1
|
Ma L, Zhou CY, Chen JL, Liu DK, Lan S, Liu ZJ. Comparative Analysis of Luisia (Aeridinae, Orchidaceae) Plastomes Shed Light on Plastomes Evolution and Barcodes Investigation. Genes (Basel) 2023; 15:20. [PMID: 38254910 PMCID: PMC10815154 DOI: 10.3390/genes15010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Luisia, a genus of the subtribe Aeridinae of Orchidaceae, comprises ca. 40 species. Members of Luisia exhibit unique morphological characteristics and represent a valuable ornamental orchid genus. However, due to the scarcity of distinct morphological characters, species identification within this genus is ambiguous and controversial. In the present study, next-generation sequencing (NGS) methods were used to assemble the plastomes of five Luisia species and compare them with one publicly available Luisia plastid genome data. The plastomes of Luisia possessed a quadripartite structure, with sizes ranging from 146,243 bp to 147,430 bp. The plastomes of six Luisia species contained a total of 120 genes, comprising 74 protein-coding genes, 38 tRNA genes and eight rRNA genes. Notably, all ndh genes were pseudogenized or lost. An analysis of codon usage bias showed that leucine (Leu) exhibited the highest frequency, while cysteine (Cys) exhibited the lowest frequency. A total of 57 to 64 SSRs and 42 to 49 long repeats were identified. Five regions and five coding sequences were identified for DNA barcodes, based on the nucleotide diversity (Pi) analysis. The species of Luisia constituted a monophyletic group and were sister to Paraphalaenopsis with strong support. Our study deepens the understanding of species identification, plastome evolution and the phylogenetic positions of Luisia.
Collapse
Affiliation(s)
- Liang Ma
- Fujian Health College, Fuzhou 350101, China;
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (J.-L.C.); (D.-K.L.); (S.L.)
| | - Cheng-Yuan Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (J.-L.C.); (D.-K.L.); (S.L.)
| | - Jin-Liao Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (J.-L.C.); (D.-K.L.); (S.L.)
| | - Ding-Kun Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (J.-L.C.); (D.-K.L.); (S.L.)
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (J.-L.C.); (D.-K.L.); (S.L.)
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (J.-L.C.); (D.-K.L.); (S.L.)
| |
Collapse
|
2
|
Yan R, Gu L, Qu L, Wang X, Hu G. New Insights into Phylogenetic Relationship of Hydrocotyle (Araliaceae) Based on Plastid Genomes. Int J Mol Sci 2023; 24:16629. [PMID: 38068952 PMCID: PMC10706649 DOI: 10.3390/ijms242316629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Hydrocotyle, belonging to the Hydrocotyloideae of Araliaceae, consists of 95 perennial and 35 annual species. Due to the lack of stable diagnostic morphological characteristics and high-resolution molecular markers, the phylogenetic relationships of Hydrocotyle need to be further investigated. In this study, we newly sequenced and assembled 13 whole plastid genomes of Hydrocotyle and performed comparative plastid genomic analyses with four previously published Hydrocotyle plastomes and phylogenomic analyses within Araliaceae. The plastid genomes of Hydrocotyle exhibited typical quadripartite structures with lengths from 152,659 bp to 153,669 bp, comprising a large single-copy (LSC) region (83,958-84,792 bp), a small single-copy (SSC) region (18,585-18,768 bp), and a pair of inverted repeats (IRs) (25,058-25,145 bp). Each plastome encoded 113 unique genes, containing 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. Comparative analyses showed that the IR boundaries of Hydrocotyle plastomes were highly similar, and the coding and IR regions exhibited more conserved than non-coding and single-copy (SC) regions. A total of 2932 simple sequence repeats and 520 long sequence repeats were identified, with specificity in the number and distribution of repeat sequences. Six hypervariable regions were screened from the SC region, including four intergenic spacers (IGS) (ycf3-trnS, trnS-rps4, petA-psbJ, and ndhF-rpl32) and two coding genes (rpl16 and ycf1). Three protein-coding genes (atpE, rpl16, and ycf2) were subjected to positive selection only in a few species, implying that most protein-coding genes were relatively conserved during the plastid evolutionary process. Plastid phylogenomic analyses supported the treatment of Hydrocotyle from Apiaceae to Araliaceae, and topologies with a high resolution indicated that plastome data can be further used in the comprehensive phylogenetic research of Hydrocotyle. The diagnostic characteristics currently used in Hydrocotyle may not accurately reflect the phylogenetic relationships of this genus, and new taxonomic characteristics may need to be evaluated and selected in combination with more comprehensive molecular phylogenetic results.
