1
|
Hetta HF, Sirag N, Alsharif SM, Alharbi AA, Alkindy TT, Alkhamali A, Albalawi AS, Ramadan YN, Rashed ZI, Alanazi FE. Antimicrobial Peptides: The Game-Changer in the Epic Battle Against Multidrug-Resistant Bacteria. Pharmaceuticals (Basel) 2024; 17:1555. [PMID: 39598464 PMCID: PMC11597525 DOI: 10.3390/ph17111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The rapid progress of antibiotic resistance among bacteria has prompted serious medical concerns regarding how to manage multidrug-resistant (MDR) bacterial infections. One emerging strategy to combat antibiotic resistance is the use of antimicrobial peptides (AMPs), which are amino acid chains that act as broad-spectrum antimicrobial molecules and are essential parts of the innate immune system in mammals, fungi, and plants. AMPs have unique antibacterial mechanisms that offer benefits over conventional antibiotics in combating drug-resistant bacterial infections. Currently, scientists have conducted multiple studies on AMPs for combating drug-resistant bacterial infections and found that AMPs are a promising alternative to conventional antibiotics. On the other hand, bacteria can develop several tactics to resist and bypass the effect of AMPs. Therefore, it is like a battle between the bacterial community and the AMPs, but who will win? This review provides thorough insights into the development of antibiotic resistance as well as detailed information about AMPs in terms of their history and classification. Furthermore, it addresses the unique antibacterial mechanisms of action of AMPs, how bacteria resist these mechanisms, and how to ensure AMPs win this battle. Finally, it provides updated information about FDA-approved AMPs and those that were still in clinical trials. This review provides vital information for researchers for the development and therapeutic application of novel AMPs for drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.F.H.); (A.A.A.); (T.T.A.)
| | - Nizar Sirag
- Division of Pharmacognosy, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Shumukh M. Alsharif
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.F.H.); (A.A.A.); (T.T.A.)
| | - Ahmad A. Alharbi
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.F.H.); (A.A.A.); (T.T.A.)
| | - Tala T. Alkindy
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.F.H.); (A.A.A.); (T.T.A.)
| | - Alanoud Alkhamali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.); (A.S.A.)
| | - Abdullah S. Albalawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.); (A.S.A.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Y.N.R.); (Z.I.R.)
| | - Zainab I. Rashed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Y.N.R.); (Z.I.R.)
| | - Fawaz E. Alanazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
2
|
Shovon MHJ, Imtiaz M, Biswas P, Tareq MMI, Zilani MNH, Hasan M. A pan-genomic analysis based multi-epitope vaccine development by targeting Stenotrophomonas maltophilia using reverse vaccinology method: an in-silico approach. In Silico Pharmacol 2024; 12:93. [PMID: 39464855 PMCID: PMC11499521 DOI: 10.1007/s40203-024-00271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
Antibiotic resistance in bacteria leads to high mortality rates and healthcare costs, a significant concern for public health. A colonizer of the human respiratory system, Stenotrophomonas maltophilia is frequently associated with hospital-acquired infections in individuals with cystic fibrosis, cancer, and other chronic illnesses. The importance of this study is underscored by its capacity to meet the critical demand for effective preventive strategies against this pathogen, particularly among susceptible groups of cystic fibrosis and those undergoing cancer treatment. In this study, we engineered a multi-epitope vaccine targeting S. maltophilia through genomic analysis, reverse vaccination strategies, and immunoinformatic techniques by examining a total of 81 complete genomes of S. maltophilia strains. Our investigation revealed 1945 core protein-coding genes alongside their corresponding proteomic sequences, with 191 of these genes predicted to exhibit virulence characteristics. Out of the filtered proteins, three best antigenic proteins were selected for epitope prediction while seven epitopes each from CTL, HTL, and B cell were chosen for vaccine development. The vaccine was refined and validated, showing highly antigenic and desirable physicochemical features. Molecular docking assessments revealed stable binding with TLR-4. Molecular dynamic simulation demonstrated stable dynamics with minor alterations. The originality of this investigation is rooted in the thorough techniques aimed at designing a vaccine that directly targets S. maltophilia, a microorganism of considerable clinical relevance that currently lacks an available vaccine. This study not only responds to a pressing public health crisis but also lays the groundwork for subsequent research endeavors focused on the prevention of S. maltophilia outbreaks. Further evidence from studies in mice models is needed to confirm immune protection against S. maltophilia.
