1
|
Tartaglia M, Zuzolo D, Prigioniero A, Ranauda MA, Scarano P, Tienda-Parrilla M, Hernandez-Lao T, Jorrín-Novo J, Guarino C. Changes in the proteomics and metabolomics profiles of Cormus Domestica (L.) fruits during the ripening process. BMC PLANT BIOLOGY 2024; 24:945. [PMID: 39390371 PMCID: PMC11465947 DOI: 10.1186/s12870-024-05677-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Cormus domestica (L.) is a monophyletic wild fruit tree belonging to the Rosaceae family, with well-documented use in the Mediterranean region. Traditionally, these fruits are harvested and stored for at least 2 weeks before consumption. During this period, the fruit reaches its well-known and peculiar organoleptic and texture characteristics. However, the spread of more profitable fruit tree species, resulted in its progressive erosion. In this work we performed proteomic and metabolomic fruit analyses at three times after harvesting, to characterise postharvest physiological and molecular changes, it related to nutritional and organoleptic properties at consumption. RESULTS Proteomics and metabolomics analysis were performed on fruits harvested at different time points: freshly harvested fruit (T0), fruit two weeks after harvest (T1) and fruit four weeks after harvest (T2). Proteomic analysis (Shotgun Proteomic in LC-MS/MS) resulted in 643 proteins identified. Most of the differentially abundant proteins between the three phases observed were involved in the softening process, carbohydrate metabolism and stress responses. Enzymes, such as xyloglucan endotransglucosylase/hydrolase, pectin acetylesterase, beta-galactosidase and pectinesterase, accumulated during fruit ripening and could explain the pulp breakdown observed in C. domestica. At the same time, enzymes abundant in the early stages (T0), such as sucrose synthase and malic enzyme, explain the accumulation of sugars and the lowering of acidity during the process. The metabolites extraction from C. domestica fruits enabled the identification of 606 statistically significant differentially abundant metabolites. Some compounds such as piptamine and resorcinol, well-known for their antimicrobial and antifungal properties, and several bioactive compounds such as endocannabinoids, usually described in the leaves, accumulate in C. domestica fruit during the post-harvest process. CONCLUSIONS The metabolomic and proteomic profiling of the C. domestica fruit during the postharvest process, evaluated in the study, provides a considerable contribution to filling the existing information gap, enabling the molecular and phytochemical characterisation of this erosion-endangered fruit. Data show biochemical changes that transform the harvested fruit into palatable consumable product.
Collapse
Affiliation(s)
- Maria Tartaglia
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento, 82100, Italy
| | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento, 82100, Italy.
| | - Antonello Prigioniero
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento, 82100, Italy.
| | - Maria Antonietta Ranauda
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento, 82100, Italy
| | - Pierpaolo Scarano
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento, 82100, Italy
| | - Marta Tienda-Parrilla
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain
| | - Tamara Hernandez-Lao
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain
| | - Jesús Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento, 82100, Italy
| |
Collapse
|
2
|
Cheng Y, Han L, Huang L, Tan X, Wu H, Li G. Association between flavor composition and sensory profile in thermally processed mandarin juices by multidimensional gas chromatography and multivariate statistical analysis. Food Chem 2023; 419:136026. [PMID: 37030207 DOI: 10.1016/j.foodchem.2023.136026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Thermal pasteurization decreases the sensory quality of mandarin juice. Flavor composition was determined in four fresh-squeezed and heat-processed mandarin juice varieties using molecular sensory science approaches. The relationships between odorants and sensory profiles were analyzed, and markers for flavor deterioration were screened by multivariate statistical analysis. Seventy-four volatiles were identified, among which 36 odorants with flavor dilution factors ranging from 2 to 128 were detected by multidimensional gas chromatography-mass spectrometry/olfactometry (MDGC-MS/O) coupled with aroma extract dilution analysis (AEDA). Higher intensities of cooked and off-flavor notes were observed in the heated mandarin juice, which was related to the concentration changes of the methional, methanethiol, dimethyl sulfide, and carbon disulfide by partial least squares (PLS) analysis. Ten potential markers (methional, methanethiol, dimethyl sulfide, hydrogen sulfide, β-damascenone, camphene, trans-β-ionone, decanal, d-limonene, and α-pinene) were responsible for the sensory discrimination of fresh-squeezed and heated mandarin juices.
