1
|
Jo Y, Liang X, Nguyen HH, Choi Y, Choi M, Bae GE, Cho Y, Woo J, Lee HJ. Selective manipulation of excitatory and inhibitory neurons in top-down and bottom-up visual pathways using ultrasound stimulation. Brain Stimul 2025; 18:848-862. [PMID: 40222665 DOI: 10.1016/j.brs.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/27/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025] Open
Abstract
INTRODUCTION Techniques for precise manipulation of neurons in specific neural pathways are crucial for excitatory/inhibitory (E/I) balance and investigation of complex brain circuits. Low-intensity focused ultrasound stimulation (LIFUS) has emerged as a promising tool for noninvasive deep-brain targeting at high spatial resolution. However, there is a lack of studies that extensively investigate the modulation of top-down and bottom-up corticothalamic circuits via selective manipulation of excitatory and inhibitory neurons. Here, a comprehensive methodology using electrophysiological recording and c-Fos staining is employed to demonstrate pulse repetition frequency (PRF)-dependent E/I selectivity of ultrasound stimulation in the top-down and bottom-up corticothalamic pathways of the visual circuit in rodents. MATERIALS AND METHODS Ultrasound stimulation at various PRFs is applied to either the lateral posterior nucleus of the thalamus (LP) or the primary visual cortex (V1), and multi-channel single-unit activity is recorded from the V1 using a silicon probe. RESULTS AND CONCLUSION Our results demonstrate that high-frequency PRFs, particularly at 3 kHz and 1 kHz, are effective at activating the bidirectional corticothalamic visual pathway. In addition, brain region-specific PRFs modulate E/I cortical signals, corticothalamic projections, and synaptic neurotransmission, which is imperative for circuit-specific applications and behavioral studies.
Collapse
Affiliation(s)
- Yehhyun Jo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Xiaojia Liang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hong Hanh Nguyen
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yeonseo Choi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Minji Choi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ga-Eun Bae
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yakdol Cho
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jiwan Woo
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyunjoo Jenny Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; KAIST Institute for Nano Century (KINC), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
2
|
Hu C, Zhang L, Luo G, Yao H, Song X, Liu Z. Clinical efficacy of low-intensity pulsed ultrasound in Parkinson's disease with cognitive impairment. J Neurophysiol 2024; 132:1633-1638. [PMID: 39356073 DOI: 10.1152/jn.00323.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/29/2024] [Accepted: 09/27/2024] [Indexed: 10/03/2024] Open
Abstract
Low-intensity pulsed ultrasound (LIPUS) is a new technique for invasive brain stimulation and modulation that has emerged recently, but the effects in Parkinson's disease with cognitive impairment (PD-CI) have been less observed. In this study, we recruited 56 patients with PD-CI who were continuously treated with LIPUS for 8 wk, and observed the clinical efficacy of LIPUS on patients with PD-CI by comparing with the Sham stimulation continuous treatment. Fifty-six patients with PD-CI were divided into the Sham group (given Sham stimulation on top of conventional medication, n = 28) and the LIPUS group (given LIPUS stimulation on top of conventional medication, n = 28), and both groups continued treatment for 8 wk. Post-treatment efficacy and pre- and post-treatment cognitive function [Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA)], emotional state [Beck Anxiety Inventory (BAI), Beck Depression Inventory (BDI)], quality of life [Unified Parkinson's Disease Rating Scale (UPDRS), 39-item Parkinson's Disease Questionnaire (PDQ-39)], and serologic indices [5-hydroxytryptamine (5-HT), norepinephrine (NE), and dopamine (DA)] were compared. The total effective rate of the LIPUS group was higher versus that of the Sham group. In both groups, MMSE and MoCA scores increased; BDI and BAI scores decreased; UPDRS and PDQ-39 scores were reduced; the levels of 5-HT, NE, and DA were elevated. The aforementioned changes were more pronounced in the LIPUS group (all P < 0.05). The application of LIPUS on PD-CI could ameliorate patients' cognitive function, emotional state, and quality of life, and regulate and optimize neurotransmitter expression levels.NEW & NOTEWORTHY This paper provides some data to inform the potential of LIPUS in the treatment of PD-CI.
