1
|
Yu H, Hu C, Yang X, Li Q, Wang Y, Dai Z, Cun J, Zheng A, Jiang Y, Wang Q, Lv M, Yang F, He Y. Uncovering Key Genes Associated with the Short-Winged Trait in Faba Bean ( Vicia faba L.) Through Re-Sequencing and Genome-Wide Association Studies (GWASs). Int J Mol Sci 2025; 26:2733. [PMID: 40141373 PMCID: PMC11942482 DOI: 10.3390/ijms26062733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Faba bean (Vicia faba L.) is a globally significant legume valued for its applications in food, vegetables, and green manure, yet its high outcrossing rate (30-80%) poses challenges for production development. A rare short-winged trait identified in Yunnan, China, offers promise for developing low-outcrossing varieties, reducing outcrossing rates to below 5%. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses revealed that the epidermal cells of normal wing petals are conical, while those of short-wing petals are tubular. This study examined 200 F2 lines from crosses between 'K0692' (short-winged) and 'Yundou 1183', as well as 'Yundoulvxin 1' (short-winged) and 'Yundou 1183'. The GWASs identified 10 SNP loci across chromosomes 2, 3, 4, and 5, with SNP_chr4::1013887633 explaining 22.20% of the wing trait variation. Key candidate genes were identified, such as VFH_III145120, which influences floral identity; and VFH_III149200, associated with epidermal differentiation. GO enrichment analysis demonstrated significant gene involvement in RNA localization, ribosome biogenesis, and preribosome metabolism, while KEGG analysis linked these genes to pathways in amino acid, nucleotide, and purine metabolism; ubiquitin-mediated proteolysis; and protein processing in the endoplasmic reticulum. These findings lay a foundation for breeding low-outcrossing faba bean varieties and enhancing sustainable faba bean cultivation.
Collapse
Affiliation(s)
- Haitian Yu
- Institute of Food Crops, Yunnan Academy of Agricultural Science, Kunming 650205, China (F.Y.)
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Chaoqin Hu
- Institute of Food Crops, Yunnan Academy of Agricultural Science, Kunming 650205, China (F.Y.)
| | - Xin Yang
- Institute of Food Crops, Yunnan Academy of Agricultural Science, Kunming 650205, China (F.Y.)
| | - Qiong Li
- Institute of Food Crops, Yunnan Academy of Agricultural Science, Kunming 650205, China (F.Y.)
| | - Yubao Wang
- Institute of Food Crops, Yunnan Academy of Agricultural Science, Kunming 650205, China (F.Y.)
| | - Zhengming Dai
- Institute of Food Crops, Yunnan Academy of Agricultural Science, Kunming 650205, China (F.Y.)
| | - Jie Cun
- Institute of Food Crops, Yunnan Academy of Agricultural Science, Kunming 650205, China (F.Y.)
| | - Aiqing Zheng
- Institute of Food Crops, Yunnan Academy of Agricultural Science, Kunming 650205, China (F.Y.)
| | - Yanhua Jiang
- Qujing Academy of Agricultural Sciences, Qujing 655000, China
| | - Qinfang Wang
- Qujing Academy of Agricultural Sciences, Qujing 655000, China
| | - Meiyuan Lv
- Institute of Food Crops, Yunnan Academy of Agricultural Science, Kunming 650205, China (F.Y.)
| | - Feng Yang
- Institute of Food Crops, Yunnan Academy of Agricultural Science, Kunming 650205, China (F.Y.)
| | - Yuhua He
- Institute of Food Crops, Yunnan Academy of Agricultural Science, Kunming 650205, China (F.Y.)