Collapse
|
3
|
Yazici K, Balijagic J, Goksu B, Bilgin OF, Ercisli S. Comparison of Some Fruit Quality Parameters of Selected 12 Mandarin Genotypes from Black Sea Region in Turkey. ACS OMEGA 2023; 8:19719-19727. [PMID: 37305317 PMCID: PMC10249387 DOI: 10.1021/acsomega.3c01364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023]
Abstract
Mandarins are mostly preferred specie of Citrus genus, and there has been a continuous rise in consumption and global marketing due to having easy-to-peel, attractive flavor, and fresh consumption advantages. However, most of the existing knowledge on quality traits of citrus fruit comes from research conducted on oranges, which are the main products for the citrus juice manufacturing industry. In recent years, mandarin production in Turkey surpassed orange production and took the first place in citrus production. Mandarins are mostly grown in the Mediterranean and Aegean Regions of Turkey. Due to suitable climatic conditions, they are also grown in the microclimatic condition in Rize province located in the Eastern Black Sea region. In this study, we reported the total phenolic content, total antioxidant capacity, and volatiles of 12 Satsuma mandarin genotypes selected from Rize province of Turkey. Considerable differences in the total phenolic content, total antioxidant capacity (2,2-diphenyl-1-picrylhydrazyl assay), and fruit volatile constituent were found among the 12 selected Satsuma mandarin genotypes. The total phenolic content ranged from 3.50 to 22.53 mg of gallic acid equivalent per 100 g of the fruit sample in the selected mandarin genotypes. The total antioxidant capacity was the highest in genotype HA2 as 60.40%, and followed by IB (59.15%) and TEK3 (58.36%), respectively. A total of 30 aroma volatiles were detected from the juice samples of 12 mandarin genotypes by GC/MS, which comprised six alcohols, three aldehydes (including one monoterpene), three esters, one ketone, and one other volatiles. The main volatile compounds were identified in fruits of all Satsuma mandarin genotypes as α-terpineol (0.6-1.88%), linalool (1.1-3.21%), γ-terpinene (4.41-5.5%), β-myrcene (0.9-1.6%), dl-limonene (79.71-85.12%), α-farnesene (1.1-2.44), and d-germacrene (0.66-1.37%). Limonene accounts for most of the aroma compounds (79.71-85.12%) in fruits of all Satsuma genotypes. The genotypes MP and TEK8 had the highest total phenolic content, and HA2, IB, and TEK 3 had the highest antioxidant capacity. The YU2 genotype was found to contain more aroma compounds than the other genotypes. The genotypes selected on the basis of their high bioactive content could be used to develop new Satsuma mandarin cultivars with high human health promoting contents.
Collapse
Affiliation(s)
- Keziban Yazici
- Department
of Horticulture, Faculty of Agriculture, Recep Tayyip Erdogan University, Pazar, 53300 Rize, Turkey
| | - Jasmina Balijagic
- Biotechnical
Faculty, University of Montenegro, 81000 Podgorica, Montenegro
| | - Burcu Goksu
- Department
of Horticulture, Faculty of Agriculture, Recep Tayyip Erdogan University, Pazar, 53300 Rize, Turkey
| | - Omer Faruk Bilgin
- Department
of Horticulture, Faculty of Agriculture, Cukurova University, 01380 Adana, Turkey
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
- HGF
Agro, Ata Teknokent, TR-25240 Erzurum, Turkey
| |
Collapse
|
4
|
Li L, Yi P, Sun J, Tang J, Liu G, Bi J, Teng J, Hu M, Yuan F, He X, Sheng J, Xin M, Li Z, Li C, Tang Y, Ling D. Genome-wide transcriptome analysis uncovers gene networks regulating fruit quality and volatile compounds in mango cultivar 'Tainong' during postharvest. Food Res Int 2023; 165:112531. [PMID: 36869530 DOI: 10.1016/j.foodres.2023.112531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 01/11/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Mango is one of the most economically important fruit; however, the gene regulatory mechanism associated with ripening and quality changes during storage remains largely unclear. This study explored the relationship between transcriptome changes and postharvest mango quality. Fruit quality patterns and volatile components were obtained using headspace gas chromatography and ion-mobility spectrometry (HS-GC-IMS). The changes in mango peel and pulp transcriptome were analyzed during four stages (pre-harvesting, harvesting, maturity, and overripe stages). Based on the temporal analysis, multiple genes involved in the biosynthesis of secondary metabolites were upregulated in both the peel and pulp during the mango ripening process. Moreover, cysteine and methionine metabolism related to ethylene synthesis were upregulated in the pulp over time. Weighted gene co-expression network analysis (WGCNA) further showed that the pathways of pyruvate metabolism, citrate cycle, propionate metabolism, autophagy, and SNARE interactions in vesicular transport were positively correlated with the ripening process. Finally, a regulatory network of important pathways from pulp to peel was constructed during the postharvest storage of mango fruit. The above findings provide a global insight into the molecular regulation mechanisms of postharvest mango quality and flavor changes.
Collapse
Affiliation(s)
- Li Li
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China; Guangxi University, 530004 Nanning, China
| | - Ping Yi
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China; Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Jian Sun
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China; Guangxi Academy of Agricultural Sciences, 530007 Nanning, China.