Collapse
Affiliation(s)
- Canfang Hu
- Department of Neurology Medical, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, People's Republic of China
| | - Lei Zhang
- Department of Neurology Medical, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, People's Republic of China
| | - Guojun Luo
- Department of Neurology Medical, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, People's Republic of China
| | - Hong Yao
- Department of Ultrasound in Medicine, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, People's Republic of China
| | - Xiayan Song
- Department of Neurology Medical, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, People's Republic of China
| | - Zhen Liu
- Department of Neurology Medical, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Kim S, Kwon N, Hossain MM, Bendig J, Konofagou EE. Displacement and functional ultrasound (fUS) imaging of displacement-guided focused ultrasound (FUS) neuromodulation in mice. Neuroimage 2024; 298:120768. [PMID: 39096984 DOI: 10.1016/j.neuroimage.2024.120768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
Focused ultrasound (FUS) stimulation is a promising neuromodulation technique with the merits of non-invasiveness, high spatial resolution, and deep penetration depth. However, simultaneous imaging of FUS-induced brain tissue displacement and the subsequent effect of FUS stimulation on brain hemodynamics has proven challenging thus far. In addition, earlier studies lack in situ confirmation of targeting except for the magnetic resonance imaging-guided FUS system-based studies. The purpose of this study is 1) to introduce a fully ultrasonic approach to in situ target, modulate neuronal activity, and monitor the resultant neuromodulation effect by respectively leveraging displacement imaging, FUS, and functional ultrasound (fUS) imaging, and 2) to investigate FUS-evoked cerebral blood volume (CBV) response and the relationship between CBV and displacement. We performed displacement imaging on craniotomized mice to confirm the in situ targeting for neuromodulation site. We recorded hemodynamic responses evoked by FUS while fUS imaging revealed an ipsilateral CBV increase that peaks at 4 s post-FUS. We report a stronger hemodynamic activation in the subcortical region than cortical, showing good agreement with a brain elasticity map that can also be obtained using a similar methodology. We observed dose-dependent CBV responses with peak CBV, activated area, and correlation coefficient increasing with the ultrasonic dose. Furthermore, by mapping displacement and hemodynamic activation, we found that displacement colocalized and linearly correlated with CBV increase. The findings presented herein demonstrated that FUS evokes ipsilateral hemodynamic activation in cortical and subcortical depths while the evoked hemodynamic responses colocalize and correlate with FUS-induced displacement. We anticipate that our findings will help consolidate accurate targeting as well as shedding light on one of the mechanisms behind FUS modulation, i.e., how FUS mechanically displaces brain tissue affecting cerebral hemodynamics and thereby its associated connectivity.
Collapse
Affiliation(s)
- Seongyeon Kim
- Department of Biomedical Engineering, Columbia University
| | - Nancy Kwon
- Department of Biomedical Engineering, Columbia University
| | | | - Jonas Bendig
- Department of Biomedical Engineering, Columbia University
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University; Department of Radiology, Columbia University.
| |
Collapse
|
4
|
Kim S, Kwon N, Hossain MM, Bendig J, Konofagou EE. Functional ultrasound (fUS) imaging of displacement-guided focused ultrasound (FUS) neuromodulation in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587355. [PMID: 38617295 PMCID: PMC11014490 DOI: 10.1101/2024.03.29.587355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Focused ultrasound (FUS) stimulation is a promising neuromodulation technique with the merits of non-invasiveness, high spatial resolution, and deep penetration depth. However, simultaneous imaging of FUS-induced brain tissue displacement and the subsequent effect of FUS stimulation on brain hemodynamics has proven challenging thus far. In addition, earlier studies lack in situ confirmation of targeting except for the magnetic resonance imaging-guided FUS system-based studies. The purpose of this study is 1) to introduce a fully ultrasonic approach to in situ target, modulate neuronal activity, and monitor the resultant neuromodulation effect by respectively leveraging displacement imaging, FUS, and functional ultrasound (fUS) imaging, and 2) to investigate FUS-evoked cerebral blood volume (CBV) response and the relationship between CBV and displacement. We performed displacement imaging on craniotomized mice to confirm the in targeting for neuromodulation site. We recorded hemodynamic responses evoked by FUS and fUS revealed an ipsilateral CBV increase that peaks at 4 s post-FUS. We saw a stronger hemodynamic activation in the subcortical region than cortical, showing good agreement with the brain elasticity map that can also be obtained using a similar methodology. We observed dose-dependent CBV response with peak CBV, activated area, and correlation coefficient increasing with ultrasonic dose. Furthermore, by mapping displacement and hemodynamic activation, we found that displacement colocalizes and linearly correlates with CBV increase. The findings presented herein demonstrated that FUS evokes ipsilateral hemodynamic activation in cortical and subcortical depths and the evoked hemodynamic responses colocalized and correlate with FUS-induced displacement. We anticipate that our findings will help consolidate accurate targeting as well as an understanding of how FUS displaces brain tissue and affects cerebral hemodynamics.
