1
|
Powers J, Zhang X, Reyes AV, Zavaliev R, Ochakovski R, Xu SL, Dong X. Next-generation mapping of the salicylic acid signaling hub and transcriptional cascade. MOLECULAR PLANT 2024; 17:1558-1572. [PMID: 39180213 PMCID: PMC11540436 DOI: 10.1016/j.molp.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
For over 60 years, salicylic acid (SA) has been known as a plant immune signal required for basal and systemic acquired resistance. SA activates these immune responses by reprogramming ∼20% of the transcriptome through NPR1. However, components in the NPR1 signaling hub, which appears as nuclear condensates, and the NPR1 signaling cascade have remained elusive due to difficulties in studying this transcriptional cofactor, whose chromatin association is indirect and likely transient. To overcome this challenge, we applied TurboID to divulge the NPR1 proxiome, which detected almost all known NPR1 interactors as well as new components of transcription-related complexes. Testing of new components showed that chromatin remodeling and histone demethylation contribute to SA-induced resistance. Globally, the NPR1 proxiome has a striking similarity to the proxiome of GBPL3 that is involved in SA synthesis, except for associated transcription factors (TFs), suggesting that common regulatory modules are recruited to reprogram specific transcriptomes by transcriptional cofactors, like NPR1, through binding to unique TFs. Stepwise green fluorescent protein-tagged factor cleavage under target and release using nuclease (greenCUT&RUN) analyses showed that, upon SA induction, NPR1 initiates the transcriptional cascade primarily through association with TGACG-binding TFs to induce expression of secondary TFs, predominantly WRKYs. Further, WRKY54 and WRKY70 were identified to play a major role in inducing immune-output genes without interacting with NPR1 at the chromatin. Moreover, loss of condensate formation function of NPR1 decreases its chromatin association and transcriptional activity, indicating the importance of condensates in organizing the NPR1 signaling hub and initiating the transcriptional cascade. Collectively, this study demonstrates how combinatorial applications of TurboID and stepwise greenCUT&RUN transcend traditional genetic methods to globally map signaling hubs and transcriptional cascades for in-depth explorations.
Collapse
Affiliation(s)
- Jordan Powers
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Xing Zhang
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Andres V Reyes
- Carnegie Institute for Science, Stanford University, Stanford, CA 94305, USA
| | - Raul Zavaliev
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Roni Ochakovski
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Shou-Ling Xu
- Carnegie Institute for Science, Stanford University, Stanford, CA 94305, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
2
|
Jiao Y, Nigam D, Barry K, Daum C, Yoshinaga Y, Lipzen A, Khan A, Parasa SP, Wei S, Lu Z, Tello-Ruiz MK, Dhiman P, Burow G, Hayes C, Chen J, Brandizzi F, Mortimer J, Ware D, Xin Z. A large sequenced mutant library - valuable reverse genetic resource that covers 98% of sorghum genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1543-1557. [PMID: 38100514 DOI: 10.1111/tpj.16582] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/08/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Mutant populations are crucial for functional genomics and discovering novel traits for crop breeding. Sorghum, a drought and heat-tolerant C4 species, requires a vast, large-scale, annotated, and sequenced mutant resource to enhance crop improvement through functional genomics research. Here, we report a sorghum large-scale sequenced mutant population with 9.5 million ethyl methane sulfonate (EMS)-induced mutations that covered 98% of sorghum's annotated genes using inbred line BTx623. Remarkably, a total of 610 320 mutations within the promoter and enhancer regions of 18 000 and 11 790 genes, respectively, can be leveraged for novel research of cis-regulatory elements. A comparison of the distribution of mutations in the large-scale mutant library and sorghum association panel (SAP) provides insights into the influence of selection. EMS-induced mutations appeared to be random across different regions of the genome without significant enrichment in different sections of a gene, including the 5' UTR, gene body, and 3'-UTR. In contrast, there were low variation density in the coding and UTR regions in the SAP. Based on the Ka /Ks value, the mutant library (~1) experienced little selection, unlike the SAP (0.40), which has been strongly selected through breeding. All mutation data are publicly searchable through SorbMutDB (https://www.depts.ttu.edu/igcast/sorbmutdb.php) and SorghumBase (https://sorghumbase.org/). This current large-scale sequence-indexed sorghum mutant population is a crucial resource that enriched the sorghum gene pool with novel diversity and a highly valuable tool for the Poaceae family, that will advance plant biology research and crop breeding.