| | - Jie Tang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China
| | - Guoming Liu
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China
| | - Jinfeng Bi
- Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | | | - Meijiao Hu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 571101, Haikou, China
| | - Fang Yuan
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China
| | - Xuemei He
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China
| | - Jinfeng Sheng
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China
| | - Ming Xin
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China
| | - Zhichun Li
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China
| | - Changbao Li
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China
| | - Yayuan Tang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China
| | - Dongning Ling
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China
| |
Collapse
|
5
|
Effect of Huanglongbing on the Volatile Organic Compound Profile of Fruit Juice and Peel Oil in 'Ray Ruby' Grapefruit. Foods 2023; 12:foods12040713. [PMID: 36832788 PMCID: PMC9955810 DOI: 10.3390/foods12040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Along with orange and mandarin, grapefruit production in Florida has declined sharply due to Huanglongbing (HLB), or citrus greening disease, caused by Candidatus Liberibacter asiaticus (CLas). HLB affects the volatile profiles of juice and peel oil in oranges, but there is limited information on grapefruit. In this research, 'Ray Ruby' grapefruit were harvested in 2020 and 2021 from healthy (HLB-) and HLB-affected (HLB+) trees. Peel oil was extracted by hydrodistillation, and the volatiles were analyzed by direct injection of the oil samples into gas chromatography-mass spectrometry (GC-MS). Volatiles in the juice were analyzed by headspace (HS)-solid-phase microextraction (SPME) coupled with GC-MS. HLB significantly altered the volatile profiles of peel oil and juice in 'Ray Ruby' grapefruit. Juice samples of HLB+ fruits had lower decanal, nonanal, and octanal, important citrus juice flavor compounds. HLB+ samples also showed reduced content of nonterpene compounds, other aliphatic and terpene aldehydes, and terpene ketones. Ethanol, acetaldehyde, ethyl acetate, and ethyl butanoate were increased in HLB+ juice samples, indicating an HLB-induced stress response. The most abundant compounds D-limonene and β-caryophyllene, as well as other sesquiterpenes, were increased in HLB+ juice and peel oil samples. On the other hand, the oxidative/dehydrogenated terpenes were increased by HLB in peel oil but decreased in the juice sample. Nootkatone, the key grapefruit volatile was consistently reduced by HLB in both peel oil and juice samples. The impact of HLB on nootkatone deteriorated the quality of both juice and peel oil in grapefruits.
Collapse
|
6
|
Liu R, Deng Y, Liu Y, Wang Z, Yu S, Nie Y, Zhu W, Zhou Z, Diao J. Combined Analysis of Transcriptome and Metabolome Reveals the Potential Mechanism of the Enantioselective Effect of Chiral Penthiopyrad on Tomato Fruit Flavor Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10872-10885. [PMID: 36006413 DOI: 10.1021/acs.jafc.2c03870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study investigated the enantioselective effects of S-, R-, and rac-penthiopyrad (PEN) on the flavor quality of tomato fruit through the levels of sugars, acids, volatiles, and nutrients and explored the potential mechanism by combined analysis of the transcriptome and metabolome. The results revealed that the S-enantiomer increased the content of soluble sugars while decreasing the content of organic acids, thereby increasing the taste of tomato fruit. Furthermore, S-(+)-PEN promoted the accumulation of volatile compounds and nutrients (total phenols, flavonoids, and vitamin C). Transcriptome and metabolome data showed that the S-enantiomer improved fruit flavor and quality by influencing metabolites and genes in glycolysis, starch and sucrose metabolism, the citrate cycle, and amino acid biosynthesis pathways. However, R-(-)-PEN had a negative effect on tomato flavor. The effect of the racemate on fruit flavor quality was between a pair of enantiomers. The comprehensive data of PEN enantiomers will provide theoretical support for the application of PEN in tomatoes. Thus, developing enantiopure S-(+)-PEN products might be more conducive to the flavor and quality of the tomato fruit.
Collapse
Affiliation(s)
- Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Yue Deng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Yuping Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Simin Yu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| |
Collapse
|
7
|
A review on rice yellowing: Physicochemical properties, affecting factors, and mechanism. Food Chem 2022; 370:131265. [PMID: 34788950 DOI: 10.1016/j.foodchem.2021.131265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022]
Abstract
Yellowing is a critical issue that reduces quality and commodity value of rice. This article presents an overview on rice yellowing and the mechanism of rice yellowing was addressed as the emphasis. The change of physicochemical and nutritive properties in yellowed rice depends on the exposure temperature and time, as well as rice cultivar. The temperature and moisture on rice yellowing were dominant. There is no consensus on the relationship between microorganisms and rice yellowing. The occurrence of yellowing is mainly associated with heat stress induced by heaping heat or respiration of grain, and the yellowing is the collective result of primary and secondary metabolism. The upregulation of flavonoids is the direct cause of rice yellowing, which can be used as metabolic markers of rice yellowing. The Maillard reaction also contributes to yellowing during storage. Aeration and cooling are recommended to lessen the occurring of rice yellowing during commercial storage.
Collapse
|
8
|
Zheng X, Yang Y, Al-Babili S. Exploring the Diversity and Regulation of Apocarotenoid Metabolic Pathways in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:787049. [PMID: 34956282 PMCID: PMC8702529 DOI: 10.3389/fpls.2021.787049] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 05/31/2023]
Abstract
In plants, carotenoids are subjected to enzyme-catalyzed oxidative cleavage reactions as well as to non-enzymatic degradation processes, which produce various carbonyl products called apocarotenoids. These conversions control carotenoid content in different tissues and give rise to apocarotenoid hormones and signaling molecules, which play important roles in plant growth and development, response to environmental stimuli, and in interactions with surrounding organisms. In addition, carotenoid cleavage gives rise to apocarotenoid pigments and volatiles that contribute to the color and flavor of many flowers and several fruits. Some apocarotenoid pigments, such as crocins and bixin, are widely utilized as colorants and additives in food and cosmetic industry and also have health-promoting properties. Considering the importance of this class of metabolites, investigation of apocarotenoid diversity and regulation has increasingly attracted the attention of plant biologists. Here, we provide an update on the plant apocarotenoid biosynthetic pathway, especially highlighting the diversity of the enzyme carotenoid cleavage dioxygenase 4 (CCD4) from different plant species with respect to substrate specificity and regioselectivity, which contribute to the formation of diverse apocarotenoid volatiles and pigments. In addition, we summarize the regulation of apocarotenoid metabolic pathway at transcriptional, post-translational, and epigenetic levels. Finally, we describe inter- and intraspecies variation in apocarotenoid production observed in many important horticulture crops and depict recent progress in elucidating the genetic basis of the natural variation in the composition and amount of apocarotenoids. We propose that the illustration of biochemical, genetic, and evolutionary background of apocarotenoid diversity would not only accelerate the discovery of unknown biosynthetic and regulatory genes of bioactive apocarotenoids but also enable the identification of genetic variation of causal genes for marker-assisted improvement of aroma and color of fruits and vegetables and CRISPR-based next-generation metabolic engineering of high-value apocarotenoids.
