1
|
Li K, Figarella K, Su X, Kovalchuk Y, Gorzolka J, Neher JJ, Mojtahedi N, Casadei N, Hedrich UBS, Garaschuk O. Endogenous but not sensory-driven activity controls migration, morphogenesis and survival of adult-born juxtaglomerular neurons in the mouse olfactory bulb. Cell Mol Life Sci 2023; 80:98. [PMID: 36932186 PMCID: PMC10023654 DOI: 10.1007/s00018-023-04753-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/06/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023]
Abstract
The development and survival of adult-born neurons are believed to be driven by sensory signaling. Here, in vivo analyses of motility, morphology and Ca2+ signaling, as well as transcriptome analyses of adult-born juxtaglomerular cells with reduced endogenous excitability (via cell-specific overexpression of either Kv1.2 or Kir2.1 K+ channels), revealed a pronounced impairment of migration, morphogenesis, survival, and functional integration of these cells into the mouse olfactory bulb, accompanied by a reduction in cytosolic Ca2+ fluctuations, phosphorylation of CREB and pCREB-mediated gene expression. Moreover, K+ channel overexpression strongly downregulated genes involved in neuronal migration, differentiation, and morphogenesis and upregulated apoptosis-related genes, thus locking adult-born cells in an immature and vulnerable state. Surprisingly, cells deprived of sensory-driven activity developed normally. Together, the data reveal signaling pathways connecting the endogenous intermittent neuronal activity/Ca2+ fluctuations as well as enhanced Kv1.2/Kir2.1 K+ channel function to migration, maturation, and survival of adult-born neurons.
Collapse
Affiliation(s)
- Kaizhen Li
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Katherine Figarella
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany
| | - Xin Su
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany
| | - Yury Kovalchuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany
| | - Jessika Gorzolka
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany
| | - Jonas J Neher
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Nima Mojtahedi
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen, Tübingen, Germany
| | - Ulrike B S Hedrich
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Single-Cell Labeling Strategies to Dissect Neuronal Structures and Local Functions. BIOLOGY 2023; 12:biology12020321. [PMID: 36829594 PMCID: PMC9953318 DOI: 10.3390/biology12020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
The brain network consists of ten billion neurons and is the most complex structure in the universe. Understanding the structure of complex brain networks and neuronal functions is one of the main goals of modern neuroscience. Since the seminal invention of Golgi staining, single-cell labeling methods have been among the most potent approaches for dissecting neuronal structures and neural circuits. Furthermore, the development of sparse single-cell transgenic methods has enabled single-cell gene knockout studies to examine the local functions of various genes in neural circuits and synapses. Here, we review non-transgenic single-cell labeling methods and recent advances in transgenic strategies for sparse single neuronal labeling. These methods and strategies will fundamentally contribute to the understanding of brain structure and function.
Collapse
|
3
|
Therapeutic potential of viral vectors that express venom peptides for neurological diseases. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Okada M, Kozaki I, Honda H. Antidepressive effect of an inward rectifier K+ channel blocker peptide, tertiapin-RQ. PLoS One 2020; 15:e0233815. [PMID: 33186384 PMCID: PMC7665585 DOI: 10.1371/journal.pone.0233815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/13/2020] [Indexed: 11/18/2022] Open
Abstract
Renal outer medullary K+ channel, ROMK (Kir1.1, kcnj1) is expressed in the kidney and brain, but its role in the central nervous system remains unknown. Recent studies suggested an involvement of the ROMK channel in mental diseases. Tertiapin (TPN) is a European honey bee venom peptide and is reported to selectively block the ROMK channel. Here, we have chemically synthesized a series of mutated TPN peptides, including TPN-I8R and -M13Q (TPN-RQ), reported previously, and examined their blocking activity on the ROMK channel. Among 71 peptides tested, TPN-RQ was found to block the ROMK channel most effectively. Whole-cell patch-clamp recordings showed the essential roles of two disulfide bonds and the circular structure for the blockade activity. To examine the central role, we injected TPN-RQ intracerebroventricularly and examined the effects on depression- and anxiety-like behaviors in mice. TPN-RQ showed an antidepressive effect in tail-suspension and forced swim tests. The injection of TPN-RQ also enhanced the anxiety-like behavior in the elevated plus-maze and light/dark box tests and impaired spontaneous motor activities in balance beam and wheel running tests. Administration of TPM-RQ suppressed the anti-c-Fos immunoreactivity in the lateral septum, without affecting immunoreactivity in antidepressant-related nuclei, e.g. the dorsal raphe nucleus and locus coeruleus. TPN-RQ may exert its antidepressive effects through a different mechanism from current drugs.