Collapse
Affiliation(s)
- Seongyeon Kim
- Department of Biomedical Engineering, Columbia University
| | - Nancy Kwon
- Department of Biomedical Engineering, Columbia University
| | | | - Jonas Bendig
- Department of Biomedical Engineering, Columbia University
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University
- Department of Radiology, Columbia University
| |
Collapse
|
5
|
Lee K, Lee JM, Phan TT, Lee CJ, Park JM, Park J. Ultrasonocoverslip: In-vitro platform for high-throughput assay of cell type-specific neuromodulation with ultra-low-intensity ultrasound stimulation. Brain Stimul 2023; 16:1533-1548. [PMID: 37909109 DOI: 10.1016/j.brs.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 11/02/2023] Open
Abstract
Brain stimulation with ultra-low-intensity ultrasound has rarely been investigated due to the lack of a reliable device to measure small neuronal signal changes made by the ultra-low intensity range. We propose Ultrasonocoverslip, an ultrasound-transducer-integrated-glass-coverslip that determines the minimum intensity for brain cell activation. Brain cells can be cultured directly on Ultrasonocoverslip to simultaneously deliver uniform ultrasonic pressure to hundreds of cells with real-time monitoring of cellular responses using fluorescence microscopy and single-cell electrophysiology. The sensitivity for detecting small responses to ultra-low-intensity ultrasound can be improved by averaging simultaneously obtained responses. Acoustic absorbers can be placed under Ultrasonocoverslip, and stimuli distortions are substantially reduced to precisely deliver user-intended acoustic stimulations. With the proposed device, we discover the lowest acoustic threshold to induce reliable neuronal excitation releasing glutamate. Furthermore, mechanistic studies on the device show that the ultra-low-intensity ultrasound stimulation induces cell type-specific neuromodulation by activating astrocyte-mediated neuronal excitation without direct neuronal involvement. The performance of ultra-low-intensity stimulation is validated by in vivo experiments demonstrating improved safety and specificity in motor modulation of tail movement compared to that with supra-watt-intensity.
Collapse
Affiliation(s)
- Keunhyung Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung Moo Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Tien Thuy Phan
- IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Joo Min Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea; IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Jinhyoung Park
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
6
|
Li Z, Chen R, Liu D, Wang X, Yuan W. Effect of low-intensity transcranial ultrasound stimulation on theta and gamma oscillations in the mouse hippocampal CA1. Front Psychiatry 2023; 14:1151351. [PMID: 37151980 PMCID: PMC10157252 DOI: 10.3389/fpsyt.2023.1151351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Previous studies have demonstrated that low-intensity transcranial ultrasound stimulation (TUS) can eliminate hippocampal neural activity. However, until now, it has remained unclear how ultrasound modulates theta and gamma oscillations in the hippocampus under different behavioral states. In this study, we used ultrasound to stimulate the CA1 in mice in anesthesia, awake and running states, and we simultaneously recorded the local field potential of the stimulation location. We analyzed the power spectrum, phase-amplitude coupling (PAC) of theta and gamma oscillations, and their relationship with ultrasound intensity. The results showed that (i) TUS significantly enhanced the absolute power of theta and gamma oscillations under anesthesia and in the awake state. (ii) The PAC strength between theta and gamma oscillations is significantly enhanced under the anesthesia and awake states but is weakened under the running state with TUS. (iii) Under anesthesia, the relative power of theta decreases and that of gamma increases as ultrasound intensity increases, and the result under the awake state is opposite that under the anesthesia state. (iv) The PAC index between theta and gamma increases as ultrasound intensity increases under the anesthesia and awake states. The above results demonstrate that TUS can modulate theta and gamma oscillations in the CA1 and that the modulation effect depends on behavioral states. Our study provides guidance for the application of ultrasound in modulating hippocampal function.