Collapse
Affiliation(s)
- Rongrong Yan
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (R.Y.); (L.G.); (X.W.)
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Li Gu
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (R.Y.); (L.G.); (X.W.)
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Lu Qu
- Institute of Medicinal Plant Development Yunnan Branch, Chinese Academy of Medical Sciences, Jinghong 666100, China;
| | - Xiaoyu Wang
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (R.Y.); (L.G.); (X.W.)
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Guoxiong Hu
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (R.Y.); (L.G.); (X.W.)
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Zhou CY, Zeng MY, Gao X, Zhao Z, Li R, Wu Y, Liu ZJ, Zhang D, Li MH. Characteristics and Comparative Analysis of Seven Complete Plastomes of Trichoglottis s.l. (Aeridinae, Orchidaceae). Int J Mol Sci 2023; 24:14544. [PMID: 37833995 PMCID: PMC10572978 DOI: 10.3390/ijms241914544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Trichoglottis exhibits a range of rich variations in colors and shapes of flower and is a valuable ornamental orchid genus. The genus Trichoglottis has been expanded by the inclusion of Staurochilus, but this Trichoglottis sensu lato (s.l.) was recovered as a non-monophyletic genus based on molecular sequences from one or a few DNA regions. Here, we present phylogenomic data sets, incorporating complete plastome sequences from seven species (including five species sequenced in this study) of Trichoglottis s.l. (including two species formerly treated as Staurochilus), to compare plastome structure and to reconstruct the phylogenetic relationships of this genus. The seven plastomes possessed the typical quadripartite structure of angiosperms and ranged from 149,402 bp to 149,841 bp with a GC content of 36.6-36.7%. These plastomes contain 120 genes, which comprise 74 protein-coding genes, 38 tRNA genes, and 8 rRNA genes, all ndh genes were pseudogenized or lost. A total of 98 (T. philippinensis) to 134 (T. ionosma) SSRs and 33 (T. subviolacea) to 46 (T. ionosma) long repeats were detected. The consistent and robust phylogenetic relationships of Trichoglottis were established using a total of 25 plastid genomes from the Aeridinae subtribe. The genus Trichoglottis s.l. was strongly supported as a monophyletic group, and two species formerly treated as Staurochilus were revealed as successively basal lineages. In addition, five mutational hotspots (trnNGUU-rpl32, trnLUAA, trnSGCU-trnGUCC, rbcL-accD, and trnTGGU-psbD) were identified based on the ranking of PI values. Our research indicates that plastome data is a valuable source for molecular identification and evolutionary studies of Trichoglottis and its related genera.