Collapse
Affiliation(s)
- Yinping Jiao
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Deepti Nigam
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Kerrie Barry
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Chris Daum
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Yuko Yoshinaga
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Anna Lipzen
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Adil Khan
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Sai-Praneeth Parasa
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Sharon Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | - Zhenyuan Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | | | - Pallavi Dhiman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Gloria Burow
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, Texas, 79424, USA
| | - Chad Hayes
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, Texas, 79424, USA
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, Texas, 79424, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Jenny Mortimer
- Joint BioEnergy Institute, Emeryville, California, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California, 94720, USA
- School of Agriculture, Food and Wine, Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
- USDA-ARS NAA Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, Ithaca, New York, 14853, USA
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, Texas, 79424, USA
| |
Collapse
|
3
|
Powers J, Zhang X, Reyes AV, Zavaliev R, Xu SL, Dong X. Next-generation mapping of the salicylic acid signaling hub and transcriptional cascade. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574047. [PMID: 38260692 PMCID: PMC10802274 DOI: 10.1101/2024.01.03.574047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
For over 60 years, salicylic acid (SA) has been known as a plant immune signal required for both basal and systemic acquired resistance (SAR). SA activates these immune responses by reprogramming up to 20% of the transcriptome through the function of NPR1. However, components in the NPR1-signaling hub, which appears as nuclear condensates, and the NPR1- signaling cascade remained elusive due to difficulties in studying transcriptional cofactors whose chromatin associations are often indirect and transient. To overcome this challenge, we applied TurboID to divulge the NPR1-proxiome, which detected almost all known NPR1-interactors as well as new components of transcription-related complexes. Testing of new components showed that chromatin remodeling and histone demethylation contribute to SA-induced resistance. Globally, NPR1-proxiome shares a striking similarity to GBPL3-proxiome involved in SA synthesis, except associated transcription factors (TFs), suggesting that common regulatory modules are recruited to reprogram specific transcriptomes by transcriptional cofactors, like NPR1, through binding to unique TFs. Stepwise greenCUT&RUN analyses showed that, upon SA-induction, NPR1 initiates the transcriptional cascade primarily through association with TGA TFs to induce expression of secondary TFs, predominantly WRKYs. WRKY54 and WRKY70 then play a major role in inducing immune-output genes without interacting with NPR1 at the chromatin. Moreover, a loss of NPR1 condensate formation decreases its chromatin-association and transcriptional activity, indicating the importance of condensates in organizing the NPR1- signaling hub and initiating the transcriptional cascade. This study demonstrates how combinatorial applications of TurboID and stepwise greenCUT&RUN transcend traditional genetic methods to globally map signaling hubs and transcriptional cascades.
Collapse
Affiliation(s)
- Jordan Powers
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Xing Zhang
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Andres V. Reyes
- Carnegie Institute for Science, Stanford University, Stanford, CA 94305, USA
| | - Raul Zavaliev
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Shou-Ling Xu
- Carnegie Institute for Science, Stanford University, Stanford, CA 94305, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| |
Collapse
|
4
|