Collapse
Affiliation(s)
- Md. Hasan Jafre Shovon
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Md. Imtiaz
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Md. Mohaimenul Islam Tareq
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Md Nazmul Hasan Zilani
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Md.Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| |
Collapse
|
3
|
Urrutia C, Leyton-Carcaman B, Abanto Marin M. Contribution of the Mobilome to the Configuration of the Resistome of Corynebacterium striatum. Int J Mol Sci 2024; 25:10499. [PMID: 39408827 PMCID: PMC11477358 DOI: 10.3390/ijms251910499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Corynebacterium striatum, present in the microbiota of human skin and nasal mucosa, has recently emerged as a causative agent of hospital-acquired infections, notable for its resistance to multiple antimicrobials. Its mobilome comprises several mobile genetic elements, such as plasmids, transposons, insertion sequences and integrons, which contribute to the acquisition of antimicrobial resistance genes. This study analyzes the contribution of the C. striatum mobilome in the transfer and dissemination of resistance genes. In addition, integrative and conjugative elements (ICEs), essential in the dissemination of resistance genes between bacterial populations, whose role in C. striatum has not yet been studied, are examined. This study examined 365 C. striatum genomes obtained from the NCBI Pathogen Detection database. Phylogenetic and pangenome analyses were performed, the resistance profile of the bacterium was recognized, and mobile elements, including putative ICE, were detected. Bioinformatic analyses identified 20 antimicrobial resistance genes in this species, with the Ermx gene being the most predominant. Resistance genes were mainly associated with plasmid sequence regions and class 1 integrons. Although an ICE was detected, no resistance genes linked to this element were found. This study provided valuable information on the geographic spread and prevalence of outbreaks observed through phylogenetic and pangenome analyses, along with identifying antimicrobial resistance genes and mobile genetic elements that carry many of the resistance genes and may be the subject of future research and therapeutic approaches.
Collapse
Affiliation(s)
- Catherine Urrutia
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile; (C.U.); (B.L.-C.)
- Carrera de Biotecnología, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Benjamin Leyton-Carcaman
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile; (C.U.); (B.L.-C.)
- Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4811230, Chile
| | - Michel Abanto Marin
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile; (C.U.); (B.L.-C.)
| |
Collapse
|
4
|
Rocha DJPG, Silva CS, Jesus HNR, Sacoda FG, Cruz JVO, Pinheiro CS, Aguiar ERGR, Rodríguez-Grande J, Rodríguez-Lozano J, Calvo-Montes J, Navas J, Pacheco LGC. Suboptimal bioinformatic predictions of antimicrobial resistance from whole-genome sequences in multidrug-resistant Corynebacterium isolates. J Glob Antimicrob Resist 2024; 38:181-186. [PMID: 38936471 DOI: 10.1016/j.jgar.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
Herein, we combined different bioinformatics tools and databases (BV-BRC, ResFinder, RAST, and KmerResistance) to perform a prediction of antimicrobial resistance (AMR) in the genomic sequences of 107 Corynebacterium striatum isolates for which trustable antimicrobial susceptibility (AST) phenotypes could be retrieved. Then, the reliabilities of the AMR predictions were evaluated by different metrics: area under the ROC curve (AUC); Major Error Rates (MERs) and Very Major Error Rates (VMERs); Matthews Correlation Coefficient (MCC); F1-Score; and Accuracy. Out of 15 genes that were reliably detected in the C. striatum isolates, only tetW yielded predictive values for tetracycline resistance that were acceptable considering Food and Drug Administration (FDA)'s criteria for quality (MER < 3.0% and VMER with a 95% C.I. ≤1.5-≤7.5); this was accompanied by a MCC score higher than 0.9 for this gene. Noteworthy, our results indicate that other commonly used metrics (AUC, F1-score, and Accuracy) may render overoptimistic evaluations of AMR-prediction reliabilities on imbalanced datasets. Accordingly, out of 10 genes tested by PCR on additional multidrug-resistant Corynebacterium spp. isolates (n = 18), the tetW gene rendered the best agreement values with AST profiles (94.11%). Overall, our results indicate that genome-based AMR prediction can still be challenging for MDR clinical isolates of emerging Corynebacterium spp.