Collapse
Affiliation(s)
- Masayoshi Okada
- Department of Medical Life Science, College of Life Science, Kurashiki University of Science and the Arts, Kurashiki, Okayama, Japan
- * E-mail:
| | - Ikkou Kozaki
- Department of Biomolecular Engineering, Graduate Schoosl of Engineering, Nagoya University, Nagoya, Japan
| | - Hiroyuki Honda
- Department of Biomolecular Engineering, Graduate Schoosl of Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
5
|
Pore-forming spider venom peptides show cytotoxicity to hyperpolarized cancer cells expressing K+ channels: A lentiviral vector approach. PLoS One 2019; 14:e0215391. [PMID: 30978253 PMCID: PMC6461346 DOI: 10.1371/journal.pone.0215391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/01/2019] [Indexed: 12/03/2022] Open
Abstract
Recent studies demonstrated the upregulation of K+ channels in cancer cells. We have previously found that a pore-forming peptide LaFr26, purified from the venom of the Lachesana sp spider, was selectively incorporated into K+ channel expressing hyperpolarized cells. Therefore, it is expected that this peptide would have selective cytotoxicity to hyperpolarized cancer cells. Here we have tested whether LaFr26 and its related peptide, oxyopinin-2b, are selectively cytotoxic to K+ channel expressing cancer cells. These peptides were cytotoxic to the cells, of which resting membrane potential was hyperpolarized. The vulnerabilities of K+ channel-expressing cell lines correlated with their resting membrane potential. They were cytotoxic to lung cancer cell lines LX22 and BEN, which endogenously expressed K+ current. Contrastingly, these peptides were ineffective to glioblastoma cell lines, U87 and T98G, of which membrane potentials were depolarized. Peptides have a drawback, i.e. poor drug-delivery, that hinders their potential use as medicine. To overcome this drawback, we prepared lentiviral vectors that can express these pore-forming peptides and tested the cytotoxicity to K+ channel expressing cells. The transduction with these lentiviral vectors showed autotoxic activity to the channel expressing cells. Our study provides the basis for a new oncolytic viral therapy.
Collapse
|
6
|
Joseph A, Thuy TTT, Thanh LT, Okada M. Antidepressive and anxiolytic effects of ostruthin, a TREK-1 channel activator. PLoS One 2018; 13:e0201092. [PMID: 30110354 PMCID: PMC6093650 DOI: 10.1371/journal.pone.0201092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/09/2018] [Indexed: 01/02/2023] Open
Abstract
We screened a library of botanical compounds purified from plants of Vietnam for modulators of the activity of a two-pore domain K+ channel, TREK-1, and we identified a hydroxycoumarin-related compound, ostruthin, as an activator of this channel. Ostruthin increased whole-cell TREK-1 channel currents in 293T cells at a low concentration (EC50 = 5.3 μM), and also activity of the TREK-2 channel (EC50 = 3.7 mM). In contrast, ostruthin inhibited other K+ channels, e.g. human ether-à-go-go-related gene (HERG1), inward-rectifier (Kir2.1), voltage-gated (Kv1.4), and two-pore domain (TASK-1) at higher concentrations, without affecting voltage-gated potassium channel (KCNQ1 and 3). We tested the effect of this compound on mouse anxiety- and depression-like behaviors and found anxiolytic activity in the open-field, elevated plus maze, and light/dark box tests. Of note, ostruthin also showed antidepressive effects in the forced swim and tail suspension tests, although previous studies reported that inhibition of TREK-1 channels resulted in an antidepressive effect. The anxiolytic and antidepressive effect was diminished by co-administration of a TREK-1 blocker, amlodipine, indicating the involvement of TREK-1 channels. Administration of ostruthin suppressed the stress-induced increase in anti-c-Fos immunoreactivity in the lateral septum, without affecting immunoreactivity in other mood disorder-related nuclei, e.g. the amygdala, paraventricular nuclei, and dorsal raphe nucleus. Ostruthin may exert its anxiolytic and antidepressive effects through a different mechanism from current drugs.