Nye DG, Irigoyen ML, Perez-Fons L, Bohorquez-Chaux A, Hur M, Medina-Yerena D, Lopez-Lavalle LAB, Fraser PD, Walling LL. Integrative transcriptomics reveals association of abscisic acid and lignin pathways with cassava whitefly resistance. BMC PLANT BIOLOGY 2023; 23:657. [PMID: 38124051 PMCID: PMC10731783 DOI: 10.1186/s12870-023-04607-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Whiteflies are a global threat to crop yields, including the African subsistence crop cassava (Manihot esculenta). Outbreaks of superabundant whitefly populations throughout Eastern and Central Africa in recent years have dramatically increased the pressures of whitefly feeding and virus transmission on cassava. Whitefly-transmitted viral diseases threaten the food security of hundreds of millions of African farmers, highlighting the need for developing and deploying whitefly-resistant cassava. However, plant resistance to whiteflies remains largely poorly characterized at the genetic and molecular levels. Knowledge of cassava-defense programs also remains incomplete, limiting characterization of whitefly-resistance mechanisms. To better understand the genetic basis of whitefly resistance in cassava, we define the defense hormone- and Aleurotrachelus socialis (whitefly)-responsive transcriptome of whitefly-susceptible (COL2246) and whitefly-resistant (ECU72) cassava using RNA-seq. For broader comparison, hormone-responsive transcriptomes of Arabidopsis thaliana were also generated. RESULTS Whitefly infestation, salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and abscisic acid (ABA) transcriptome responses of ECU72 and COL2246 were defined and analyzed. Strikingly, SA responses were largely reciprocal between the two cassava genotypes and we suggest candidate regulators. While susceptibility was associated with SA in COL2246, resistance to whitefly in ECU72 was associated with ABA, with SA-ABA antagonism observed. This was evidenced by expression of genes within the SA and ABA pathways and hormone levels during A. socialis infestation. Gene-enrichment analyses of whitefly- and hormone-responsive genes suggest the importance of fast-acting cell wall defenses (e.g., elicitor recognition, lignin biosynthesis) during early infestation stages in whitefly-resistant ECU72. A surge of ineffective immune and SA responses characterized the whitefly-susceptible COL2246's response to late-stage nymphs. Lastly, in comparison with the model plant Arabidopsis, cassava's hormone-responsive genes showed striking divergence in expression. CONCLUSIONS This study provides the first characterization of cassava's global transcriptome responses to whitefly infestation and defense hormone treatment. Our analyses of ECU72 and COL2246 uncovered possible whitefly resistance/susceptibility mechanisms in cassava. Comparative analysis of cassava and Arabidopsis demonstrated that defense programs in Arabidopsis may not always mirror those in crop species. More broadly, our hormone-responsive transcriptomes will also provide a baseline for the cassava community to better understand global responses to other yield-limiting pests/pathogens.
Collapse
Affiliation(s)
- Danielle G Nye
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Maria L Irigoyen
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Laura Perez-Fons
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Adriana Bohorquez-Chaux
- Alliance Bioversity International and International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Manhoi Hur
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
- Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Diana Medina-Yerena
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Luis Augusto Becerra Lopez-Lavalle
- Alliance Bioversity International and International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Present Address: International Center of Biosaline Agriculture, Dubai, United Arab Emirates
| | - Paul D Fraser
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Linda L Walling
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA.
- Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
5
|
Brooks EG, Elorriaga E, Liu Y, Duduit JR, Yuan G, Tsai CJ, Tuskan GA, Ranney TG, Yang X, Liu W. Plant Promoters and Terminators for High-Precision Bioengineering. BIODESIGN RESEARCH 2023; 5:0013. [PMID: 37849460 PMCID: PMC10328392 DOI: 10.34133/bdr.0013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/12/2023] [Indexed: 10/19/2023] Open
Abstract
High-precision bioengineering and synthetic biology require fine-tuning gene expression at both transcriptional and posttranscriptional levels. Gene transcription is tightly regulated by promoters and terminators. Promoters determine the timing, tissues and cells, and levels of the expression of genes. Terminators mediate transcription termination of genes and affect mRNA levels posttranscriptionally, e.g., the 3'-end processing, stability, translation efficiency, and nuclear to cytoplasmic export of mRNAs. The promoter and terminator combination affects gene expression. In the present article, we review the function and features of plant core promoters, proximal and distal promoters, and terminators, and their effects on and benchmarking strategies for regulating gene expression.