Collapse
|
9
|
Li P, Li ZH. Tributyltin Induces the Tissue-Specific Stresses in Zebrafish, a Study in Various Tissues of Muscle, Gill and Intestine. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:847-852. [PMID: 33211132 DOI: 10.1007/s00128-020-03048-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Because the mechanism of tissue-specific toxicity of tributyltin (TBT) in aquatic organisms has not been explained clearly, the aim of this study is to investigate the effect of chronic exposure to TBT on muscle-related energy metabolism, gill-related ATPase enzymatic system and intestine-related digestive enzymes activities in zebrafish. Male zebrafish were exposed to sub-lethal concentrations of TBT (10, 100 and 300 ng/L) for 6 weeks. Multiple biomarkers were measured (such as glucose, lactate, hexokinase, pyruvate kinase, lactate dehydrogenase, ATP content, ATPases, trypsin, lipase and amylase), which reflected more serious physiological stress with increasing TBT concentrations during the experimental period. Through principal component analysis (PCA) and integrated biomarker response (IBR) analysis, the toxic effect of TBT in zebrafish was in a concentration-dependent manner. Shortly, the results of this study can provide new evidence for a comprehensive understanding of the toxic effects of TBT.
Collapse
Affiliation(s)
- Ping Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|
10
|
Mass spectrometry imaging as a potential technique for diagnostic of Huanglongbing disease using fast and simple sample preparation. Sci Rep 2020; 10:13457. [PMID: 32778716 PMCID: PMC7417563 DOI: 10.1038/s41598-020-70385-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Huanglongbing (HLB) is a disease of worldwide incidence that affects orange trees, among other commercial varieties, implicating in great losses to the citrus industry. The disease is transmitted through Diaphorina citri vector, which inoculates Candidatus Liberibacter spp. in the plant sap. HLB disease lead to blotchy mottle and fruit deformation, among other characteristic symptoms, which induce fruit drop and affect negatively the juice quality. Nowadays, the disease is controlled by eradication of sick, symptomatic plants, coupled with psyllid control. Polymerase chain reaction (PCR) is the technique most used to diagnose the disease; however, this methodology involves high cost and extensive sample preparation. Mass spectrometry imaging (MSI) technique is a fast and easily handled sample analysis that, in the case of Huanglongbing allows the detection of increased concentration of metabolites associated to the disease, including quinic acid, phenylalanine, nobiletin and sucrose. The metabolites abieta-8,11,13-trien-18-oic acid, suggested by global natural product social molecular networking (GNPS) analysis, and 4-acetyl-1-methylcyclohexene showed a higher distribution in symptomatic leaves and have been directly associated to HLB disease. Desorption electrospray ionization coupled to mass spectrometry imaging (DESI-MSI) allows the rapid and efficient detection of biomarkers in sweet oranges infected with Candidatus Liberibacter asiaticus and can be developed into a real-time, fast-diagnostic technique.
Collapse
|
11
|
Research Advances on Biosynthesis, Regulation, and Biological Activities of Apocarotenoid Aroma in Horticultural Plants. J CHEM-NY 2020. [DOI: 10.1155/2020/2526956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Apocarotenoids, which play important roles in the growth and development of horticultural plants, are produced by the action of carotenoid cleavage oxygenase (CCO) family members or nonenzymatic cleavage actions. Apocarotenoids are commonly found in leaves, flowers, and fruits of many horticultural plants and participate in the formation of pigments, flavors, hormones, and signaling compounds. Some of them are recognized as important aroma components of fruit and flower with aromatic odor, such as βß-ionone, β-damascenone, and 6-methyl-5-hepten-2-one in tomato fruit, and have low odor thresholds with β-ionone having odor threshold of only 0.007 ppb. In this review, the main apocarotenoid aroma components in horticultural plants were listed, and factors influencing their production were discussed at first. Then, the biosynthetic pathway of apocarotenoid aromas was briefly introduced, and the CCDs gene family was highlighted, and the nonenzymatic production of apocarotenoid aromas was also mentioned. Next, chemical and molecular regulations of apocarotenoid aromas and their biological activities were summarized. Finally, further exploration aspects needed were suggested. We anticipate that this review can afford some crucial information for comprehensive application of apocarotenoid volatile compounds in horticultural plants.