| |
Collapse
|
2
|
Deng XD, Wang M, Liu SH, Xu DL, Fei XW. Effects of the skp1 gene of the SCF complex on lipid metabolism and response to abiotic stress in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2025; 16:1527439. [PMID: 40166727 PMCID: PMC11955966 DOI: 10.3389/fpls.2025.1527439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025]
Abstract
SKP1 (S-phase kinase-associated protein 1) is a key member of the SCF (SKP1-Cullin1-F-box) E3 ligase complex. The SCF complex is involved in regulating various levels of plant physiology, including regulation of cellular signaling and response to abiotic stresses. While the function of SKP1 in plants is well known, its function in algae remains poorly understood. In this study, we investigated the role of the Chlamydomonas reinhardtii skp1 gene using RNAi interference and overexpression approaches. Subcellular localization of SKP1 was performed by transient expression in onion epidermal cells. For abiotic stress assays, the growth of skp1 RNAi and overexpression recombinant strains was examined under conditions of high osmolality (sorbitol), high salinity (NaCl) and high temperature (37°C). Our results showed that skp1 silencing significantly reduced oil accumulation by 38%, whereas skp1 overexpressing led to a 37% increase in oil content, suggesting that skp1 plays a crucial role in regulating oil synthesis and may influence lipid accumulation by regulating photosynthetic carbon flux partitioning. Subcellular localization analysis revealed that skp1 was predominantly localized within the nucleus. Furthermore, our results showed that SKP1 responds to abiotic stresses. Under sorbol and NaCl stress conditions, RNAi interference strains exhibited better growth than controls; however, their growth was comparatively impaired under 37°C stress compared to controls. On the other hand, overexpression strains showed weaker growth under sorbol and NaCl stress but were more tolerant to 37°C heat stress. These results illustrate the functional diversity of SKP1 in Chlamydomonas. This study provides an important complement for lipid metabolism and abiotic stress regulation in microalgae.
Collapse
Affiliation(s)
- Xiao Dong Deng
- Key Laboratory of Tropical Transnational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, China
- Zhanjiang Experimental Station, CATAS, Zhanjiang, China
| | - Meng Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| | - Si Hang Liu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| | - Dian Long Xu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| | - Xiao Wen Fei
- Key Laboratory of Tropical Transnational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| |
Collapse
|
3
|
Zhang Y, Chen Z, Zhang W, Sarwar R, Wang Z, Tan X. Genome-wide analysis of the NYN domain gene family in Brassica napus and its function role in plant growth and development. Gene 2024; 930:148864. [PMID: 39151674 DOI: 10.1016/j.gene.2024.148864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/21/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The NYN domain gene family consists of genes that encode ribonucleases that are characterized by a newly identified NYN domain. Members of the family were widely distributed in all life kingdoms and play a crucial role in various RNA regulation processes, although the wide genome overview of the NYN domain gene family is not yet available in any species. Rapeseed (Brassica napus L.), a polyploid model species, is an important oilseed crop. Here, the phylogenetic analysis of these BnaNYNs revealed five distinct groups strongly supported by gene structure, conserved domains, and conserved motifs. The survey of the expansion of the gene family showed that the birth of BnaNYNs is explained by various duplication events. Furthermore, tissue-specific expression analysis, protein-protein interaction prediction, and cis-element prediction suggested a role for BnaNYNs in plant growth and development. Interestingly, the data showed that three tandem duplicated BnaNYNs (TDBs) exhibited distinct expression patterns from those other BnaNYNs and had a high similarity in protein sequence level. Furthermore, the analysis of one of these TDBs, BnaNYN57, showed that overexpression of BnaNYN57 in Arabidopsis thaliana and B. napus accelerated plant growth and significantly increased silique length, while RNA interference resulted in the opposite growth pattern. It suggesting a key role for the TDBs in processes related to plant growth and development.