Collapse
Affiliation(s)
- Emily G. Brooks
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Estefania Elorriaga
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - James R. Duduit
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chung-Jui Tsai
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Warnell School of Forestry and Natural Resource, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Thomas G. Ranney
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC 28759, USA
| | - Xiaohan Yang
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Warnell School of Forestry and Natural Resource, University of Georgia, Athens, GA 30602, USA
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
6
|
Wang Y, Yin H, Long Z, Zhu W, Yin J, Song X, Li C. DhMYB2 and DhbHLH1 regulates anthocyanin accumulation via activation of late biosynthesis genes in Phalaenopsis-type Dendrobium. FRONTIERS IN PLANT SCIENCE 2022; 13:1046134. [PMID: 36457536 PMCID: PMC9705975 DOI: 10.3389/fpls.2022.1046134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Phalaenopsis-type Dendrobium is a popular orchid with good ornamental and market value. Despite their popularity, molecular regulation of anthocyanin biosynthesis during flower development remains poorly understood. In this study, we systematically investigated the regulatory roles of the transcription factors DhMYB2 and DhbHLH1 in anthocyanins biosynthesis. Gene expression analyses indicated that both DhMYB2 and DhbHLH1 are specifically expressed in flowers and have similar expression patterns, showing high expression in purple floral tissues with anthocyanin accumulation. Transcriptomic analyses showed 29 differentially expressed genes corresponding to eight enzymes in anthocyanin biosynthesis pathway have similar expression patterns to DhMYB2 and DhbHLH1, with higher expression in the purple lips than the yellow petals and sepals of Dendrobium 'Suriya Gold'. Further gene expression analyses and Pearson correlation matrix analyses of Dendrobium hybrid progenies revealed expression profiles of DhMYB2 and DhbHLH1 were positively correlated with the structural genes DhF3'H1, DhF3'5'H2, DhDFR, DhANS, and DhGT4. Yeast one-hybrid and dual-luciferase reporter assays revealed DhMYB2 and DhbHLH1 can bind to promoter regions of DhF3'H1, DhF3'5'H2, DhDFR, DhANS and DhGT4, suggesting a role as transcriptional activators. These results provide new evidence of the molecular mechanisms of DhMYB2 and DhbHLH1 in anthocyanin biosynthesis in Phalaenopsis-type Dendrobium.
Collapse
Affiliation(s)
- Yachen Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, School of Life Sciences, Hainan University, Haikou, China
| | - Hantai Yin
- Haikou Experimental Station, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, China
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou, China
| | - Zongxing Long
- Haikou Experimental Station, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, China
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou, China
| | - Wenjuan Zhu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, School of Life Sciences, Hainan University, Haikou, China
| | - Junmei Yin
- Haikou Experimental Station, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, China
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou, China
| | - Xiqiang Song
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, School of Life Sciences, Hainan University, Haikou, China
| | - Chonghui Li
- Haikou Experimental Station, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, China
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou, China
| |
Collapse
|
7
|
Srivastava S, Pandey SP, Singh P, Pradhan L, Pande V, Sane AP. Early wound-responsive cues regulate the expression of WRKY family genes in chickpea differently under wounded and unwounded conditions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:719-735. [PMID: 35592484 PMCID: PMC9110599 DOI: 10.1007/s12298-022-01170-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/05/2022] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Insect wounding activates a large number of signals that function coordinately to modulate gene expression and elicit defense responses. How each signal influences gene expression in absence of wounding is also important since it can shed light on changes occurring during the shift to wound response. Using simulated Helicoverpa armigera herbivory on chickpea, we had identified at least 14 WRKY genes that showed 5-50 fold increase in expression within 5-20 min of wounding. Our studies show that contrary to their collective effects upon wounding, individual chemical cues show distinct and often opposite effects in absence of wounding. In particular, jasmonic acid, a key early defense hormone, reduced transcripts of most WRKY genes by > 50% upon treatment of unwounded chickpea leaves as did salicylic acid. Neomycin (a JA biosynthesis inhibitor) delayed and also reduced early wound expression. H2O2 transiently activated several genes within 5-20 min by 5-8 fold while ethylene activated only a few WRKY genes by 2-5 fold. The summation of the individual effects of these chemical cues does not explain the strong increase in transcript levels upon wounding. Detailed studies of a 931 nt region of the CaWRKY41 promoter, show strong wound-responsive GUS expression in Arabidopsis even in presence of neomycin. Surprisingly its expression was lost in the coi1, ein2 and myc2myc3myc4 mutant backgrounds suggesting the requirement of intact ethylene and JA signaling pathways (dependent on MYCs) for wound-responsive expression. The studies highlight the complexity of gene regulation by different chemical cues in the presence and absence of wounding. SUPPLEMENTARY INFORMATION The online version contains Supplementary material available at 10.1007/s12298-022-01170-y.