Collapse
|
12
|
Hijaz F, Gmitter FG, Bai J, Baldwin E, Biotteau A, Leclair C, McCollum TG, Plotto A. Effect of fruit maturity on volatiles and sensory descriptors of four mandarin hybrids. J Food Sci 2020; 85:1548-1564. [PMID: 32249935 DOI: 10.1111/1750-3841.15116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/20/2020] [Accepted: 02/26/2020] [Indexed: 11/28/2022]
Abstract
Mandarins (or tangerines) are mainly consumed as fresh fruits due to the ease of peeling and desirable flavor. Sweetness, acidity, and flavor of mandarin are the most important criteria for consumer preference. The objective of this study was to evaluate the effects of harvest date on sensory and chemical components of four mandarin cultivars (Murcott, 411, Temple, and 'LB8-9' Sugar Belle®). Volatiles were extracted from the headspace of juice samples with solid phase microextraction (SPME) and analyzed using gas chromatography-mass spectrometry (GC-MS). The optimum harvest window for eating quality of 411 was late January to mid-February (soluble solids content [SSC]/titratable acidity [TA]: 11.3 to 14.0), Sugar Belle® fruits were best tasted when harvested from mid- to end of January (SSC/TA: 14.1 to 16.1), and February was the best month for harvesting Murcott (SSC/TA: 13.10 to 18.0) and Temple (SSC/TA:10.3 to 12.50). Sensory perception of sweetness, ripeness, and juiciness increased as SSC/TA increased while sourness and bitterness decreased. Pumpkin flavor, an indicator of overripe fruit, was mainly noticed late in the season. Tangerine flavor tended to decrease, whereas fruity-noncitrus flavor tended to increase with fruit maturity. Monoterpenes were the most abundant volatiles and tended to decrease with fruit maturity, whereas alcohols, esters, and aldehydes increase. Aldehydes, esters, and alcohols were positively correlated with sweetness, ripeness, juiciness, and fruity characteristics, and negatively with sourness and bitterness. On the other hand, monoterpenes were positively correlated with bitterness and tangerine flavor, and negatively correlated with sweetness and fruity-noncitrus flavor. The highest number of esters was found in Temple, whereas Murcott and 411 were high in aldehydes.
Collapse
Affiliation(s)
- Faraj Hijaz
- University of Florida-IFAS, Citrus Research and Education Center, Lake Alfred, FL, 33850, U.S.A
| | - Fred G Gmitter
- University of Florida-IFAS, Citrus Research and Education Center, Lake Alfred, FL, 33850, U.S.A
| | - Jinhe Bai
- USDA-ARS, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL, 34945, U.S.A
| | - Elizabeth Baldwin
- USDA-ARS, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL, 34945, U.S.A
| | - Alice Biotteau
- USDA-ARS, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL, 34945, U.S.A
| | - Clotilde Leclair
- USDA-ARS, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL, 34945, U.S.A
| | - T Greg McCollum
- USDA-ARS, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL, 34945, U.S.A
| | - Anne Plotto
- USDA-ARS, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL, 34945, U.S.A
| |
Collapse
|
13
|
Lu H, Luo Z, Wang L, Liu W, Li D, Belwal T, Xu Y, Li L. FaMYB9 is involved in the regulation of C6 volatile biosynthesis in strawberry. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110422. [PMID: 32081270 DOI: 10.1016/j.plantsci.2020.110422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/25/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
The large-scale untargeted proteomic and metabolomic studies were conducted in strawberry (Fragaria × ananassa) cv. Akihime fruit at five developmental stages. We found that some C6 volatiles highly contributed to the enrichment of volatiles at the red stage of strawberry fruit. We found that 12 genes involved in LOX pathway for volatile biosynthesis showed multiple patterns in protein abundance during fruit development and ripening, and 9 out of the 12 genes exhibited a significant increase in their relative expression levels at the red stage of fruit. We also found that the MYB9 gene (FaMYB9) expression level was positively correlated with the content of C6 volatiles (R = 0.989) and with the relative expression level and protein abundance of FaLOX5 at different strawberry fruit developmental stages (R = 0.954). The interaction between FaMYB9 and FaLOX5 was detected by yeast two-hybrid, co-immunoprecipitation (Co-IP), bimolecular fluorescence complementation (BiFC), and immunofluorescence (IF) analyses. Transient silencing of FaMYB9 delayed the fruit development and ripening, resulting in a significant decrease in the contents of C6 volatiles, while overexpression of FaMYB9 increased the fruit development and ripening and the contents of C6 volatiles in Akihime fruit. Therefore, FaMYB9 is positively involved in C6 volatile biosynthesis.
Collapse
Affiliation(s)
- Hongyan Lu
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA.
| | - Zisheng Luo
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| | - Lei Wang
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA.
