F.); (S.H.); (B.L.)
| | - Shaojie Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Q.F.); (S.H.); (B.L.)
| | - Binghong Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Q.F.); (S.H.); (B.L.)
| | - Lei Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (J.C.); (L.W.)
| | - Xiu Fang
- Fujian Provincial Key Laboratory of Breeding Lateolabrax Japonicus, Fuding 355200, China;
| | - Lekang Li
- Jiujiang Academy of Fishery Sciences, Jiujiang 332000, China;
| | - Tuyan Luo
- Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Science, Fuzhou 350003, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Q.F.); (S.H.); (B.L.)
| |
Collapse
|
5
|
Boulaamane Y, Molina Panadero I, Hmadcha A, Atalaya Rey C, Baammi S, El Allali A, Maurady A, Smani Y. Antibiotic discovery with artificial intelligence for the treatment of Acinetobacter baumannii infections. mSystems 2024; 9:e0032524. [PMID: 38700330 PMCID: PMC11326114 DOI: 10.1128/msystems.00325-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024] Open
Abstract
Global challenges presented by multidrug-resistant Acinetobacter baumannii infections have stimulated the development of new treatment strategies. We reported that outer membrane protein W (OmpW) is a potential therapeutic target in A. baumannii. Here, a library of 11,648 natural compounds was subjected to a primary screening using quantitative structure-activity relationship (QSAR) models generated from a ChEMBL data set with >7,000 compounds with their reported minimal inhibitory concentration (MIC) values against A. baumannii followed by a structure-based virtual screening against OmpW. In silico pharmacokinetic evaluation was conducted to assess the drug-likeness of these compounds. The ten highest-ranking compounds were found to bind with an energy score ranging from -7.8 to -7.0 kcal/mol where most of them belonged to curcuminoids. To validate these findings, one lead compound exhibiting promising binding stability as well as favorable pharmacokinetics properties, namely demethoxycurcumin, was tested against a panel of A. baumannii strains to determine its antibacterial activity using microdilution and time-kill curve assays. To validate whether the compound binds to the selected target, an OmpW-deficient mutant was studied and compared with the wild type. Our results demonstrate that demethoxycurcumin in monotherapy and in combination with colistin is active against all A. baumannii strains. Finally, the compound was found to significantly reduce the A. baumannii interaction with host cells, suggesting its anti-virulence properties. Collectively, this study demonstrates machine learning as a promising strategy for the discovery of curcuminoids as antimicrobial agents for combating A. baumannii infections. IMPORTANCE Acinetobacter baumannii presents a severe global health threat, with alarming levels of antimicrobial resistance rates resulting in significant morbidity and mortality in the USA, ranging from 26% to 68%, as reported by the Centers for Disease Control and Prevention (CDC). To address this threat, novel strategies beyond traditional antibiotics are imperative. Computational approaches, such as QSAR models leverage molecular structures to predict biological effects, expediting drug discovery. We identified OmpW as a potential therapeutic target in A. baumannii and screened 11,648 natural compounds. We employed QSAR models from a ChEMBL bioactivity data set and conducted structure-based virtual screening against OmpW. Demethoxycurcumin, a lead compound, exhibited promising antibacterial activity against A. baumannii, including multidrug-resistant strains. Additionally, demethoxycurcumin demonstrated anti-virulence properties by reducing A. baumannii interaction with host cells. The findings highlight the potential of artificial intelligence in discovering curcuminoids as effective antimicrobial agents against A. baumannii infections, offering a promising strategy to address antibiotic resistance.
Collapse
Affiliation(s)
- Yassir Boulaamane
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Irene Molina Panadero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/Junta de Andalucía, Seville, Spain
| | - Abdelkrim Hmadcha
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Seville, Spain
- Biosanitary Research Institute (IIB-VIU), Valencian International University (VIU), Valencia, Spain
| | - Celia Atalaya Rey
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/Junta de Andalucía, Seville, Spain
| | - Soukayna Baammi
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Achraf El Allali
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
- Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Younes Smani
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/Junta de Andalucía, Seville, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
6
|
Nayak S, Akshay SD, Deekshit VK, Raj JM, Maiti B. Exposure to imipenem at sub-minimum inhibitory concentration leads to altered expression of major outer membrane proteins in Acinetobacter baumannii. J Appl Microbiol 2024; 135:lxae105. [PMID: 38653725 DOI: 10.1093/jambio/lxae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
AIMS Acinetobacter baumannii is a nosocomial pathogen known to be multidrug-resistant (MDR), especially to drugs of the carbapenem class. Several factors contribute to resistance, including efflux pumps, β-lactamases, alteration of target sites, and permeability defects. In addition, outer membrane proteins (OMPs), like porins are involved in the passage of antibiotics, and their alteration could lead to resistance development. This study aimed to explore the possible involvement of porins and OMPs in developing carbapenem resistance due to differential expression. METHODS AND RESULTS The antibiotic-susceptible and MDR isolates of A. baumannii were first studied for differences in their transcriptional levels of OMP expression and OMP profiles. The antibiotic-susceptible isolates were further treated with imipenem, and it was found that the omp genes were differentially expressed. Six of the nine genes studied were upregulated at 1 h of exposure to imipenem. Their expression gradually decreased with time, further confirmed by their OMP profile and two-dimensional gel electrophoresis. CONCLUSIONS This study could identify OMPs that were differentially expressed on exposure to imipenem. Hence, this study provides insights into the role of specific OMPs in antibiotic resistance in A. baumannii.