Collapse
Affiliation(s)
- Yijie Zhang
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, PR China.
| | - Zhuo Chen
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, PR China
| | - Wenhua Zhang
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, PR China
| | - Rehman Sarwar
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, PR China
| | - Zheng Wang
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, PR China.
| | - Xiaoli Tan
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, PR China.
| |
Collapse
|
4
|
Li J, Fan M, Zhang X, Yang L, Hou G, Yang L, Li N, Xuan S, Zhao J. Integratedly analyzed quantitative proteomics with transcriptomics to discover key genes via fg-1 non-heading mutant in the early heading stage of Chinese cabbage. FRONTIERS IN PLANT SCIENCE 2024; 15:1467006. [PMID: 39483672 PMCID: PMC11524848 DOI: 10.3389/fpls.2024.1467006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024]
Abstract
Leaf heading is an important agronomic trait of Chinese cabbage, which directly affects its yield. Leaf heading formation in Chinese cabbage is controlled by its internal genotype and external environmental factors, the underlying mechanism of which remains poorly understood. To discover the leaf heading formation mechanism more deeply, this study analyzed the correlation between proteomic and transcriptomic data in the leaf heading formation mutant fg-1 generated by EMS. iTRAQ-based quantitative proteomics techniques were performed to identify the protein expression profiles during the key periods of the early heading stage in the section of the soft leaf apical region (section a) and the whole leaf basal region (section d). We first identified 1,246 differentially expressed proteins (DEPs) in section a and 1,055 DEPs in section d. Notably, transcriptome-proteome integrated analysis revealed that 207 and 278 genes showed consistent trends at the genes' and proteins' expression levels in section a and section d, respectively. KEGG analyses showed that the phenylpropanoid biosynthesis pathway was enriched in both sections a and d. Furthermore, 86 TFs exhibited co-upregulation or co-downregulation, and seven out of 86 were involved in plant hormone synthesis and signal transduction pathways. This indicates that they are potentially related to the leaf heading formation in Chinese cabbage. Taken together, we have identified several key early-heading-formation-related factors via integration analysis of the transcriptomics and proteomics data. This provides sufficient gene resources to discover the molecular mechanism of leaf heading formation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuxin Xuan
- Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Jianjun Zhao
- Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
5
|
Wu R, Song K, Jing R, Du L. The de-ubiquitinase UBQUITIN SPECIFIC PROTEASE 15 (UBP15) interacts with the SCF E3 complex adaptor ARABIDOPSIS SKP1 HOMOLOGUE 1 (ASK1) to regulate petal size and fertility in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 345:112112. [PMID: 38750799 DOI: 10.1016/j.plantsci.2024.112112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/14/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
Ubiquitination is a pivotal type of post-translational modification, which plays a far-reaching role in plant growth and development, as well as in the response of plants to stress. Just like the two sides of a coin, de-ubiquitination also plays an important role in plant life, which has been gradually discovered in recent years. Here, we demonstrate that the UBQUITIN SPECIFIC PROTEASE 15 (UBP15), which is a UBP-type de-ubiquitinase, interacts with the SCF E3 complex adaptor ARABIDOPSIS SKP1 HOMOLOGUE 1 (ASK1) and influences its protein stability to regulate plant fertility and petal size. The UBP15 is associated with the ASK1 physically, as verified by yeast-two-hybrid (Y2H) and protein pull-down in vitro assays. Disruption of ASK1 by a T-DNA insertion generates some abnormal phenotypes, such as low fertility and small petals. Genetic analysis shows that the UBP15 mutation enhances the low-fertility and small-petal phenotypes of ask1 mutant plants. By proteomic analysis, many types of proteins were identified as potential candidate downstream genes associated with the phenotypes of ubp15 ask1 double mutant plants. Taken together, these findings reveal a molecular relationship between ASK1 and UBP15 and their interaction in the regulation of petal size and fertility, which would benefit in-depth research about the ubiquitin-related pathway in plant physiological processes in the future.
Collapse
Affiliation(s)
- Ruihua Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Kaixuan Song
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Ruotong Jing
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Liang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China.