| | - Dong Li
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Tarun Belwal
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Yanqun Xu
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| | - Li Li
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
ÖZKAYA O, KARAOĞLAN SYABACI, İNCESU M, YEŞİLOĞLU T. The general and volatile properties and the quality of two newly selected Satsuma clones (11/1 İzmir and 30/ İzmir) grown under Mediterranean ecological conditions. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.33017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Yu Q, Huang M, Jia H, Yu Y, Plotto A, Baldwin EA, Bai J, Wang N, Gmitter Jr FG. Deficiency of valencene in mandarin hybrids is associated with a deletion in the promoter region of the valencene synthase gene. BMC PLANT BIOLOGY 2019; 19:101. [PMID: 30866831 PMCID: PMC6417135 DOI: 10.1186/s12870-019-1701-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/06/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Valencene is a major sesquiterpene in citrus oil and biosynthesized by valencene synthase (Cstps1; EC: 4.2.3.73) from the 15-carbon substrate farnesyl diphosphate. It is abundant in juice of some mandarins (e.g. Citrus reticulata Blanco cv. Fortune), however, it is undetectable in others (e.g. C. reticulata Blanco cv. Murcott), We have discovered that the Murcott mandarin Cstps1 gene expression is severely reduced. A previous genetic mapping study using an F1 population of Fortune × Murcott found that the segregation of valencene production in fruit exhibited a Mendelian inheritance ratio of 1:1. There was only one dominant locus associated with valencene content detected on the mandarin genetic map. The goal of this study was to understand the molecular mechanism underlying the valencene deficiency observed in some citrus hybrids. RESULTS There was a clear relationship between presence or absence of the valencene synthase gene (Cstps1) expression, and presence or absence of valencene among randomly selected mandarin hybrids. Cloning the coding regions of Cstps1 from Fortune and Murcott mandarin, and aligning with previous reported Valencia orange Cstps1 sequence, showed that they both exhibited extremely high similarity with the known Cstps1. By further cloning and analyzing the promoter region of Cstps1 from Valencia, Fortune and Murcott, a 12-nucleotide deletion at approximately - 270 bp from the Cstps1 coding region was only found in Murcott. Three binary vectors, designated as p1380-FortP-GUSin, p1380-MurcP-GUSin and p1380-MurcP(+ 12)-GUSin, were developed for promoter activity analysis. Transient over-expression of Fortune Cstps1 promoter in sweet orange showed notable GUS activity, but the Murcott Cstps1 promoter did not. In addition, by re-inserting the 12-nucleotide fragment, the activity of the Murcott Cstps1 promoter was mostly recovered. CONCLUSION The deficiency of valencene production in some mandarins is probably due to a 12-nucleotide deletion in the promoter region of the Cstps1, which could be a crucial switch of Cstps1 transcription. Our results further enhanced the understanding of valencene biosynthesis in citrus.
Collapse
Affiliation(s)
- Qibin Yu
- University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, Lake Alfred, FL 33850 USA
| | - Ming Huang
- University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, Lake Alfred, FL 33850 USA
| | - Hongge Jia
- University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, Lake Alfred, FL 33850 USA
| | - Yuan Yu
- University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, Lake Alfred, FL 33850 USA
| | - Anne Plotto
- USDA-ARS Horticultural Research Laboratory, Fort Pierce, FL 34945 USA
| | | | - Jinhe Bai
- USDA-ARS Horticultural Research Laboratory, Fort Pierce, FL 34945 USA
| | - Nian Wang
- University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, Lake Alfred, FL 33850 USA
| | - Frederick G. Gmitter Jr
- University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, Lake Alfred, FL 33850 USA
| |
Collapse
|
16
|
Sadka A, Shlizerman L, Kamara I, Blumwald E. Primary Metabolism in Citrus Fruit as Affected by Its Unique Structure. FRONTIERS IN PLANT SCIENCE 2019; 10:1167. [PMID: 31611894 PMCID: PMC6775482 DOI: 10.3389/fpls.2019.01167] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/26/2019] [Indexed: 05/18/2023]
Abstract
Citrus is one of the world's most important fruit crops, contributing essential nutrients, such as vitamin C and minerals, to the human diet. It is characterized by two important traits: first, its major edible part is composed of juice sacs, a unique structure among fruit, and second, relatively high levels of citric acid are accumulated in the vacuole of the juice sac cell. Although the major routes of primary metabolism are generally the same in citrus fruit and other plant systems, the fruit's unique structural features challenge our understanding of carbon flow into the fruit and its movement through all of its parts. In fact, acid metabolism and accumulation have only been summarized in a few reviews. Here we present a comprehensive view of sugar, acid and amino acid metabolism and their connections within the fruit, all in relation to the fruit's unique structure.
Collapse
Affiliation(s)
- Avi Sadka
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
- *Correspondence: Avi Sadka,
| | - Lyudmila Shlizerman
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Itzhak Kamara
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
17
|
Chen Q, Liu X, Hu Y, Sun B, Hu Y, Wang X, Tang H, Wang Y. Transcriptomic Profiling of Fruit Development in Black Raspberry Rubus coreanus. Int J Genomics 2018; 2018:8084032. [PMID: 29805970 PMCID: PMC5901860 DOI: 10.1155/2018/8084032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/09/2018] [Accepted: 02/20/2018] [Indexed: 12/19/2022] Open
Abstract
The wild Rubus species R. coreanus, which is widely distributed in southwest China, shows great promise as a genetic resource for breeding. One of its outstanding properties is adaptation to high temperature and humidity. To facilitate its use in selection and breeding programs, we assembled de novo 179,738,287 R. coreanus reads (125 bp in length) generated by RNA sequencing from fruits at three representative developmental stages. We also used the recently released draft genome of R. occidentalis to perform reference-guided assembly. We inferred a final 95,845-transcript reference for R. coreanus. Of these genetic resources, 66,597 (69.5%) were annotated. Based on these results, we carried out a comprehensive analysis of differentially expressed genes. Flavonoid biosynthesis, phenylpropanoid biosynthesis, plant hormone signal transduction, and cutin, suberin, and wax biosynthesis pathways were significantly enriched throughout the ripening process. We identified 23 transcripts involved in the flavonoid biosynthesis pathway whose expression perfectly paralleled changes in the metabolites. Additionally, we identified 119 nucleotide-binding site leucine-rich repeat (NBS-LRR) protein-coding genes, involved in pathogen resistance, of which 74 were in the completely conserved domain. These results provide, for the first time, genome-wide genetic information for understanding developmental regulation of R. coreanus fruits. They have the potential for use in breeding through functional genetic approaches in the near future.