Collapse
Affiliation(s)
- Srajana Nayak
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Deralakatte, Mangaluru 575018, India
| | - Sadanand Dangari Akshay
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Deralakatte, Mangaluru 575018, India
| | - Vijaya Kumar Deekshit
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Infectious Diseases & Microbial Genomics, Deralakatte, Mangaluru 575018, India
| | - Juliet Mohan Raj
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Infectious Diseases & Microbial Genomics, Deralakatte, Mangaluru 575018, India
| | - Biswajit Maiti
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Deralakatte, Mangaluru 575018, India
| |
Collapse
|
7
|
Kim SJ, Jo J, Kim J, Ko KS, Lee W. Polymyxin B nonapeptide potentiates the eradication of Gram-negative bacterial persisters. Microbiol Spectr 2024; 12:e0368723. [PMID: 38391225 PMCID: PMC10986493 DOI: 10.1128/spectrum.03687-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Antibiotic-resistant Gram-negative bacteria remain a globally leading cause of bacterial infection-associated mortality, and it is imperative to identify novel therapeutic strategies. Recently, the advantage of using antibacterials selective against Gram-negative bacteria has been demonstrated with polymyxins that specifically target the lipopolysaccharides of Gram-negative bacteria. However, the severe cytotoxicity of polymyxins limits their clinical use. Here, we demonstrate that polymyxin B nonapeptide (PMBN), a polymyxin B derivative without the terminal amino acyl residue, can significantly enhance the effectiveness of commonly used antibiotics against only Gram-negative bacteria and their persister cells. We show that although PMBN itself does not exhibit antibacterial activity or cytotoxicity well above the 100-fold minimum inhibitory concentration of polymyxin B, PMBN can increase the potency of co-treated antibiotics. We also demonstrate that using PMBN in combination with other antibiotics significantly reduces the frequency of resistant mutant formation. Together, this work provides evidence of the utilities of PMBN as a novel potentiator for antibiotics against Gram-negative bacteria and insights for the eradication of bacterial persister cells during antibiotic treatment. IMPORTANCE The significance of our study lies in addressing the problem of antibiotic-resistant Gram-negative bacteria, which continue to be a global cause of mortality associated with bacterial infections. Therefore, identifying innovative therapeutic approaches is an urgent need. Recent research has highlighted the potential of selective antibacterials like polymyxins, which specifically target the lipopolysaccharides of Gram-negative bacteria. However, the clinical use of polymyxins is limited by their severe cytotoxicity. This study unveils the effectiveness of polymyxin B nonapeptide (PMBN) in significantly enhancing the eradication of persister cells in Gram-negative bacteria. Although PMBN itself does not exhibit antibacterial activity or cytotoxicity, it remarkably reduces persister cells during the treatment of antibiotics. Moreover, combining PMBN with other antibiotics reduces the emergence of resistant mutants. Our research emphasizes the utility of PMBN as a novel potentiator to decrease persister cells during antibiotic treatments for Gram-negative bacteria.
