1
|
Lian R, Wu G, Xu F, Zhao S, Li M, Wang H, Jia T, Dong Y. Clinical cases series and pathogenesis of Lamb-Shaffer syndrome in China. Orphanet J Rare Dis 2024; 19:281. [PMID: 39075495 PMCID: PMC11285261 DOI: 10.1186/s13023-024-03279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Lamb-Shaffer syndrome (LAMSHF, OMIM: 616803) is a rare neurodevelopmental disorder characterized by global developmental delay, intellectual disability, poor expressive speech, which is attributed to haploinsufficiency by heterozygous variants of SOX5 gene (SRY-Box Transcription Factor 5, HGNC: 11201) on chromosome 12p12. A total of 113 cases have been reported in the world, however, only 3 cases have been reported.in China. Here, we aimed to report novel variants of SOX5 gene and provide examples for clinical diagnosis by reporting the clinical phenotype of a series of Chinese patients with LAMSHF. METHODS This study retrospectively collected the information of families of LAMSHF patients in China. Whole Exome Sequencing (WES) were performed to confirm the diagnosis of 4 children with unexplained developmental delay or epilepsy. A minigene splicing assay was used to verify whether the splice variant affected splicing. Meanwhile, a literature review was conducted to analyze the clinical and genetic characteristics of patients with LAMSHF. RESULTS Three of the LAMSHF patients had a de novo heterozygous mutation in the SOX5 gene respectively, c.290delC (p.Pro97fs*30), chr12:23686019_24048958del, c.1772-1C > A, and the remaining one had a mutation inherited from his father, c.1411C > T (p.Arg471*). The main clinical manifestations of these children were presented with global developmental delays, and one of them also had seizures. And the results of the minigene experiment indicated that the splice variant, c.1772-1C > A, transcribed a novel mRNA product which leaded to the formation of a truncated protein. CONCLUSIONS Through a comprehensive review and analysis of existing literature and this study showed intellectual disability, speech delay and facial dysmorphisms were common clinical manifestation, while the seizures and EEG abnormalities were rare (21/95, 22.16%). Notably, we represent the largest sample size of LAMSHF in Asia that encompasses previously unreported SOX5 gene mutation, and a minigene testing have been conducted to validate the pathogenicity of the c.1772-1C > A splice variant. The research further expands the phenotype and genotype of LAMSHF while offers novel insights for potential pathogenicity of genes locus.
Collapse
Affiliation(s)
- Ruofei Lian
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfu Front Street, Erqi District, Zhengzhou, Henan Province, 450052, China
| | - Gongao Wu
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfu Front Street, Erqi District, Zhengzhou, Henan Province, 450052, China
| | - Falin Xu
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfu Front Street, Erqi District, Zhengzhou, Henan Province, 450052, China
| | - Shichao Zhao
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfu Front Street, Erqi District, Zhengzhou, Henan Province, 450052, China
| | - Mengchun Li
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfu Front Street, Erqi District, Zhengzhou, Henan Province, 450052, China
| | - Haiyan Wang
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfu Front Street, Erqi District, Zhengzhou, Henan Province, 450052, China
| | - Tianming Jia
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfu Front Street, Erqi District, Zhengzhou, Henan Province, 450052, China
| | - Yan Dong
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfu Front Street, Erqi District, Zhengzhou, Henan Province, 450052, China.
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, the Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou, China.