Collapse
Affiliation(s)
- Danilo J P G Rocha
- Post-Graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil; Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil; Faculty of Medicine, Cantabria University, Santander, Spain
| | - Carolina S Silva
- Post-Graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil; Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Hendor N R Jesus
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Felipe G Sacoda
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - João V O Cruz
- Post-Graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil; Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Carina S Pinheiro
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | | | | | - Jesús Rodríguez-Lozano
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Servicio de Microbiología, Hospital Universitario Marqués Ide Valdecilla, Santander, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Calvo-Montes
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Servicio de Microbiología, Hospital Universitario Marqués Ide Valdecilla, Santander, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesus Navas
- Faculty of Medicine, Cantabria University, Santander, Spain
| | - Luis G C Pacheco
- Post-Graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil; Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
5
|
Hetta HF, Ramadan YN, Rashed ZI, Alharbi AA, Alsharef S, Alkindy TT, Alkhamali A, Albalawi AS, Battah B, Donadu MG. Quorum Sensing Inhibitors: An Alternative Strategy to Win the Battle against Multidrug-Resistant (MDR) Bacteria. Molecules 2024; 29:3466. [PMID: 39124871 PMCID: PMC11313800 DOI: 10.3390/molecules29153466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/29/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Antibiotic resistance is a major problem and a major global health concern. In total, there are 16 million deaths yearly from infectious diseases, and at least 65% of infectious diseases are caused by microbial communities that proliferate through the formation of biofilms. Antibiotic overuse has resulted in the evolution of multidrug-resistant (MDR) microbial strains. As a result, there is now much more interest in non-antibiotic therapies for bacterial infections. Among these revolutionary, non-traditional medications is quorum sensing inhibitors (QSIs). Bacterial cell-to-cell communication is known as quorum sensing (QS), and it is mediated by tiny diffusible signaling molecules known as autoinducers (AIs). QS is dependent on the density of the bacterial population. QS is used by Gram-negative and Gram-positive bacteria to control a wide range of processes; in both scenarios, QS entails the synthesis, identification, and reaction to signaling chemicals, also known as auto-inducers. Since the usual processes regulated by QS are the expression of virulence factors and the creation of biofilms, QS is being investigated as an alternative solution to antibiotic resistance. Consequently, the use of QS-inhibiting agents, such as QSIs and quorum quenching (QQ) enzymes, to interfere with QS seems like a good strategy to prevent bacterial infections. This review sheds light on QS inhibition strategy and mechanisms and discusses how using this approach can aid in winning the battle against resistant bacteria.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Y.N.R.); (Z.I.R.)
| | - Zainab I. Rashed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Y.N.R.); (Z.I.R.)
| | - Ahmad A. Alharbi
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Shomokh Alsharef
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Tala T. Alkindy
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Alanoud Alkhamali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.); (A.S.A.)
| | - Abdullah S. Albalawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.); (A.S.A.)
| | - Basem Battah
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Antioch Syrian Private University, Maaret Siadnaya 22734, Syria
| | - Matthew G. Donadu
- Hospital Pharmacy, Giovanni Paolo II Hospital, ASL Gallura, 07026 Olbia, Italy;
- Department of Medicine, Surgery and Pharmacy, Scuola di Specializzazione in Farmacia Ospedaliera, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
6
|
Xu Y, Zheng Z, Sun R, Ye L, Chan EWC, Chen S. Epidemiological and genetic characterization of multidrug-resistant non-O1 and non-O139 Vibrio cholerae from food in southern China. Int J Food Microbiol 2024; 418:110734. [PMID: 38759293 DOI: 10.1016/j.ijfoodmicro.2024.110734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
This study reports a comprehensive epidemiological and genetic analysis of V. cholerae strains, specifically non-O1/non-O139 serogroups, isolated from animal-derived food samples in Guangdong province from 2015 to 2019. A total of 21 V. cholerae strains were obtained, which exhibited high resistance rates for nalidixic acid (57.14 %, 12/21), ampicillin (33.33 %, 7/21), and ciprofloxacin (19.05 %, 4/21). The quinolone resistance-related gene, qnrVC, was prevalent in 80.95 % (17/21) of the isolates. Additionally, chromosomally mediated quinolone-resistance mutations, including mutations in GyrA at position 83 (S83I) and ParC at position 85 (S85L), were detected in 47.62 % of the isolates. The combination of target mutation and qnrVC genes was shown to mediate resistance or intermediate resistance to ciprofloxacin in V. cholerae. Furthermore, an IncC-type conjugative plasmid carrying thirteen antibiotic resistance genes, including genes conferring resistance to two clinically important antibiotics, cephalosporins and fluoroquinolones, was identified in the shrimp-derived strain Vc516. While none of our food isolates harbored the toxigenic CTX- and TCP-encoding genes, they did possess genes encoding toxins such as HlyA and Autoinducer-2. Notably, some V. cholerae strains from this study exhibited a close genetic relationship with clinical strains, suggesting their potential to cause human infections. Taken together, this study provides a comprehensive view of the epidemiological features and genetic basis of antimicrobial resistance and virulence potential of V. cholerae strains isolated from food in southern China, thereby advancing our understanding of this important pathogen.