Collapse
Affiliation(s)
- Shruti Srivastava
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Department of Biotechnology, Kumaun University, Nainital, 26300 India
| | - Saurabh Prakash Pandey
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Priya Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Laxmipriya Pradhan
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, 26300 India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
8
|
Pardal AJ, Piquerez SJM, Dominguez-Ferreras A, Frungillo L, Mastorakis E, Reilly E, Latrasse D, Concia L, Gimenez-Ibanez S, Spoel SH, Benhamed M, Ntoukakis V. Immunity onset alters plant chromatin and utilizes EDA16 to regulate oxidative homeostasis. PLoS Pathog 2021; 17:e1009572. [PMID: 34015058 PMCID: PMC8171942 DOI: 10.1371/journal.ppat.1009572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 06/02/2021] [Accepted: 04/19/2021] [Indexed: 01/23/2023] Open
Abstract
Perception of microbes by plants leads to dynamic reprogramming of the transcriptome, which is essential for plant health. The appropriate amplitude of this transcriptional response can be regulated at multiple levels, including chromatin. However, the mechanisms underlying the interplay between chromatin remodeling and transcription dynamics upon activation of plant immunity remain poorly understood. Here, we present evidence that activation of plant immunity by bacteria leads to nucleosome repositioning, which correlates with altered transcription. Nucleosome remodeling follows distinct patterns of nucleosome repositioning at different loci. Using a reverse genetic screen, we identify multiple chromatin remodeling ATPases with previously undescribed roles in immunity, including EMBRYO SAC DEVELOPMENT ARREST 16, EDA16. Functional characterization of the immune-inducible chromatin remodeling ATPase EDA16 revealed a mechanism to negatively regulate immunity activation and limit changes in redox homeostasis. Our transcriptomic data combined with MNase-seq data for EDA16 functional knock-out and over-expressor mutants show that EDA16 selectively regulates a defined subset of genes involved in redox signaling through nucleosome repositioning. Thus, collectively, chromatin remodeling ATPases fine-tune immune responses and provide a previously uncharacterized mechanism of immune regulation.
Collapse
Affiliation(s)
- Alonso J. Pardal
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Sophie J. M. Piquerez
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | | | - Lucas Frungillo
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Emma Reilly
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | - Lorenzo Concia
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | - Selena Gimenez-Ibanez
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC (CNB-CSIC), Madrid, Spain
| | - Steven H. Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | - Vardis Ntoukakis
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
9
|
Mengarelli DA, Roldán Tewes L, Balazadeh S, Zanor MI. FITNESS Acts as a Negative Regulator of Immunity and Influences the Plant Reproductive Output After Pseudomonas syringae Infection. FRONTIERS IN PLANT SCIENCE 2021; 12:606791. [PMID: 33613599 PMCID: PMC7889524 DOI: 10.3389/fpls.2021.606791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Plants, as sessile organisms, are continuously threatened by multiple factors and therefore their profitable production depends on how they can defend themselves. We have previously reported on the characterization of fitness mutants which are more tolerant to environmental stresses due to the activation of defense mechanisms. Here, we demonstrate that in fitness mutants, which accumulate moderate levels of salicylic acid (SA) and have SA signaling activated, pathogen infection is restricted. Also, we demonstrate that NPR1 is essential in fitness mutants for SA storage and defense activation but not for SA synthesis after Pseudomonas syringae (Pst) infection. Additionally, these mutants do not appear to be metabolically impared, resulting in a higher seed set even after pathogen attack. The FITNESS transcriptional network includes defense-related transcription factors (TFs) such as ANAC072, ORA59, and ERF1 as well as jasmonic acid (JA) related genes including LIPOXYGENASE2 (LOX2), CORONATINE INSENSITIVE1 (COI1), JASMONATE ZIM-domain3 (JAZ3) and JAZ10. Induction of FITNESS expression leads to COI1 downregulation, and to JAZ3 and JAZ10 upregulation. As COI1 is an essential component of the bioactive JA perception apparatus and is required for most JA-signaling processes, elevated FITNESS expression leads to modulated JA-related responses. Taken together, FITNESS plays a crucial role during pathogen attack and allows a cost-efficient way to prevent undesirable developmental effects.