Collapse
Affiliation(s)
- Zhen Li
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Rong Chen
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dachuan Liu
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xizhe Wang
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Yuan
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Noureddine R, Surget A, Iazourene T, Audebrand M, Eliwa H, Brizard B, Nassereddine M, Mofid Y, Charara J, Bouakaz A. Guidelines for successful motor cortex ultrasonic neurostimulation in mice. ULTRASONICS 2023; 128:106888. [PMID: 36402114 DOI: 10.1016/j.ultras.2022.106888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 10/04/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Ultrasound neurostimulation (USNS) is a non-invasive neuromodulation technique that might hold promise for treating neuropsychiatric disorders with regards to its noninvasiveness, penetration depth, and high resolution. OBJECTIVE We sought in this experimental study to provide detailed and optimized protocol and methodology for a successful ultrasonic neurostimulation of the Primary Motor Cortex (M1) in mice addressed to young researchers/students beginning their research in the field of ultrasonic neurostimulation and encountering practical challenges. METHODS A 500 kHz single-element transducer was used for stimulating the primary motor cortex at different acoustic pressures in C57BL/6 mice at various anesthesia levels. To further illustrate the effect of anesthesia, real time visual observations of motor responses validated with video recordings as well as electromyography were employed for evaluating the success and reliability of the stimulations. RESULTS Detailed experimental procedure for a successful stimulations including targeting and anesthesia is presented. Our study demonstrates that we can achieve high stimulation success rates (91 % to 100 %) at acoustic pressures ranging from 330 kPa to 550 kPa at anesthesia washout period. CONCLUSIONS This study shows a reliable and detailed methodology for successful USNS in mice addressed to beginners in ultrasonic brain stimulation topic. We showed an effective USNS protocol. We offered a simple and consistent non-invasive technique for locating and targeting brain zones. Moreover, we illustrated the acoustic pressure and stimulation success relationship and focused on the effect of anesthesia level for successful stimulation.
Collapse
Affiliation(s)
- Rasha Noureddine
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France; Lebanese University, Doctoral School of Science & Technology, Hadath, Lebanon
| | | | - Tarik Iazourene
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Marie Audebrand
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Hoda Eliwa
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France; Department of Cell Biology, Medical Research Institute, Alexandria University, Egypt
| | - Bruno Brizard
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Mohamad Nassereddine
- Lebanese University, Faculty of Sciences I - Department of Physics - Electronics, Hadath, Lebanon
| | - Yassine Mofid
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Jamal Charara
- Lebanese University, Faculty of Sciences I - Department of Physics - Electronics, Hadath, Lebanon
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| |
Collapse
|
8
|
Zhong Y, Wang Y, He Z, Lin Z, Pang N, Niu L, Guo Y, Pan M, Meng L. Closed-loop wearable ultrasound deep brain stimulation system based on EEG in mice. J Neural Eng 2021; 18. [PMID: 34388739 DOI: 10.1088/1741-2552/ac1d5c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/13/2021] [Indexed: 01/19/2023]
Abstract
Objective. Epilepsy is one of the most common severe brain disorders. Ultrasound deep brain stimulation (UDBS) has shown a potential capability to suppress seizures. However, because seizures occur sporadically, it is necessary to develop a closed-loop system to suppress them. Therefore, we developed a closed-loop wearable UDBS system that delivers ultrasound to the hippocampus to suppress epileptic seizures.Approach.Mice were intraperitoneally injected with 10 mg kg-1kainic acid and divided into sham and UDBS groups. Epileptic seizures were detected by applying both long short-term memory (LSTM) and bidirectional LSTM (BILSTM) networks according to EEG signal characteristics. When epileptic seizures were detected, the closed-loop UDBS system automatically activated a trigger switch to stimulate the hippocampus for 10 min and continuously record EEG signals until 20 min after ultrasonic stimulation. EEG signals were analyzed using the MATLAB software. After EEG recording, we observed the survival rate of the experimental mice for 72 h.Main results.The BiLSTM network was found to have preferable classification performance over the LSTM network. The closed-loop UDBS system with BiLSTM could automatically detect epileptic seizures using EEG signals and effectively reduce epileptic EEG power spectral density and seizure duration by 10.73%, eventually improving the survival rate of early epileptic mice from 67.57% in the sham group to 88.89% in the UDBS group.Significance.The closed-loop UDBS system developed in this study could be an effective clinical tool for the control of epilepsy.