| |
Collapse
|
6
|
Shao M, Wang P, Gou H, Ma Z, Chen B, Mao J. Identification and Expression Analysis of the SKP1-Like Gene Family under Phytohormone and Abiotic Stresses in Apple ( Malus domestica). Int J Mol Sci 2023; 24:16414. [PMID: 38003604 PMCID: PMC10671573 DOI: 10.3390/ijms242216414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Ubiquitination participates in plant hormone signaling and stress response to adversity. SKP1-Like, a core component of the SCF (Skp1-Cullin-F-box) complex, is the final step in catalyzing the ubiquitin-mediated protein degradation pathway. However, the SKP1-Like gene family has not been well characterized in response to apple abiotic stresses and hormonal treatments. This study revealed that 17 MdSKP1-Like gene family members with the conserved domain of SKP1 were identified in apples and were unevenly distributed on eight chromosomes. The MdSKP1-Like genes located on chromosomes 1, 10, and 15 were highly homologous. The MdSKP1-like genes were divided into three subfamilies according to the evolutionary affinities of monocotyledons and dicotyledons. MdSKP1-like members of the same group or subfamily show some similarity in gene structure and conserved motifs. The predicted results of protein interactions showed that members of the MdSKP1-like family have strong interactions with members of the F-Box family of proteins. A selection pressure analysis showed that MdSKP1-Like genes were in purifying selection. A chip data analysis showed that MdSKP1-like14 and MdSKP1-like15 were higher in flowers, whereas MdSKP1-like3 was higher in fruits. The upstream cis-elements of MdSKP1-Like genes contained a variety of elements related to light regulation, drought, low temperature, and many hormone response elements, etc. Meanwhile, qRT-PCR also confirmed that the MdSKP1-Like gene is indeed involved in the response of the apple to hormonal and abiotic stress treatments. This research provides evidence for regulating MdSKP1-Like gene expression in response to hormonal and abiotic stresses to improve apple stress resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
7
|
Álvarez-Urdiola R, Matus JT, Riechmann JL. Multi-Omics Methods Applied to Flower Development. Methods Mol Biol 2023; 2686:495-508. [PMID: 37540374 DOI: 10.1007/978-1-0716-3299-4_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Developmental processes in multicellular organisms depend on the proficiency of cells to orchestrate different gene expression programs. Over the past years, several studies of reproductive organ development have considered genomic analyses of transcription factors and global gene expression changes, modeling complex gene regulatory networks. Nevertheless, the dynamic view of developmental processes requires, as well, the study of the proteome in its expression, complexity, and relationship with the transcriptome. In this chapter, we describe a dual extraction method-for protein and RNA-for the characterization of genome expression at proteome level and its correlation to transcript expression data. We also present a shotgun proteomic procedure (LC-MS/MS) followed by a pipeline for the imputation of missing values in mass spectrometry results.
Collapse
Affiliation(s)
- Raquel Álvarez-Urdiola
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | - José Tomás Matus
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Valencia, Spain
| | - José Luis Riechmann
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
8
|
Singh L, Dhillon GS, Kaur S, Dhaliwal SK, Kaur A, Malik P, Kumar A, Gill RK, Kaur S. Genome-wide Association Study for Yield and Yield-Related Traits in Diverse Blackgram Panel (Vigna mungo L. Hepper) Reveals Novel Putative Alleles for Future Breeding Programs. Front Genet 2022; 13:849016. [PMID: 35899191 PMCID: PMC9310006 DOI: 10.3389/fgene.2022.849016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Blackgram (Vigna mungo L. Hepper) is an important tropical and sub-tropical short-duration legume that is rich in dietary protein and micronutrients. Producing high-yielding blackgram varieties is hampered by insufficient genetic variability, absence of suitable ideotypes, low harvest index and susceptibility to biotic-abiotic stresses. Seed yield, a complex trait resulting from the expression and interaction of multiple genes, necessitates the evaluation of diverse germplasm for the identification of novel yield contributing traits. Henceforth, a panel of 100 blackgram genotypes was evaluated at two locations (Ludhiana and Gurdaspur) across two seasons (Spring 2019 and Spring 2020) for 14 different yield related traits. A wide range of variability, high broad-sense heritability and a high correlation of grain yield were observed for 12 out of 14 traits studied among all environments. Investigation of population structure in the panel using a set of 4,623 filtered SNPs led to identification of four sub-populations based on ad-hoc delta K and Cross entropy value. Using Farm CPU model and Mixed Linear Model algorithms, a total of 49 significant SNP associations representing 42 QTLs were identified. Allelic effects were found to be statistically significant at 37 out of 42 QTLs and 50 known candidate genes were identified in 24 of QTLs.