Collapse
Affiliation(s)
- Diego Alberto Mengarelli
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) Ocampo y Esmeralda PREDIO CCT-Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina
| | - Lara Roldán Tewes
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) Ocampo y Esmeralda PREDIO CCT-Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina
| | - Salma Balazadeh
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - María Inés Zanor
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) Ocampo y Esmeralda PREDIO CCT-Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina
| |
Collapse
|
10
|
Zarreen F, Chakraborty S. Epigenetic regulation of geminivirus pathogenesis: a case of relentless recalibration of defence responses in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6890-6906. [PMID: 32869846 DOI: 10.1093/jxb/eraa406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Geminiviruses constitute one of the largest families of plant viruses and they infect many economically important crops. The proteins encoded by the single-stranded DNA genome of these viruses interact with a wide range of host proteins to cause global dysregulation of cellular processes and help establish infection in the host. Geminiviruses have evolved numerous mechanisms to exploit host epigenetic processes to ensure the replication and survival of the viral genome. Here, we review our current knowledge of diverse epigenetic processes that have been implicated in the regulation of geminivirus pathogenesis, including DNA methylation, histone post-transcriptional modification, chromatin remodelling, and nucleosome repositioning. In addition, we discuss the currently limited evidence of host epigenetic defence responses that are aimed at counteracting geminivirus infection, and the potential for exploiting these responses for the generation of resistance against geminiviruses in crop species.
Collapse
Affiliation(s)
- Fauzia Zarreen
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
11
|
Baum S, Reimer-Michalski EM, Bolger A, Mantai AJ, Benes V, Usadel B, Conrath U. Isolation of Open Chromatin Identifies Regulators of Systemic Acquired Resistance. PLANT PHYSIOLOGY 2019; 181:817-833. [PMID: 31337712 PMCID: PMC6776868 DOI: 10.1104/pp.19.00673] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/17/2019] [Indexed: 05/11/2023]
Abstract
Upon local infection, plants activate a systemic immune response called systemic acquired resistance (SAR). During SAR, systemic leaves become primed for the superinduction of defense genes upon reinfection. We used formaldehyde-assisted isolation of regulatory DNA elements coupled to next-generation sequencing to identify SAR regulators. Our bioinformatic analysis produced 10,129 priming-associated open chromatin sites in the 5' region of 3,025 genes in the systemic leaves of Arabidopsis (Arabidopsis thaliana) plants locally infected with Pseudomonas syringae pv. maculicola Whole transcriptome shotgun sequencing analysis of the systemic leaves after challenge enabled the identification of genes with priming-linked open chromatin before (contained in the formaldehyde-assisted isolation of regulatory DNA elements sequencing dataset) and enhanced expression after (included in the whole transcriptome shotgun sequencing dataset) the systemic challenge. Among them, Arabidopsis MILDEW RESISTANCE LOCUS O3 (MLO3) was identified as a previously unidentified positive regulator of SAR. Further in silico analysis disclosed two yet unknown cis-regulatory DNA elements in the 5' region of genes. The P-box was mainly associated with priming-responsive genes, whereas the C-box was mostly linked to challenge. We found that the P- or W-box, the latter recruiting WRKY transcription factors, or combinations of these boxes, characterize the 5' region of most primed genes. Therefore, this study provides a genome-wide record of genes with open and accessible chromatin during SAR and identifies MLO3 and two previously unidentified DNA boxes as likely regulators of this immune response.
Collapse
Affiliation(s)
- Stephani Baum
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen 52056, Germany
| | - Eva-Maria Reimer-Michalski
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen 52056, Germany
| | - Anthony Bolger
- Department of Botany, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen 52056, Germany
| | - Andrea J Mantai
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen 52056, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Björn Usadel
- Department of Botany, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen 52056, Germany
| | - Uwe Conrath
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen 52056, Germany
| |
Collapse
|
12
|
Zheng X, Xing J, Zhang K, Pang X, Zhao Y, Wang G, Zang J, Huang R, Dong J. Ethylene Response Factor ERF11 Activates BT4 Transcription to Regulate Immunity to Pseudomonas syringae. PLANT PHYSIOLOGY 2019; 180:1132-1151. [PMID: 30926656 PMCID: PMC6548261 DOI: 10.1104/pp.18.01209] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/19/2019] [Indexed: 05/19/2023]
Abstract
Pseudomonas syringae, a major hemibiotrophic bacterial pathogen, causes many devastating plant diseases. However, the transcriptional regulation of plant defense responses to P. syringae remains largely unknown. Here, we found that gain-of-function of BTB AND TAZ DOMAIN PROTEIN 4 (BT4) enhanced the resistance of Arabidopsis (Arabidopsis thaliana) to Pst DC3000 (Pseudomonas syringae pv. tomato DC3000). Disruption of BT4 also weakened the salicylic acid (SA)-induced defense response to Pst DC3000 in bt4 mutants. Further investigation indicated that, under Pst infection, transcription of BT4 is modulated by components of both the SA and ethylene (ET) signaling pathways. Intriguingly, the specific binding elements of ETHYLENE RESPONSE FACTOR (ERF) proteins, including dehydration responsive/C-repeat elements and the GCC box, were found in the putative promoter of BT4 Based on publicly available microarray data and transcriptional confirmation, we determined that ERF11 is inducible by salicylic acid and Pst DC3000 and is modulated by the SA and ET signaling pathways. Consistent with the function of BT4, loss-of-function of ERF11 weakened Arabidopsis resistance to Pst DC3000 and the SA-induced defense response. Biochemical and molecular assays revealed that ERF11 binds specifically to the GCC box of the BT4 promoter to activate its transcription. Genetic studies further revealed that the BT4-regulated Arabidopsis defense response to Pst DC3000 functions directly downstream of ERF11. Our findings indicate that transcriptional activation of BT4 by ERF11 is a key step in SA/ET-regulated plant resistance against Pst DC3000, enhancing our understanding of plant defense responses to hemibiotrophic bacterial pathogens.
