1
|
Vilela J, Rohaim MA, Munir M. Application of CRISPR/Cas9 in Understanding Avian Viruses and Developing Poultry Vaccines. Front Cell Infect Microbiol 2020; 10:581504. [PMID: 33330126 PMCID: PMC7732654 DOI: 10.3389/fcimb.2020.581504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats associated protein nuclease 9 (CRISPR-Cas9) technology offers novel approaches to precisely, cost-effectively, and user-friendly edit genomes for a wide array of applications and across multiple disciplines. This methodology can be leveraged to underpin host-virus interactions, elucidate viral gene functions, and to develop recombinant vaccines. The successful utilization of CRISPR/Cas9 in editing viral genomes has paved the way of developing novel and multiplex viral vectored poultry vaccines. Furthermore, CRISPR/Cas9 can be exploited to rectify major limitations of conventional approaches including reversion to virulent form, recombination with field viruses and transgene, and genome instability. This review provides comprehensive analysis of the potential of CRISPR/Cas9 genome editing technique in understanding avian virus-host interactions and developing novel poultry vaccines. Finally, we discuss the simplest and practical aspects of genome editing approaches in generating multivalent recombinant poultry vaccines that conform simultaneous protection against major avian diseases.
Collapse
Affiliation(s)
- Julianne Vilela
- Division of Biomedical and Life Sciences, The Lancaster University, Lancaster, United Kingdom
| | - Mohammed A Rohaim
- Division of Biomedical and Life Sciences, The Lancaster University, Lancaster, United Kingdom
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, The Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
2
|
Wu M, Tong CWS, Yan W, To KKW, Cho WCS. The RNA Binding Protein HuR: A Promising Drug Target for Anticancer Therapy. Curr Cancer Drug Targets 2020; 19:382-399. [PMID: 30381077 DOI: 10.2174/1568009618666181031145953] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/24/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
Abstract
The stability of mRNA is one of the key factors governing the regulation of eukaryotic gene expression and function. Human antigen R (HuR) is an RNA-binding protein that regulates the stability, translation, and nucleus-to-cytoplasm shuttling of its target mRNAs. While HuR is normally localized within the nucleus, it has been shown that HuR binds mRNAs in the nucleus and then escorts the mRNAs to the cytoplasm where HuR protects them from degradation. It contains several RNA recognition motifs, which specifically bind to adenylate and uridylate-rich regions within the 3'-untranslated region of the target mRNA to mediate its effect. Many of the HuR target mRNAs encode proteins important for cell growth, tumorigenesis, angiogenesis, tumor inflammation, invasion and metastasis. HuR overexpression is known to correlate well with high-grade malignancy and poor prognosis in many tumor types. Thus, HuR has emerged as an attractive drug target for cancer therapy. Novel small molecule HuR inhibitors have been identified by high throughput screening and new formulations for targeted delivery of HuR siRNA to tumor cells have been developed with promising anticancer activity. This review summarizes the significant role of HuR in cancer development, progression, and poor treatment response. We will discuss the potential and challenges of targeting HuR therapeutically.
Collapse
Affiliation(s)
- Mingxia Wu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Christy W S Tong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Wei Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong
| |
Collapse
|
3
|
Abuna RPF, Oliveira FS, Adolpho LF, Fernandes RR, Rosa AL, Beloti MM. Frizzled 6 disruption suppresses osteoblast differentiation induced by nanotopography through the canonical Wnt signaling pathway. J Cell Physiol 2020; 235:8293-8303. [PMID: 32239701 DOI: 10.1002/jcp.29674] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/08/2020] [Indexed: 02/05/2023]
Abstract
This study aimed to investigate if wingless-related integration site (Wnt) signaling participates in the high osteogenic potential of titanium with nanotopography (Ti-Nano). We showed that among the several components of the Wnt signaling pathway, Frizzled 6 (Fzd6) was the transcript most intensely modulated by nanotopography compared with the untreated Ti surface (Ti-Machined). Then, we investigated whether and how Fzd6 participates in the regulation of osteoblast differentiation caused by nanotopography. The Fzd6 silencing with CRISPR-Cas9 transfection in MC3T3-E1 cells induced a more pronounced inhibition of osteoblast differentiation of cells cultured on nanotopography than those cultured on Ti-Machined. The analysis of the expression of calcium-calmodulin-dependent protein kinase II and β-catenin demonstrated that Fzd6 disruption inhibited the osteoblast differentiation induced by Ti-Nano by preventing the activation of Wnt/β-catenin but not that of Wnt/Ca2+ signaling, which is usually triggered by the receptor Fzd6. These findings elucidate the biological function of Fzd6 as a receptor that triggers Wnt/β-catenin signaling and the cellular mechanisms modulated by nanotopography during osteoblast differentiation.