Collapse
Affiliation(s)
- Yating Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zhiwei Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Ruanyang Sun
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sheng Chen
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, People's Republic of China.
| |
Collapse
|
7
|
Yu K, Huang Z, Xiao Y, Gao H, Bai X, Wang D. Global spread characteristics of CTX-M-type extended-spectrum β-lactamases: A genomic epidemiology analysis. Drug Resist Updat 2024; 73:101036. [PMID: 38183874 DOI: 10.1016/j.drup.2023.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/18/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Extended-spectrum β-lactamases (ESBLs) producing bacteria have spread worldwide and become a global public health concern. Plasmid-mediated transfer of ESBLs is an important route for resistance acquisition. METHODS We collected 1345 complete sequences of plasmids containing CTX-Ms from public database. The global transmission pattern of plasmids and evolutionary dynamics of CTX-Ms have been inferred. We applied the pan-genome clustering based on plasmid genomes and evolution analysis to demonstrate the transmission events. FINDINGS Totally, 48 CTX-Ms genotypes and 186 incompatible types of plasmids were identified. The geographical distribution of CTX-Ms showed significant differences across countries and continents. CTX-M-14 and CTX-M-55 were found to be the dominant genotypes in Asia, while CTX-M-1 played a leading role in Europe. The plasmids can be divided into 12 lineages, some of which forming distinct geographical clusters in Asia and Europe, while others forming hybrid populations. The Inc types of plasmids are lineage-specific, with the CTX-M-1_IncI1-I (Alpha) and CTX-M-65_IncFII (pHN7A8)/R being the dominant patterns of cross-host and cross-regional transmission. The IncI-I (Alpha) plasmids with the highest number, were presumed to form communication groups in Europe-Asia and Asia-America-Oceania, showing the transmission model as global dissemination and regional microevolution. Meanwhile, the main kinetic elements of blaCTX-Ms showed genotypic preferences. ISEcpl and IS26 were most frequently involved in the transfer of CTX-M-14 and CTX-M-65, respectively. IS15 has become a crucial participant in mediating the dissemination of blaCTX-Ms. Interestingly, blaTEM and blaCTX-Ms often coexisted in the same transposable unit. Furthermore, antibiotic resistance genes associated with aminoglycosides, sulfonamides and cephalosporins showed a relatively high frequency of synergistic effects with CTX-Ms. CONCLUSIONS We recognized the dominant blaCTX-Ms and mainstream plasmids of different continents. The results of this study provide support for a more effective response to the risks associated with the evolution of blaCTX-Ms-bearing plasmids, and lay the foundation for genotype-specific epidemiological surveillance of resistance, which are of important public health implications.
Collapse
Affiliation(s)
- Keyi Yu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
| | - Zhenzhou Huang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang 310021, China
| | - Yue Xiao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
| | - He Gao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
| | - Xuemei Bai
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
| | - Duochun Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China.
| |
Collapse
|
8
|
Virgilio E, Solmone M, Scardigno A, Fradiani P, Ceci D, Teggi A, Enea Di Domenico G, Cavallo I, Ensoli F, Borro M, Simmaco M, Santino I, Cavallini M. Hard-to-heal peripheral wounds infected with Corynebacterium striatum: a prospective study. J Wound Care 2023; 32:811-820. [PMID: 38060419 DOI: 10.12968/jowc.2023.32.12.811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
OBJECTIVE To investigate Corynebacterium striatum as a nosocomial pathogen infecting hard-to-heal peripheral wounds, such as skin wounds, soft tissue abscesses and osteomyelitis. As of 2023, the medical community were alerted against the risk of emerging systemic and central infections; on the other hand literature on peripheral cutaneous regions is still scarce. METHOD In this study, two groups of patients with similar lesions which were infected were compared: one group with the presence of the coryneform rod, the other without. RESULTS In total, Corynebacterium striatum was cultured from 62 patients and 131 samples. Corynebacterium striatum infection correlated well with the presence of: foot ulcer; venous leg ulcer; altered ambulation and/or altered foot loading; peripheral vascular and arterial disease; hospitalisation; malignancy; spinal cord injury; and recent administration of antibiotics (p<0.05 for all associations). Patients with Corynebacterium striatum had a lower overall survival rate compared to patients in the non-Corynebacterium striatum group (28.6 versus 31.6 months, respectively; p=0.0285). Multivariate analysis revealed that Corynebacterium striatum infection was an independent factor for poor prognosis (p<0.0001). CONCLUSION In view of the findings of our study, Corynebacterium striatum appears to be an important opportunistic pathogen infecting peripheral tissues and complicating wound healing. Given its numerous and worrying virulence factors (such as multidrug resistance and biofilm production), particular attention should be given to this pathogen by professional wound care providers in nosocomial and outpatient environments.