Collapse
Affiliation(s)
- Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xunju Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yueyang Hu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yaodong Hu
- Science and Technology Management Division, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaorong Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yan Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
18
|
Yu Y, Bai J, Chen C, Plotto A, Yu Q, Baldwin EA, Gmitter FG. Identification of QTLs controlling aroma volatiles using a 'Fortune' x 'Murcott' (Citrus reticulata) population. BMC Genomics 2017; 18:646. [PMID: 28830354 PMCID: PMC5568196 DOI: 10.1186/s12864-017-4043-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/09/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Flavor is an important attribute of mandarin (Citrus reticulata Blanco), but flavor improvement via conventional breeding is very challenging largely due to the complexity of the flavor components and traits. Many aroma associated volatiles of citrus fruit have been identified, which are directly related to flavor, but knowledge of genetic linkages and relevant genes for these volatiles, along with applicable markers potentially for expeditious and economical marker-assisted selection (MAS), is very limited. The objective of this project was to identify single nucleotide polymorphism (SNP) markers associated with these volatile traits. RESULT Aroma volatiles were investigated in two mandarin parents ('Fortune' and 'Murcott') and their 116 F1 progeny using gas chromatography mass spectrometry in 2012 and 2013. A total of 148 volatiles were detected, including one acid, 12 alcohols, 20 aldehydes, 14 esters, one furan, three aromatic hydrocarbons, 16 ketones, one phenol, 27 sesquiterpenes, 15 monoterpenes, and 38 unknowns. A total of 206 quantitative trait loci (QTLs) were identified for 94 volatile compounds using genotyping data generated from a 1536-SNP Illumina GoldenGate assay. In detail, 25 of the QTLs were consistent over more than two harvest times. Forty-one QTLs were identified for 17 aroma active compounds that included 18 sesquiterpenes and were mapped onto four genomic regions. Fifty QTLs were for 14 monoterpenes and mapped onto five genomic regions. Candidate genes for some QTLs were also identified. A QTL interval for monoterpenes and sesquiterpenes on linkage group 2 contained four genes: geranyl diphosphate synthase 1, terpene synthase 3, terpene synthase 4, and terpene synthase 14. CONCLUSIONS Some fruit aroma QTLs were identified and the candidate genes in the terpenoid biosynthetic pathway were found within the QTL intervals. These QTLs could lead to an efficient and feasible MAS approach to mandarin flavor improvement.
Collapse
Affiliation(s)
- Yuan Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Jinhe Bai
- Horticultural Research Laboratory, ARS, USDA, Fort Pierce, FL, 34945, USA
| | - Chunxian Chen
- Southeastern Fruit and Tree Nut Research Laboratory, ARS, USDA, Byron, GA, 31008, USA
| | - Anne Plotto
- Horticultural Research Laboratory, ARS, USDA, Fort Pierce, FL, 34945, USA
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | | | - Frederick G Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA.
| |
Collapse
|
19
|
Li W, Liu C, He M, Li J, Cai Y, Ma Y, Xu J. Largely different contents of terpenoids in beef red-flesh tangerine and its wild type. BMC PLANT BIOLOGY 2017; 17:36. [PMID: 28158965 PMCID: PMC5291992 DOI: 10.1186/s12870-017-0988-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/25/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Niurouhong (Citrus reticulata Blanco. Niurouhong) (NRH) is a spontaneous beef-red flesh mutant with distinctive flavor compared with its wild type orange-red flesh Zhuhongju (ZHJ). To illustrate the biochemical mechanism of its special flesh color and flavor, fruits at commercial mature stage were used to profile the volatiles in the flavedo and determine the levels of carotenoids, limonoid aglycones and phytohormones in the juice sacs in two seasons. RESULTS Our results showed the content of total volatile terpenoids in NRH was 1.27-fold that in ZHJ. The components of volatiles were found to be common between the two tangerines. This result indicates that the distinctive flavor of NRH might not be derived from the presence/absence of specific volatiles; instead, it was derived from the altered concentrations or balance of α-citral, β-citral, 2-cyclohexen-1-one, (S)-3-methyl-6-(1-methylethenyl) and n-hexadecanoic acid. Analyses of the contents of total and specific carotenoids indicated that the beef-red color of NRH flesh might be largely attributed to the over accumulation of β-cryptoxanthin and β-carotene. However, lower ABA level was found in NRH than in ZHJ, reflecting a possible feedback regulation of ABA biosynthesis on carotenogenesis and the balance in the metabolism among terpenoids. CONCLUSIONS Collectively, our study suggested that the MEP pathway was enhanced in NRH tangerine. However, a certain unknown co-regulatory mechanism might be present in the metabolism pathway of secondary metabolites (especially terpenoids) in beef-red flesh mutant. Our study provides new insights into the regulatory network of terpenoid metabolism and mutation mechanism of red-fleshed citrus.