Collapse
Affiliation(s)
- Xu Zheng
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
- Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Agricultural University, Baoding 071000, China
| | - Jihong Xing
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
- Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Agricultural University, Baoding 071000, China
| | - Kang Zhang
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
- Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Agricultural University, Baoding 071000, China
| | - Xi Pang
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
- Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Agricultural University, Baoding 071000, China
| | - Yating Zhao
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
- Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Agricultural University, Baoding 071000, China
| | - Guanyu Wang
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
- Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Agricultural University, Baoding 071000, China
| | - Jinping Zang
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
- Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Agricultural University, Baoding 071000, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Jingao Dong
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
- Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
13
|
Das S, Bansal M. Variation of gene expression in plants is influenced by gene architecture and structural properties of promoters. PLoS One 2019; 14:e0212678. [PMID: 30908494 PMCID: PMC6433290 DOI: 10.1371/journal.pone.0212678] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/07/2019] [Indexed: 12/03/2022] Open
Abstract
In higher eukaryotes, gene architecture and structural properties of promoters have emerged as significant factors influencing variation in number of transcripts (expression level) and specificity of gene expression in a tissue (expression breadth), which eventually shape the phenotype. In this study, transcriptome data of different tissue types at various developmental stages of A. thaliana, O. sativa, S. bicolor and Z. mays have been used to understand the relationship between properties of gene components and its expression. Our findings indicate that in plants, among all gene architecture and structural properties of promoters, compactness of genes in terms of intron content is significantly linked to gene expression level and breadth, whereas in human an exactly opposite scenario is seen. In plants, for the first time we have carried out a quantitative estimation of effect of a particular trait on expression level and breadth, by using multiple regression analysis and it confirms that intron content of primary transcript (as %) is a powerful determinant of expression breadth. Similarly, further regression analysis revealed that among structural properties of the promoters, stability is negatively linked to expression breadth, while DNase1 sensitivity strongly governs gene expression breadth in monocots and gene expression level in dicots. In addition, promoter regions of tissue specific genes are found to be enriched with TATA box and Y-patch motifs. Finally, multi copy orthologous genes in plants are found to be longer, highly regulated and tissue specific.