| |
Collapse
|
2
|
Guo S, Liu Y, Xu Y, Gai K, Cong B, Xing K, Qi X, Wang X, Xiao L, Long C, Guo Y, Chen L, Sheng X. Identification of key genes affecting sperm motility in chicken based on whole-transcriptome sequencing. Poult Sci 2023; 102:103135. [PMID: 37856906 PMCID: PMC10590750 DOI: 10.1016/j.psj.2023.103135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Sperm motility is an important index for the evaluation of semen quality. Improving sperm motility is important to improve reproductive performance, promote breeding process, and reduce production cost. However, the molecular mechanisms regulating sperm motility in chickens remain unclear. In this study, histological observation and whole-transcriptome analysis were performed on testicular tissue of chickens with high and low sperm motility. Histological observations showed that roosters with high sperm motility exhibited better semen quality than those with low sperm motility. In addition, the germinal epithelial cells of roosters with low sperm motility were loosely arranged and contained many vacuoles. RNA-seq results revealed the expression of 23,033 mRNAs, 2,893 lncRNAs, and 515 miRNAs in chicken testes. Among them, there were 417 differentially expressed mRNAs (DEmRNAs), 106 differentially expressed lncRNAs (DElncRNAs), and 15 differentially expressed miRNAs (DEmiRNAs) between high and low sperm motility testes. These differentially expressed genes were involved in the G protein-coupled receptor signaling pathway, cilia structure, Wnt signaling, MAPK signaling, GnRH signaling, and mTOR signaling. By integrating the competitive relationships between DEmRNAs, DElncRNAs, and DEmiRNAs, we identified the regulatory pathway of MSTRG.3077.3/MSTRG.9085.1-gga-miR-138-5p-CADM1 and MSTRG.2290.1-gga-miR-142-3p-GNAQ/PPP3CA as crucial in the modulation of chicken sperm motility. This study provides new insights into the function and mechanism of ceRNAs in regulating sperm motility in chicken testes.
Collapse
Affiliation(s)
- Shihao Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yizheng Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yaxi Xu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Kai Gai
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Bailin Cong
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Li Chen
- College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
3
|
Liu X, Liu X, Wang X, Shang K, Li J, Lan Y, Wang J, Li J, Yue B, He M, Fan Z. Multi-omics analysis reveals changes in tryptophan and cholesterol metabolism before and after sexual maturation in captive macaques. BMC Genomics 2023; 24:308. [PMID: 37286946 DOI: 10.1186/s12864-023-09404-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/24/2023] [Indexed: 06/09/2023] Open
Abstract
Rhesus macaques (Macaca mulatta, RMs) are widely used in sexual maturation studies due to their high genetic and physiological similarity to humans. However, judging sexual maturity in captive RMs based on blood physiological indicators, female menstruation, and male ejaculation behavior can be inaccurate. Here, we explored changes in RMs before and after sexual maturation based on multi-omics analysis and identified markers for determining sexual maturity. We found that differentially expressed microbiota, metabolites, and genes before and after sexual maturation showed many potential correlations. Specifically, genes involved in spermatogenesis (TSSK2, HSP90AA1, SOX5, SPAG16, and SPATC1) were up-regulated in male macaques, and significant changes in gene (CD36), metabolites (cholesterol, 7-ketolithocholic acid, and 12-ketolithocholic acid), and microbiota (Lactobacillus) related to cholesterol metabolism were also found, suggesting the sexually mature males have stronger sperm fertility and cholesterol metabolism compared to sexually immature males. In female macaques, most differences before and after sexual maturity were related to tryptophan metabolism, including changes in IDO1, IDO2, IFNGR2, IL1Β, IL10, L-tryptophan, kynurenic acid (KA), indole-3-acetic acid (IAA), indoleacetaldehyde, and Bifidobacteria, indicating that sexually mature females exhibit stronger neuromodulation and intestinal immunity than sexually immature females. Cholesterol metabolism-related changes (CD36, 7-ketolithocholic acid, 12-ketolithocholic acid) were also observed in female and male macaques. Exploring differences before and after sexual maturation through multi-omics, we identified potential biomarkers of sexual maturity in RMs, including Lactobacillus (for males) and Bifidobacterium (for females) valuable for RM breeding and sexual maturation research.