Collapse
Affiliation(s)
- Wenyun Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 China
- Guizhou Fruit Institute,Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province 550006 China
| | - Cuihua Liu
- College of Horticulture, Northwest A & F University, Yangling, Shanxi Province 712100 China
| | - Min He
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jinqiang Li
- Guizhou Fruit Institute,Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province 550006 China
| | - Yongqiang Cai
- Guizhou Fruit Institute,Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province 550006 China
| | - Yuhua Ma
- Guizhou Fruit Institute,Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province 550006 China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
20
|
Bai J, Baldwin EA, McCollum G, Plotto A, Manthey JA, Widmer WW, Luzio G, Cameron R. Changes in Volatile and Non-Volatile Flavor Chemicals of "Valencia" Orange Juice over the Harvest Seasons. Foods 2016; 5:E4. [PMID: 28231099 PMCID: PMC5224568 DOI: 10.3390/foods5010004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/12/2015] [Accepted: 12/23/2015] [Indexed: 11/25/2022] Open
Abstract
Florida "Valencia" oranges have a wide harvest window, covering four months after first reaching the commercial maturity. However, the influence of harvest time on juice flavor chemicals is not well documented, with the exception of sugars and acids. Therefore, we investigated the major flavor chemicals, volatile (aroma), non-volatile (taste) and mouth feel attributes, in the two harvest seasons (March to June in 2007 and February to May in 2012). Bitter limonoid compounds, limonin and nomilin, decreased gradually. Out of a total of 94 volatiles, 32 increased, 47 peaked mid to late season, and 15 decreased. Juice insoluble solids and pectin content increased over the season; however, pectin methylesterase activity remained unchanged. Fruit harvested in the earlier months had lower flavor quality. Juice from later harvests had a higher sugar/acid ratio with less bitterness, while, many important aroma compounds occurred at the highest concentrations in the middle to late season, but occurred at lower concentrations at the end of the season. The results provide information to the orange juice processing industry for selection of optimal harvest time and for setting of precise blending strategy.
Collapse
Affiliation(s)
- Jinhe Bai
- USDA, ARS, U.S. Horticultural Research Laboratory, 2001 S. Rock Rd, Fort Pierce, FL 34945, USA.
| | - Elizabeth A Baldwin
- USDA, ARS, U.S. Horticultural Research Laboratory, 2001 S. Rock Rd, Fort Pierce, FL 34945, USA.
| | - Greg McCollum
- USDA, ARS, U.S. Horticultural Research Laboratory, 2001 S. Rock Rd, Fort Pierce, FL 34945, USA.
| | - Anne Plotto
- USDA, ARS, U.S. Horticultural Research Laboratory, 2001 S. Rock Rd, Fort Pierce, FL 34945, USA.
| | - John A Manthey
- USDA, ARS, U.S. Horticultural Research Laboratory, 2001 S. Rock Rd, Fort Pierce, FL 34945, USA.
| | - Wilbur W Widmer
- USDA, ARS, U.S. Horticultural Research Laboratory, 2001 S. Rock Rd, Fort Pierce, FL 34945, USA.
| | - Gary Luzio
- USDA, ARS, U.S. Horticultural Research Laboratory, 2001 S. Rock Rd, Fort Pierce, FL 34945, USA.
| | - Randall Cameron
- USDA, ARS, U.S. Horticultural Research Laboratory, 2001 S. Rock Rd, Fort Pierce, FL 34945, USA.
| |
Collapse
|
21
|
Budzinski IGF, Moon DH, Lindén P, Moritz T, Labate CA. Seasonal Variation of Carbon Metabolism in the Cambial Zone of Eucalyptus grandis. FRONTIERS IN PLANT SCIENCE 2016; 7:932. [PMID: 27446160 PMCID: PMC4923158 DOI: 10.3389/fpls.2016.00932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/11/2016] [Indexed: 05/09/2023]
Abstract
Eucalyptus species are the most widely hardwood planted in the world. It is one of the successful examples of commercial forestry plantation in Brazil and other tropical and subtropical countries. The tree is valued for its rapid growth, adaptability and wood quality. Wood formation is the result of cumulative annual activity of the vascular cambium. This cambial activity is generally related to the alternation of cold and warm, and/or dry and rainy seasons. Efforts have focused on analysis of cambial zone in response to seasonal variations in trees from temperate zones. However, little is known about the molecular changes triggered by seasonal variations in trees from tropical countries. In this work we attempted to establish a global view of seasonal alterations in the cambial zone of Eucalyptus grandis Hill ex Maiden, emphasizing changes occurring in the carbon metabolism. Using transcripts, proteomics and metabolomics we analyzed the tissues harvested in summer-wet and winter-dry seasons. Based on proteomics analysis, 70 proteins that changed in abundance were successfully identified. Transcripts for some of these proteins were analyzed and similar expression patterns were observed. We identified 19 metabolites differentially abundant. Our results suggest a differential reconfiguration of carbon partioning in E. grandis cambial zone. During summer, pyruvate is primarily metabolized via ethanolic fermentation, possibly to regenerate NAD(+) for glycolytic ATP production and cellular maintenance. However, in winter there seems to be a metabolic change and we found that some sugars were highly abundant. Our results revealed a dynamic change in E. grandis cambial zone due to seasonality and highlight the importance of glycolysis and ethanolic fermentation for energy generation and maintenance in Eucalyptus, a fast growing tree.
Collapse
Affiliation(s)
- Ilara G. F. Budzinski
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São PauloPiracicaba, Brazil
| | - David H. Moon
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São PauloPiracicaba, Brazil
| | - Pernilla Lindén
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural SciencesUmeå, Sweden
| | - Thomas Moritz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural SciencesUmeå, Sweden
| | - Carlos A. Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São PauloPiracicaba, Brazil
- *Correspondence: Carlos A. Labate
| |
Collapse
|