Collapse
Affiliation(s)
- Lovejit Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | | | - Sarabjit Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Sandeep Kaur Dhaliwal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Amandeep Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Palvi Malik
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Ashok Kumar
- Regional Research Station, Punjab Agricultural University, Gurdaspur, India
| | - Ranjit Kaur Gill
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- *Correspondence: Satinder Kaur,
| |
Collapse
|
9
|
Proteomic and transcriptomic profiling of aerial organ development in Arabidopsis. Sci Data 2020; 7:334. [PMID: 33037224 PMCID: PMC7547660 DOI: 10.1038/s41597-020-00678-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/14/2020] [Indexed: 01/20/2023] Open
Abstract
Plant growth and development are regulated by a tightly controlled interplay between cell division, cell expansion and cell differentiation during the entire plant life cycle from seed germination to maturity and seed propagation. To explore some of the underlying molecular mechanisms in more detail, we selected different aerial tissue types of the model plant Arabidopsis thaliana, namely rosette leaf, flower and silique/seed and performed proteomic, phosphoproteomic and transcriptomic analyses of sequential growth stages using tandem mass tag-based mass spectrometry and RNA sequencing. With this exploratory multi-omics dataset, development dynamics of photosynthetic tissues can be investigated from different angles. As expected, we found progressive global expression changes between growth stages for all three omics types and often but not always corresponding expression patterns for individual genes on transcript, protein and phosphorylation site level. The biggest difference between proteomic- and transcriptomic-based expression information could be observed for seed samples. Proteomic and transcriptomic data is available via ProteomeXchange and ArrayExpress with the respective identifiers PXD018814 and E-MTAB-7978.
Collapse
|
10
|
Yapa MM, Yu P, Liao F, Moore AG, Hua Z. Generation of a fertile ask1 mutant uncovers a comprehensive set of SCF-mediated intracellular functions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:493-509. [PMID: 33543567 DOI: 10.1111/tpj.14939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/09/2020] [Indexed: 06/12/2023]
Abstract
Many eukaryotic intracellular processes employ protein ubiquitylation by ubiquitin E3 ligases for functional regulation or protein quality control. In plants, the multi-subunit Skp1-Cullin1-F-box (SCF) complexes compose the largest group of E3 ligases whose specificity is determined by a diverse array of F-box proteins. Although both sequence divergence and polymorphism of F-box genes well support a broad spectrum of SCF functions, experimental evidence is scarce due to the low number of identified SCF substrates. Taking advantage of the bridge role of Skp1 between F-box and Cullin1 in the complex, we systematically analyzed the functional influence of a well-characterized Arabidopsis Skp1-Like1 (ASK1) Ds insertion allele, ask1, in different Arabidopsis accessions. Through 10 generations of backcrossing with Columbia-0 (Col-0), we partially rescued the fertility of this otherwise sterile ask1 allele in Landsberg erecta, thus providing experimental evidence showing the polymorphic roles of SCF complexes. This ask1 mutant produces twisted rosette leaves, a reduced number of petals, fewer viable pollen grains, and larger embryos and seeds compared to Col-0. RNA-Seq-based transcriptome analysis of ask1 uncovered a large spectrum of SCF functions, which is greater than a 10-fold increase compared with previous studies. We also identified its hyposensitive responses to auxin and abscisic acid treatments and enhanced far-red light/phyA-mediated photomorphogenesis. Such diverse roles are consistent with the 20-30% reduction of ubiquitylation events in ask1 estimated by immunoblotting analysis in this work. Collectively, we conclude that ASK1 is a predominant Skp1 protein in Arabidopsis and that the fertile ask1 mutant allowed us to uncover a comprehensive set of SCF functions.