Collapse
Affiliation(s)
- Rodrigo Paolo Flores Abuna
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fabiola Singaretti Oliveira
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leticia Faustino Adolpho
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Roger Rodrigo Fernandes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Adalberto Luiz Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcio Mateus Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
4
|
Karginov FV. HuR controls apoptosis and activation response without effects on cytokine 3' UTRs. RNA Biol 2019; 16:686-695. [PMID: 30777501 DOI: 10.1080/15476286.2019.1582954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
RNA binding proteins regulate gene expression through several post-transcriptional mechanisms. The broadly expressed HuR/ELAVL1 is important for proper function of multiple immune cell types, and has been proposed to regulate cytokine and other mRNA 3' UTRs upon activation. However, this mechanism has not been previously dissected in stable cellular settings. In this study, HuR demonstrated strong anti-apoptotic and activation roles in Jurkat T cells. Detailed transcriptomic analysis of HuR knockout cells revealed a substantial negative impact on the activation program, coordinately preventing the expression of immune response gene categories, including all cytokines. Knockout cells showed a significant defect in IL-2 production, which was rescued upon reintroduction of HuR. Interestingly, the mechanism of HuR regulation did not involve control of the cytokine 3' UTRs: HuR knockout did not affect the activity of 3' UTR reporters in 293 cells, and had no effect on IL-2 and TNF 3' UTRs in resting or activated Jurkats. Instead, impaired cytokine production corresponded with defective induction of the IL-2 promoter upon activation. Accordingly, upregulation of NFATC1 was also impaired, without 3' UTR effects. Together, these results indicate that HuR controls cytokine production through coordinated upstream pathways, and that additional mechanisms must be considered in investigating its function.
Collapse
Affiliation(s)
- Fedor V Karginov
- a Department of Molecular, Cell, and Systems Biology , Institute for Integrative Genome Biology, University of California , Riverside , CA , USA
| |
Collapse
|
5
|
Albayrak G, Konac E, Ugras Dikmen A, Bilen CY. FOXA1 knock-out via CRISPR/Cas9 altered Casp-9, Bax, CCND1, CDK4, and fibronectin expressions in LNCaP cells. Exp Biol Med (Maywood) 2018; 243:990-994. [PMID: 30043639 DOI: 10.1177/1535370218791797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer is one of the most common types of cancer in men and the leading cause of death in developed countries. With the aid of molecular and genetic profiling of cancers, cancer molecular subtypes are paving the way for tailored cancer therapy. FOXA1 has been identified as one of the seven molecular subtypes of prostate cancer. FOXA1 is involved in a variety of metabolic process such as glucose homeostasis and deregulation of its expression is crucial in prostate cancer progression. In this study, we investigated the effects of FOXA1 gene knock-out on the expression levels of various cancer cell metabolism and cell cycle-related protein expressions. FOXA1 gene was knocked-out by using CRISPR/Cas9 technique. While FOXA1 gene knock-out significantly altered Casp-9, Bax, CCND1, CDK4, and fibronectin protein expressions (P < 0.05, fold change: ∼40, 4.5, 2.5, 4.5, and 4, respectively), it did not affect the protein expression levels of Casp-3, Bcl-2, survivin, β-catenin, c-Myc, and GSK-3B. Knocking-out FOXA1 gene in androgen-dependent LNCaP prostate cancer cells inhibited CCND1 protein expression. Our pre-clinical results demonstrate the importance of FOXA1 as a drug target in the treatment of prostate cancer. Impact statement Knock-out studies offer a unique way of studying the function of genes especially for developmentally lethal genes. FOXA1 has prominent roles both in breast and prostate cancer pathogenesis due to its role in ER receptor signaling pathway. FOXA1 has also been identified as one of the seven molecular subtypes of primary prostate cancer. In the present study, we used an efficient gene knock-out method, CRISPR/Cas9, in order to investigate FOXA1 function on LNCaP prostate cancer cells in vitro. FOXA1 knock-out altered cell-cycle regulator CCND1 protein expression levels. Therefore, our results suggest that FOXA1 might be a plausible drug target for prostate cancer treatment.
Collapse
Affiliation(s)
- Gulsah Albayrak
- 1 Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, 06510 Ankara, Turkey
| | - Ece Konac
- 1 Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, 06510 Ankara, Turkey
| | - Asiye Ugras Dikmen
- 2 Department of Public Health, Faculty of Medicine, Gazi University, 06510 Ankara, Turkey
| | - Cenk Y Bilen
- 3 Department of Urology, Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey
| |
Collapse
|
6
|
Li Y, Estep JA, Karginov FV. Transcriptome-wide Identification and Validation of Interactions between the miRNA Machinery and HuR on mRNA Targets. J Mol Biol 2017; 430:285-296. [PMID: 29273203 DOI: 10.1016/j.jmb.2017.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 12/20/2022]
Abstract
The 3' untranslated region (UTR) of mRNAs is the primary regulatory region that mediates post-transcriptional control by microRNAs and RNA-binding proteins in the cytoplasm. Aside from individual sequence-specific binding and regulation, examples of interaction between these factors at particular 3' UTR sites have emerged. However, the whole picture of such higher-order regulatory modules across the transcriptome is lacking. Here, we investigate the interactions between HuR, a ubiquitous RNA-binding protein, and Ago2, a core effector of the miRNA pathway, at the transcriptome-wide level. Using HITS-CLIP, we map HuR and miRNA binding sites on human 3' UTRs and assess their co-occurrence. In addition, we demonstrate global effects of HuR knockdown on Ago2 occupancy, suggesting a co-regulatory relationship. Focusing on sites of Ago2-HuR overlap, 13 candidates were screened in luciferase reporter assays. Eleven sites showed miRNA-dependent repression, as confirmed in Dicer-null cells. To test for HuR's role in co-regulation, we measured the reporters in HuR KO cells. Three of the miRNA sites demonstrated altered activities, indicating that HuR has an effect on miRNA repression at those sites. Our study presents an efficient search and validation system for studying miRNA-HuR interactions, which expands our understanding of the combinatorial post-transcriptional control of gene expression at the 3' UTR.
Collapse
Affiliation(s)
- Yahui Li
- Department of Molecular, Cell and Systems Biology, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Jason A Estep
- Department of Molecular, Cell and Systems Biology, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Fedor V Karginov
- Department of Molecular, Cell and Systems Biology, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|