Collapse
Affiliation(s)
- Ancy Joseph
- Department of Physiology, Kansai Medical University, Osaka, Japan
| | - Tran Thi Thu Thuy
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Le Tat Thanh
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Masayoshi Okada
- Department of Physiology, Kansai Medical University, Osaka, Japan
- Department of Medical Life Science, College of Life Science, Kurashiki University of Science and the Arts, Kurashiki, Okayama, Japan
- * E-mail:
| |
Collapse
|
7
|
Abstract
Hypertension is a prevalent and major health problem, involving a complex integration of different organ systems, including the central nervous system (CNS). The CNS and the hypothalamus in particular are intricately involved in the pathogenesis of hypertension. In fact, evidence supports altered hypothalamic neuronal activity as a major factor contributing to increased sympathetic drive and increased blood pressure. Several mechanisms have been proposed to contribute to hypothalamic-driven sympathetic activity, including altered ion channel function. Ion channels are critical regulators of neuronal excitability and synaptic function in the brain and, thus, important for blood pressure homeostasis regulation. These include sodium channels, voltage-gated calcium channels, and potassium channels being some of them already identified in hypothalamic neurons. This brief review summarizes the hypothalamic ion channels that may be involved in hypertension, highlighting recent findings that suggest that hypothalamic ion channel modulation can affect the central control of blood pressure and, therefore, suggesting future development of interventional strategies designed to treat hypertension.
Collapse
Affiliation(s)
- Vera Geraldes
- Instituto de Fisiologia, Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal
| | - Sérgio Laranjo
- Instituto de Fisiologia, Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal
| | - Isabel Rocha
- Instituto de Fisiologia, Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal. .,Centro Cardiovascular da Universidade de Lisboa, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal.
| |
Collapse
|
8
|
Abstract
The TREK-1 channel, the TWIK-1-related potassium (K+) channel, is a member of a family of 2-pore-domain K+ (K2P) channels, through which background or leak K+ currents occur. An interesting feature of the TREK-1 channel is the run-up of current: i.e. the current through TREK-1 channels spontaneously increases within several minutes of the formation of the whole-cell configuration. To investigate whether intracellular transport is involved in the run-up, we established 293T cell lines stably expressing the TREK-1c channel (K2P2.1) and examined the effects of inhibitors of membrane protein transport, N-methylmaleimide (NEM), brefeldin-A, and an endocytosis inhibitor, pitstop2, on the run-up. The results showing that NEM and brefeldin-A inhibited and pitstop2 facilitated the run-up suggest the involvement of intracellular protein transport. Correspondingly, in cells stably expressing the mCherry-TREK-1 fusion protein, NEM decreased and pitstop2 increased the cell surface localization of the fusion protein. Furthermore, the run-up was inhibited by the intracellular application of a peptide of the C-terminal fragment TREK335–360, corresponding to the interaction site with microtubule-associated protein 2 (Mtap2). This peptide also inhibited the co-immunoprecipitation of Mtap2 with anti-mCherry antibody. The extracellular application of an ezrin inhibitor (NSC668394) also suppressed the run-up and surface localization of the fusion protein. The co-application of these inhibitors abolished the TREK-1c current, suggesting that the additive effects of ezrin and Mtap2 enhance the surface expression of TREK-1c channels and the run-up. These findings clearly showed the involvement of intracellular transport in TREK-1c current run-up and its mechanism.
Collapse
|