Collapse
Affiliation(s)
- Madhura M Yapa
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
| | - Peifeng Yu
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio, 45701, USA
| | - Fanglei Liao
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Abigail G Moore
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio, 45701, USA
| |
Collapse
|
11
|
Rao V, Petla BP, Verma P, Salvi P, Kamble NU, Ghosh S, Kaur H, Saxena SC, Majee M. Arabidopsis SKP1-like protein13 (ASK13) positively regulates seed germination and seedling growth under abiotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3899-3915. [PMID: 29788274 PMCID: PMC6054272 DOI: 10.1093/jxb/ery191] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/15/2018] [Indexed: 05/03/2023]
Abstract
SKP1 (S-phase kinase-associated protein1) proteins are key members of the SCF (SKP-cullin-F-box protein) E3 ligase complexes that ubiquitinate target proteins and play diverse roles in plant biology. However, in comparison with other members of the SCF complex, knowledge of SKP1-like proteins is very limited in plants. In the present work, we report that Arabidopsis SKP1-like protein13 (ASK13) is differentially regulated in different organs during seed development and germination and is up-regulated in response to abiotic stress. Yeast two-hybrid library screening and subsequent assessment of in vivo interactions through bimolecular fluorescence complementation analysis revealed that ASK13 not only interacts with F-box proteins but also with other proteins that are not components of SCF complexes. Biochemical analysis demonstrated that ASK13 not only exists as a monomer but also as a homo-oligomer or heteromer with other ASK proteins. Functional analysis using ASK13 overexpression and knockdown lines showed that ASK13 positively influences seed germination and seedling growth, particularly under abiotic stress. Taken together, our data strongly suggest that apart from participation to form SCF complexes, ASK13 interacts with several other proteins and is implicated in different cellular processes distinct from protein degradation.
Collapse
Affiliation(s)
- Venkateswara Rao
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Bhanu Prakash Petla
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Pooja Verma
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Prafull Salvi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Nitin Uttam Kamble
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Shraboni Ghosh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Harmeet Kaur
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Saurabh C Saxena
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Manoj Majee
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
- Correspondence:
| |
Collapse
|
12
|
Lambing C, Heckmann S. Tackling Plant Meiosis: From Model Research to Crop Improvement. FRONTIERS IN PLANT SCIENCE 2018; 9:829. [PMID: 29971082 PMCID: PMC6018109 DOI: 10.3389/fpls.2018.00829] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/28/2018] [Indexed: 05/04/2023]
Abstract
Genetic engineering and traditional plant breeding, which harnesses the natural genetic variation that arises during meiosis, will have key roles to improve crop varieties and thus deliver Food Security in the future. Meiosis, a specialized cell division producing haploid gametes to maintain somatic diploidy following their fusion, assures genetic variation by regulated genetic exchange through homologous recombination. However, meiotic recombination events are restricted in their total number and their distribution along chromosomes limiting allelic variations in breeding programs. Thus, modifying the number and distribution of meiotic recombination events has great potential to improve and accelerate plant breeding. In recent years much progress has been made in understanding meiotic progression and recombination in plants. Many genes and factors involved in these processes have been identified primarily in Arabidopsis thaliana but also more recently in crops such as Brassica, rice, barley, maize, or wheat. These advances put researchers in the position to translate acquired knowledge to various crops likely improving and accelerating breeding programs. However, although fundamental aspects of meiotic progression and recombination are conserved between species, differences in genome size and organization (due to repetitive DNA content and ploidy level) exist, particularly among plants, that likely account for differences in meiotic progression and recombination patterns found between species. Thus, tools and approaches are needed to better understand differences and similarities in meiotic progression and recombination among plants, to study fundamental aspects of meiosis in a variety of plants including crops and non-model species, and to transfer knowledge into crop species. In this article, we provide an overview of tools and approaches available to study plant meiosis, highlight new techniques, give examples of areas of future research and review distinct aspects of meiosis in non-model species.
Collapse
Affiliation(s)
- Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Christophe Lambing, Stefan Heckmann,
| | - Stefan Heckmann
- Independent Research Group Meiosis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- *Correspondence: Christophe Lambing, Stefan Heckmann,
| |
Collapse
|