Collapse
Affiliation(s)
- Sanjukta Das
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Manju Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
14
|
Pass DA, Sornay E, Marchbank A, Crawford MR, Paszkiewicz K, Kent NA, Murray JAH. Genome-wide chromatin mapping with size resolution reveals a dynamic sub-nucleosomal landscape in Arabidopsis. PLoS Genet 2017; 13:e1006988. [PMID: 28902852 PMCID: PMC5597176 DOI: 10.1371/journal.pgen.1006988] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023] Open
Abstract
All eukaryotic genomes are packaged as chromatin, with DNA interlaced with both regularly patterned nucleosomes and sub-nucleosomal-sized protein structures such as mobile and labile transcription factors (TF) and initiation complexes, together forming a dynamic chromatin landscape. Whilst details of nucleosome position in Arabidopsis have been previously analysed, there is less understanding of their relationship to more dynamic sub-nucleosomal particles (subNSPs) defined as protected regions shorter than the ~150bp typical of nucleosomes. The genome-wide profile of these subNSPs has not been previously analysed in plants and this study investigates the relationship of dynamic bound particles with transcriptional control. Here we combine differential micrococcal nuclease (MNase) digestion and a modified paired-end sequencing protocol to reveal the chromatin structure landscape of Arabidopsis cells across a wide particle size range. Linking this data to RNAseq expression analysis provides detailed insight into the relationship of identified DNA-bound particles with transcriptional activity. The use of differential digestion reveals sensitive positions, including a labile -1 nucleosome positioned upstream of the transcription start site (TSS) of active genes. We investigated the response of the chromatin landscape to changes in environmental conditions using light and dark growth, given the large transcriptional changes resulting from this simple alteration. The resulting shifts in the suites of expressed and repressed genes show little correspondence to changes in nucleosome positioning, but led to significant alterations in the profile of subNSPs upstream of TSS both globally and locally. We examined previously mapped positions for the TFs PIF3, PIF4 and CCA1, which regulate light responses, and found that changes in subNSPs co-localized with these binding sites. This small particle structure is detected only under low levels of MNase digestion and is lost on more complete digestion of chromatin to nucleosomes. We conclude that wide-spectrum analysis of the Arabidopsis genome by differential MNase digestion allows detection of sensitive features hereto obscured, and the comparisons between genome-wide subNSP profiles reveals dynamic changes in their distribution, particularly at distinct genomic locations (i.e. 5'UTRs). The method here employed allows insight into the complex influence of genetic and extrinsic factors in modifying the sub-nucleosomal landscape in association with transcriptional changes.
Collapse
Affiliation(s)
- Daniel Antony Pass
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Emily Sornay
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Angela Marchbank
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Margaret R. Crawford
- Genome Centre, University of Sussex, Sussex House, Falmer, Brighton, United Kingdom
| | - Konrad Paszkiewicz
- Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, United Kingdom
| | - Nicholas A. Kent
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - James A. H. Murray
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
15
|
Auxin regulates functional gene groups in a fold-change-specific manner in Arabidopsis thaliana roots. Sci Rep 2017; 7:2489. [PMID: 28559568 PMCID: PMC5449405 DOI: 10.1038/s41598-017-02476-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/11/2017] [Indexed: 11/16/2022] Open
Abstract
Auxin plays a pivotal role in virtually every aspect of plant morphogenesis. It simultaneously orchestrates a diverse variety of processes such as cell wall biogenesis, transition through the cell cycle, or metabolism of a wide range of chemical substances. The coordination principles for such a complex orchestration are poorly understood at the systems level. Here, we perform an RNA-seq experiment to study the transcriptional response to auxin treatment within gene groups of different biological processes, molecular functions, or cell components in a quantitative fold-change-specific manner. We find for Arabidopsis thaliana roots treated with auxin for 6 h that (i) there are functional groups within which genes respond to auxin with a surprisingly similar fold changes and that (ii) these fold changes vary from one group to another. These findings make it tempting to conjecture the existence of some transcriptional logic orchestrating the coordinated expression of genes within functional groups in a fold-change-specific manner. To obtain some initial insight about this coordinated expression, we performed a motif enrichment analysis and found cis-regulatory elements TBX1-3, SBX, REG, and TCP/site2 as the candidates conferring fold-change-specific responses to auxin in Arabidopsis thaliana.
Collapse
|
16
|
Abstract
The bulk of strong nucleosomes (SNs, with visibly periodic DNA sequences) is described by consensus pattern of 5 or 6 base runs of purines alternating with similar runs of pyrimidines - RR/YY SNs. Yet, the strongest known nucleosome positioning sequence, the 601 clone of Lowary and Widom, is rather periodic repetition of TA dinucleotides following one another every 10 bases. We located "601"-like TA-periodic sequences in the genome of A. thaliana. Several families of such sequences are discovered repeating almost exclusively in centromeres. Thus, while A. thaliana SNs of RR/YY type have strong affinity to pericentromeric regions, as it has been previously found, the SNs of TA periodic type concentrate rather in centromeres.
Collapse
Affiliation(s)
- Reshma Nibhani
- a Genome Diversity Center, Institute of Evolution , University of Haifa , Haifa , Israel
| | - Edward N Trifonov
- a Genome Diversity Center, Institute of Evolution , University of Haifa , Haifa , Israel
| |
Collapse
|