Collapse
Affiliation(s)
- Yongsheng Zhong
- Neurosurgery Center, Department of Functional Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China.,Institute of Biomedical and Health engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, People's Republic of China
| | - Yibo Wang
- Institute of Biomedical and Health engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, People's Republic of China
| | - Zhuoyi He
- Neurosurgery Center, Department of Functional Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - Zhengrong Lin
- Institute of Biomedical and Health engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, People's Republic of China
| | - Na Pang
- Institute of Biomedical and Health engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, People's Republic of China
| | - Lili Niu
- Institute of Biomedical and Health engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, People's Republic of China
| | - Yanwu Guo
- Neurosurgery Center, Department of Functional Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - Min Pan
- Department of Ultrasound, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen 518034, People's Republic of China
| | - Long Meng
- Institute of Biomedical and Health engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, People's Republic of China
| |
Collapse
|
9
|
Wang X, Zhang Y, Zhang K, Yuan Y. Influence of behavioral state on the neuromodulatory effect of low-intensity transcranial ultrasound stimulation on hippocampal CA1 in mouse. Neuroimage 2021; 241:118441. [PMID: 34339832 DOI: 10.1016/j.neuroimage.2021.118441] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/25/2021] [Accepted: 07/29/2021] [Indexed: 01/21/2023] Open
Abstract
In process of brain stimulation, the influence of any external stimulus depends on the features of the stimulus and the initial state of the brain. Understanding the state-dependence of brain stimulation is very important. However, it remains unclear whether neural activity induced by ultrasound stimulation is modulated by the behavioral state. We used low-intensity focused ultrasound to stimulate the hippocampal CA1 regions of mice with different behavioral states (anesthesia, awake, and running) and recorded the neural activity in the target area before and after stimulation. We found the following: (1) there were different spike firing rates and response delays computed as the time to reach peak for all behavioral states; (2) the behavioral state significantly modulates the spike firing rate linearly increased with an increase in ultrasound intensity under different behavioral states; (3) the mean power of local field potential induced by TUS significantly increased under anesthesia and awake states; (4) ultrasound stimulation enhanced phase-locking between spike and ripple oscillation under anesthesia state. These results suggest that ultrasound stimulation-induced neural activity is modulated by the behavioral state. Our study has great potential benefits for the application of ultrasound stimulation in neuroscience.
Collapse
Affiliation(s)
- Xingran Wang
- School of Electrical Engineering, Yanshan University, No.438, Hebei Street, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Yiyao Zhang
- Neuroscience Institute, NYU Langone Health, New York 10016, USA
| | - Kaiqing Zhang
- School of Electrical Engineering, Yanshan University, No.438, Hebei Street, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, No.438, Hebei Street, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
10
|
Yuan Y, Zhang K, Zhang Y, Yan J, Wang Z, Wang X, Liu M, Li X. The Effect of Low-Intensity Transcranial Ultrasound Stimulation on Neural Oscillation and Hemodynamics in the Mouse Visual Cortex Depends on Anesthesia Level and Ultrasound Intensity. IEEE Trans Biomed Eng 2021; 68:1619-1626. [PMID: 33434119 DOI: 10.1109/tbme.2021.3050797] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Low-intensity transcranial ultrasound stimulation (TUS) can induce motor responses, neural oscillation and hemodynamic responses. Early studies demonstrated that the motor responses evoked by TUS critically depend on anesthesia levels and ultrasound intensity. However, the neural mechanism of how anesthesia levels and ultrasound intensity influence on brain responses during TUS has never been explored yet. To investigate this question, we applied different anesthesia levels and ultrasound intensities on the visual cortex of mouse and observed neural oscillation change and hemodynamic responses during TUS. METHODS low-intensity ultrasound was delivered to mouse visual cortex under different anesthesia levels, and simultaneous recordings for local field potentials (LFPs) and hemodynamic responses were carried out to measure and analyze the changes quantitatively. RESULTS (i) The change of mean amplitude and mean relative power of sharp wave-ripple (SPW-R) in LFPs induced by TUS decreased as the anesthesia level increased (from awake to 1.5% isoflurane). (ii) The hemodynamic response level induced by TUS decreased as the anesthesia level increased (from awake to1.5% isoflurane). (iii) The coupling strength between neural activities and hemodynamic responses was dependent on anesthesia level. (iv) The neural activities and hemodynamic responses increase as a function of ultrasound intensity. CONCLUSION These results support that the neural activities and hemodynamic response of the mouse visual cortex induced by TUS are related to the anesthesia level and ultrasound intensity. SIGNIFICANCE This finding suggests that careful maintenance of anesthesia level and ultrasound intensity is required to acquire accurate LFP and hemodynamic data from samples with TUS.