Collapse
Affiliation(s)
- Xu Liu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xuyuan Liu
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xinqi Wang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Ke Shang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jiawei Li
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yue Lan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jiao Wang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jing Li
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610065, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Miao He
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
4
|
Xu H, Li Y, Jiang Y, Wang J, Sun H, Wu W, LV Y, Liu S, Zhai Y, Tian L, Li L, Zhao Z. A Novel Defined Super-Enhancer Associated Gene Signature to Predict Prognosis in Patients With Diffuse Large B-Cell Lymphoma. Front Genet 2022; 13:827840. [PMID: 35774514 PMCID: PMC9237400 DOI: 10.3389/fgene.2022.827840] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous disease that can have profound differences in survival outcomes. A variety of powerful prognostic factors and models have been constructed; however, the development of more accurate prognosis prediction and targeted treatment for DLBCL still faces challenges. An explosion of research on super-enhancer (SE)–associated genes provide the possibility to use in prognostication for cancer patients. Here, we aimed to establish a novel effective prognostic model using SE-associated genes from DLBCL. Methods: A total of 1,105 DLBCL patients from the Gene Expression Omnibus database were included in this study and were divided into a training set and a validation set. A total of 11 SE-associated genes (BCL2, SPAG16, PXK, BTG1, LRRC37A2, EXT1, TGFBR2, ANKRD12, MYCBP2, PAX5, and MYC) were initially screened and identified by the least absolute shrinkage and selection operator (Lasso) penalized Cox regression, univariate and multivariate Cox regression analysis. Finally, a risk score model based on these 11 genes was constructed. Results: Kaplan–Meier (K–M) curves showed that the low-risk group appeared to have better clinical survival outcomes. The excellent performance of the model was determined via time-dependent receiver operating characteristic (ROC) curves. A nomogram based on the polygenic risk score was further established to promote reliable prognostic prediction. This study proposed that the SE-associated-gene risk signature can effectively predict the response to chemotherapy in DLBCL patients. Conclusion: A novel and reliable SE-associated-gene signature that can effectively classify DLBCL patients into high-risk and low-risk groups in terms of overall survival was developed, which may assist clinicians in the treatment of DLBCL.
Collapse
Affiliation(s)
- Hong Xu
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuhang Li
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yanan Jiang
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jinhuan Wang
- Department of Oncology, Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Huimeng Sun
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenqi Wu
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yangyang LV
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Su Liu
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yixin Zhai
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - LinYan Tian
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lanfang Li
- Departments of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- *Correspondence: Lanfang Li, ; Zhigang Zhao,
| | - Zhigang Zhao
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Lanfang Li, ; Zhigang Zhao,
| |
Collapse
|
5
|
Identification of a novel Sox5 transcript in mouse testis. Gene Expr Patterns 2021; 41:119197. [PMID: 34171463 DOI: 10.1016/j.gep.2021.119197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/24/2021] [Accepted: 06/20/2021] [Indexed: 12/20/2022]
Abstract
The transcription factor SOX5 is present in two distinct isoforms in both human and mouse, L-SOX5 and S-SOX5 (long and short isoforms of SOX5). Here, we identified and characterized a novel transcript of Sox5 (S-Sox5 variant) in mouse testis. eCLIP-based amplification of cDNA ends were performed to identify the potential Sox5 mRNA variant. This novel transcript shares a high similarity with the previously reported S-Sox5 in nucleotide sequence, but with a unique stretch of 5'UTR and an additional exon 9. Semi-quantitative PCR analysis revealed both S-Sox5 variant and S-Sox5 express specifically in mouse testis. Both transcripts increase significantly in mouse testis at postnatal day 21, when round spermatids appear. We further made a series of truncated Sox5 constructs and tagged them with eGFP in HeLa cells. In vitro transfection assay identified the N-terminus and the DNA-binding HMG domain are required for the nuclear localization of SOX5. Our results provides a basis for the future study to investigate the biological function of SOX5 in spermatogenesis.