Collapse
Affiliation(s)
- Edoardo Virgilio
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Department of General Surgery, Parma University Hospital, Parma, Italy
| | - Mariacarmela Solmone
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University Sapienza, Sant'Andrea Hospital, Rome, Italy
| | - Alessandro Scardigno
- Department of Neurosciences, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, University Sapienza, Sant'Andrea Hospital, Rome, Italy
| | - Piera Fradiani
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University Sapienza, Sant'Andrea Hospital, Rome, Italy
| | - Diego Ceci
- Department of Medical and Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University Sapienza, Sant'Andrea Hospital, Rome, Italy
| | - Antonella Teggi
- Department of Neurosciences, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, University Sapienza, Sant'Andrea Hospital, Rome, Italy
| | - Gino Enea Di Domenico
- Department of Clinical Pathology and Microbiology, St. Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Ilaria Cavallo
- Department of Clinical Pathology and Microbiology, St. Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Fabrizio Ensoli
- Department of Clinical Pathology and Microbiology, St. Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Marina Borro
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University Sapienza, Sant'Andrea Hospital, Rome, Italy
| | - Maurizio Simmaco
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University Sapienza, Sant'Andrea Hospital, Rome, Italy
| | - Iolanda Santino
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University Sapienza, Sant'Andrea Hospital, Rome, Italy
| | - Marco Cavallini
- Department of Medical and Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University Sapienza, Sant'Andrea Hospital, Rome, Italy
| |
Collapse
|
9
|
Hetta HF, Rashed ZI, Ramadan YN, Al-Kadmy IMS, Kassem SM, Ata HS, Nageeb WM. Phage Therapy, a Salvage Treatment for Multidrug-Resistant Bacteria Causing Infective Endocarditis. Biomedicines 2023; 11:2860. [PMID: 37893232 PMCID: PMC10604041 DOI: 10.3390/biomedicines11102860] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Infective endocarditis (IE) is defined as an infection of the endocardium, or inner surface of the heart, most frequently affecting the heart valves or implanted cardiac devices. Despite its rarity, it has a high rate of morbidity and mortality. IE generally occurs when bacteria, fungi, or other germs from another part of the body, such as the mouth, spread through the bloodstream and attach to damaged areas in the heart. The epidemiology of IE has changed as a consequence of aging and the usage of implantable cardiac devices and heart valves. The right therapeutic routes must be assessed to lower complication and fatality rates, so this requires early clinical suspicion and a fast diagnosis. It is urgently necessary to create new and efficient medicines to combat multidrug-resistant bacterial (MDR) infections because of the increasing threat of antibiotic resistance on a worldwide scale. MDR bacteria that cause IE can be treated using phages rather than antibiotics to combat MDR bacterial strains. This review will illustrate how phage therapy began and how it is considered a powerful potential candidate for the treatment of MDR bacteria that cause IE. Furthermore, it gives a brief about all reported clinical trials that demonstrated the promising effect of phage therapy in combating resistant bacterial strains that cause IE and how it will become a hope in future medicine.
Collapse
Affiliation(s)
- Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Zainab I. Rashed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Z.I.R.); (Y.N.R.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Z.I.R.); (Y.N.R.)
| | - Israa M. S. Al-Kadmy
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, Baghdad P.O. Box 10244, Iraq
| | - Soheir M. Kassem
- Department of Internal Medicine and Critical Care, Faculty of Medicine, Assuit University, Assiut 71515, Egypt;
| | - Hesham S. Ata
- Department of Pathology, College of Medicine, Qassim University, Buraydah 51452, Qassim, Saudi Arabia;
| | - Wedad M. Nageeb
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|