Collapse
|
11
|
Yoon K, Lee W, Lee JE, Xu L, Croce P, Foley L, Yoo SS. Effects of sonication parameters on transcranial focused ultrasound brain stimulation in an ovine model. PLoS One 2019; 14:e0224311. [PMID: 31648261 PMCID: PMC6812789 DOI: 10.1371/journal.pone.0224311] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023] Open
Abstract
Low-intensity focused ultrasound (FUS) has significant potential as a non-invasive brain stimulation modality and novel technique for functional brain mapping, particularly with its advantage of greater spatial selectivity and depth penetration compared to existing non-invasive brain stimulation techniques. As previous studies, primarily carried out in small animals, have demonstrated that sonication parameters affect the stimulation efficiency, further investigation in large animals is necessary to translate this technique into clinical practice. In the present study, we examined the effects of sonication parameters on the transient modification of excitability of cortical and thalamic areas in an ovine model. Guided by anatomical and functional neuroimaging data specific to each animal, 250 kHz FUS was transcranially applied to the primary sensorimotor area associated with the right hind limb and its thalamic projection in sheep (n = 10) across multiple sessions using various combinations of sonication parameters. The degree of effect from FUS was assessed through electrophysiological responses, through analysis of electromyogram and electroencephalographic somatosensory evoked potentials for evaluation of excitatory and suppressive effects, respectively. We found that the modulatory effects were transient and reversible, with specific sonication parameters outperforming others in modulating regional brain activity. Magnetic resonance imaging and histological analysis conducted at different time points after the final sonication session, as well as behavioral observations, showed that repeated exposure to FUS did not damage the underlying brain tissue. Our results suggest that FUS-mediated, non-invasive, region-specific bimodal neuromodulation can be safely achieved in an ovine model, indicating its potential for translation into human studies.
Collapse
Affiliation(s)
- Kyungho Yoon
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wonhye Lee
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ji Eun Lee
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Linda Xu
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Phillip Croce
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lori Foley
- Translational Discovery Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
12
|
Wang H, Zhou X, Cui D, Liu R, Tan R, Wang X, Liu Z, Yin T. Comparative Study of Transcranial Magneto-Acoustic Stimulation and Transcranial Ultrasound Stimulation of Motor Cortex. Front Behav Neurosci 2019; 13:241. [PMID: 31680896 PMCID: PMC6798265 DOI: 10.3389/fnbeh.2019.00241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/24/2019] [Indexed: 11/13/2022] Open
Abstract
Transcranial ultrasound stimulation (TUS; f < 1 MHz) is a promising approach to non-invasive brain stimulation. Transcranial magneto-acoustic stimulation (TMAS) is a technique of neuromodulation for regulating neuroelectric-activity utilizing a magnetic-acoustic coupling electric field generated by low-intensity ultrasound and magnetic fields. However, both techniques use the physical means of low-intensity ultrasound and can induce the response of the motor cortex. Therefore, it is necessary to distinguish the difference between the two techniques in the regulation of neural activity. This study is the first to quantify the amplitude and response latency of motor cortical electromyography (EMG) in mice induced by TMAS and TUS. The amplitude of EMG (2.73 ± 0.32 mV) induced by TMAS was significantly greater than that induced by TUS (2.22 ± 0.33 mV), and the EMG response latency induced by TMAS (101.25 ± 88.4 ms) was significantly lower than that induced by TUS (181.25 ± 158.4 ms). This shows that TMAS can shorten the response time of nerve activity and enhance the neuromodulation effect of TUS on the motor cortex. This provides a theoretical basis for revealing the physiological mechanisms of TMAS and the treatment of neuropsychiatric diseases using it.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhipeng Liu
- Peking Union Medical College, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Tianjin, China
| | - Tao Yin
- Peking Union Medical College, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Tianjin, China
| |
Collapse
|