Collapse
Affiliation(s)
- Sun Ju Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeongwoo Jo
- Department of Microbiology, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jihyeon Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
8
|
Bhavya JN, Anugna SS, Premanath R. Sub-inhibitory concentrations of colistin and imipenem impact the expression of biofilm-associated genes in Acinetobacter baumannii. Arch Microbiol 2024; 206:169. [PMID: 38489041 DOI: 10.1007/s00203-024-03869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
Acinetobacter baumannii is an opportunistic pathogen that is responsible for nosocomial infections. Imipenem and colistin are drugs that are commonly used to treat severe infections caused by A. baumannii, such as sepsis, ventilator-associated pneumonia, and bacteremia. However, some strains of A. baumannii have become resistant to these drugs, which is a concern for public health. Biofilms produced by A. baumannii increase their resistance to antibiotics and the cells within the inner layers of biofilm are exposed to sub-inhibitory concentrations (sub-MICs) of antibiotics. There is limited information available regarding how the genes of A. baumannii are linked to biofilm formation when the bacteria are exposed to sub-MICs of imipenem and colistin. Thus, this study's objective was to explore this relationship by examining the genes involved in biofilm formation in A. baumannii when exposed to low levels of imipenem and colistin. The study found that exposing an isolate of A. baumannii to low levels of these drugs caused changes in their drug susceptibility pattern. The relative gene expression profiles of the biofilm-associated genes exhibited a change in their expression profile during short-term and long-term exposure. This study highlights the potential consequences of overuse and misuse of antibiotics, which can help bacteria become resistant to these drugs.
Collapse
Affiliation(s)
- J N Bhavya
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer Campus, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Sureddi Sai Anugna
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer Campus, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Ramya Premanath
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer Campus, Deralakatte, Mangaluru, Karnataka, 575018, India.
| |
Collapse
|
9
|
Fursova NK, Fursov MV, Astashkin EI, Fursova AD, Novikova TS, Kislichkina AA, Sizova AA, Fedyukina GN, Savin IA, Ershova ON. Multidrug-Resistant and Extensively Drug-Resistant Acinetobacter baumannii Causing Nosocomial Meningitis in the Neurological Intensive Care Unit. Microorganisms 2023; 11:2020. [PMID: 37630581 PMCID: PMC10458171 DOI: 10.3390/microorganisms11082020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Acinetobacter baumannii is one of the significant healthcare-associated meningitis agents characterized by multidrug resistance and a high mortality risk. Thirty-seven A. baumannii strains were isolated from thirty-seven patients of Moscow neuro-ICU with meningitis in 2013-2020. The death rate was 37.8%. Strain susceptibility to antimicrobials was determined on the Vitek-2 instrument. Whole-genome sequencing was conducted using Illumina technology; the sequence types (ST), capsular types (KL), lipooligosaccharide outer core locus (OCL), antimicrobial resistance genes, and virulence genes were identified. The prevalent ST was ST2, belonging to the international clone IC2, and rarer, ST1, ST19, ST45, ST78, ST106, and ST400, with prevalence of KL9 and OCL1. Twenty-nine strains belonged to multidrug-resistant (MDR) and eight extensively drug-resistant (XDR) categories. Genes conferring resistance to beta-lactams (blaPER, blaGES, blaADC, blaCARB, blaCTX-M, blaTEM, and blaOXA-types), aminoglycosides (aac, aad, ant, aph, and arm), tetracyclines (tet), macrolides (msr and mph), phenicols (cml, cat, and flo), sulfonamides (dfr and sul), rifampin (arr), and antiseptics (qac) were identified. Virulence genes of nine groups (Adherence, Biofilm formation, Enzymes, Immune evasion, Iron uptake, Regulation, Serum resistance, Stress adaptation, and Antiphagocytosis) were detected. The study highlights the heterogeneity in genetic clones, antimicrobial resistance, and virulence genes variability among the agents of A. baumannii meningitis, with the prevalence of the dominant international clone IC2.
Collapse
Affiliation(s)
- Nadezhda K. Fursova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (E.I.A.); (A.D.F.); (T.S.N.)
| | - Mikhail V. Fursov
- Department of Training and Improvement of Specialists, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia;
| | - Evgeny I. Astashkin
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (E.I.A.); (A.D.F.); (T.S.N.)
| | - Anastasiia D. Fursova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (E.I.A.); (A.D.F.); (T.S.N.)
| | - Tatiana S. Novikova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (E.I.A.); (A.D.F.); (T.S.N.)
| | - Angelina A. Kislichkina
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (A.A.K.); (A.A.S.)
| | - Angelika A. Sizova
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (A.A.K.); (A.A.S.)
| | - Galina N. Fedyukina
- Department of Immunochemistry of Pathogenic Microorganisms, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia;
| | - Ivan A. Savin
- Department of Clinical Epidemiology, National Medical Research Center of Neurosurgery Named after Academician N.N. Burdenko, 125047 Moscow, Russia; (I.A.S.); (O.N.E.)
| | - Olga N. Ershova
- Department of Clinical Epidemiology, National Medical Research Center of Neurosurgery Named after Academician N.N. Burdenko, 125047 Moscow, Russia; (I.A.S.); (O.N.E.)
| |
Collapse
|