Collapse
|
6
|
Faraji S, Rashki Ghaleno L, Sharafi M, Hezavehei M, Totonchi M, Shahverdi A, Fathi R. Gene Expression Alteration of Sperm-Associated Antigens in Human Cryopreserved Sperm. Biopreserv Biobank 2021; 19:503-510. [PMID: 34009011 DOI: 10.1089/bio.2020.0165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Sperm-associated antigens (SPAGs) are 18 types of proteins, some of which play important roles in various biological functions associated with assisted reproductive technology outcomes, and are consequently important to the success of fertility programs. Despite the favorable outcomes of fecundity rates among male patients with cancer using cryopreserved sperm, the detrimental impact of freezing on cells has been noted in many studies. Cryopreservation has been thought to have adverse effects on sperm quality through disruptions in the expressions of SPAG genes. This study aimed to evaluate the effects of cryopreservation on the expressions of SPAGs genes and their transcriptome alterations in human sperm. Materials and Methods: A total of 12 normal ejaculations were prepared using the density gradient centrifugation procedure, and the motile sperm fractions were divided into fresh and frozen groups. In the latter, sperm samples were mixed with SpermFreeze® solution as the cryoprotectant. The cryovial of sperm suspension was first held just over nitrogen vapor and then dipped inside liquid nitrogen. After 3 days, the specimens were thawed in tap water and incubated for 2 hours for recovery. Then, RNA from sperm was extracted for SPAG gene expression analysis, using real-time polymerase chain reaction. Results: Our findings showed a decrease in expression of SPAG5 (p-value = 0.009), SPAG7 (p-value = 0.004), and SPAG12 (SNU13/NHP2L1; p-value = 0.039) genes during cryopreservation. Discussion: The results indicate that the freezing procedure could negatively affect gene expression and to some extent proteins in human spermatozoa. Conclusion: The alteration of SPAG expression could provide new information on the molecular correlation between cryopreservation and increased failure in intracytoplasmic sperm injection and in vitro fertilization.
Collapse
Affiliation(s)
- Samaneh Faraji
- Department of Molecular and Cellular Biology, Faculty of Basic Science and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran.,Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Leila Rashki Ghaleno
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohsen Sharafi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
7
|
Shahrokhi SZ, Salehi P, Alyasin A, Taghiyar S, Deemeh MR. Asthenozoospermia: Cellular and molecular contributing factors and treatment strategies. Andrologia 2019; 52:e13463. [DOI: 10.1111/and.13463] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/13/2019] [Accepted: 09/22/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Seyedeh Zahra Shahrokhi
- Department of Laboratory Medicine School of Allied Medical Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Peyman Salehi
- Infertility Center Shahid Beheshti Hospital Isfahan Iran
| | | | | | - Mohammad Reza Deemeh
- Andrology Department Nobel Laboratory Isfahan Iran
- Department of Clinical Biochemistry Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
| |
Collapse
|
8
|
The Emerging Role of Sperm-Associated Antigen 6 Gene in the Microtubule Function of Cells and Cancer. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:101-107. [PMID: 31660426 PMCID: PMC6807308 DOI: 10.1016/j.omto.2019.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Accumulated evidence shows that sperm-associated antigen 6 (SPAG6) gene has multiple biological functions. It maintains the normal function of a variety of cells including ciliary/flagellar biogenesis and polarization, neurogenesis, and neuronal migration. Moreover, SPAG6 is found to be critically involved in auditory transduction and the fibroblast life cycle. Furthermore, SPAG6 plays an essential role in immuno-regulation. Notably, SPAG6 has been demonstrated to participate in the occurrence and progression of a variety of human cancers. New evidence shows that SPAG6 gene regulates tumor cell proliferation, apoptosis, invasion, and metastasis. Therefore, in this review, we describe the physiological function and mechanism of SPAG6 in human normal cells and cancer cells. We also highlight that SPAG6 gene may be an effective biomarker for the diagnosis of human cancer. Taken together, targeting SPAG6 could be a novel strategy for the treatment of human diseases including cancer.
Collapse
|
9
|
Fukushi D, Yamada K, Suzuki K, Inaba M, Nomura N, Suzuki Y, Katoh K, Mizuno S, Wakamatsu N. Clinical and genetic characterization of a patient with SOX5 haploinsufficiency caused by a de novo balanced reciprocal translocation. Gene 2018; 655:65-70. [DOI: 10.1016/j.gene.2018.02.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/14/2018] [Accepted: 02/21/2018] [Indexed: 12/13/2022]
|