Collapse
Affiliation(s)
- Cheng-Yuan Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
| | - Meng-Yao Zeng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
| | - Xuyong Gao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
| | - Zhuang Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
| | - Ruyi Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
| | - Yuhan Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Singh KP, Kumari P, Yadava DK. Development of de-novo transcriptome assembly and SSRs in allohexaploid Brassica with functional annotations and identification of heat-shock proteins for thermotolerance. Front Genet 2022; 13:958217. [PMID: 36186472 PMCID: PMC9524822 DOI: 10.3389/fgene.2022.958217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
Crop Brassicas contain monogenomic and digenomic species, with no evidence of a trigenomic Brassica in nature. Through somatic fusion (Sinapis alba + B. juncea), a novel allohexaploid trigenomic Brassica (H1 = AABBSS; 2n = 60) was produced and used for transcriptome analysis to uncover genes for thermotolerance, annotations, and microsatellite markers for future molecular breeding. Illumina Novaseq 6000 generated a total of 76,055,546 paired-end raw reads, which were used for de-novo assembly, resulting in the development of 486,066 transcripts. A total of 133,167 coding sequences (CDSs) were predicted from transcripts with a mean length of 507.12 bp and 46.15% GC content. The BLASTX search of CDSs against public protein databases showed a maximum of 126,131 (94.72%) and a minimum of 29,810 (22.39%) positive hits. Furthermore, 953,773 gene ontology (GO) terms were found in 77,613 (58.28%) CDSs, which were divided into biological processes (49.06%), cellular components (31.67%), and molecular functions (19.27%). CDSs were assigned to 144 pathways by a pathway study using the KEGG database and 1,551 pathways by a similar analysis using the Reactome database. Further investigation led to the discovery of genes encoding over 2,000 heat shock proteins (HSPs). The discovery of a large number of HSPs in allohexaploid Brassica validated our earlier findings for heat tolerance at seed maturity. A total of 15,736 SSRs have been found in 13,595 CDSs, with an average of one SSR per 4.29 kb length and an SSR frequency of 11.82%. The first transcriptome assembly of a meiotically stable allohexaploid Brassica has been given in this article, along with functional annotations and the presence of SSRs, which could aid future genetic and genomic studies.
Collapse
Affiliation(s)
| | - Preetesh Kumari
- Genetics Division, ICAR—Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Preetesh Kumari,
| | | |
Collapse
|
5
|
Complete Chloroplast Genome Sequence of Fortunella venosa (Champ. ex Benth.) C.C.Huang (Rutaceae): Comparative Analysis, Phylogenetic Relationships, and Robust Support for Its Status as an Independent Species. FORESTS 2021. [DOI: 10.3390/f12080996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fortunella venosa (Rutaceae) is an endangered species endemic to China and its taxonomic status has been controversial. The genus Fortunella contains a variety of important economic plants with high value in food, medicine, and ornamental. However, the placement of Genus Fortunella into Genus Citrus has led to controversy on its taxonomy and Systematics. In this present research, the Chloroplast genome of F. venosa was sequenced using the second-generation sequencing, and its structure and phylogenetic relationship analyzed. The results showed that the Chloroplast genome size of F. venosa was 160,265 bp, with a typical angiosperm four-part ring structure containing a large single copy region (LSC) (87,597 bp), a small single copy region (SSC) (18,732 bp), and a pair of inverted repeat regions (IRa\IRb) (26,968 bp each). There are 134 predicted genes in Chloroplast genome, including 89 protein-coding genes, 8 rRNAs, and 37 tRNAs. The GC-content of the whole Chloroplast genome was 43%, with the IR regions having a higher GC content than the LSC and the SSC regions. There were no rearrangements present in the Chloroplast genome; however, the IR regions showed obvious contraction and expansion. A total of 108 simple sequence repeats (SSRs) were present in the entire chloroplast genome and the nucleotide polymorphism was high in LSC and SSC. In addition, there is a preference for codon usage with the non-coding regions being more conserved than the coding regions. Phylogenetic analysis showed that species of Fortunella are nested in the genus of Citrus and the independent species status of F. venosa is supported robustly, which is significantly different from F. japonica. These findings will help in the development of DNA barcodes that can be useful in the study of the systematics and evolution of the genus Fortunella and the family Rutaceae.
Collapse
|
6
|
Han B, Yang M, Yang X, Liu M, Xie Q, Fan G, Hosseini DK, Yu J, Song P, Chen X, Sun H. Systematic Analysis of Survival-Associated Alternative Splicing Signatures in Thyroid Carcinoma. Front Oncol 2021; 11:561457. [PMID: 34249669 PMCID: PMC8261059 DOI: 10.3389/fonc.2021.561457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing (AS) is a key mechanism involved in regulating gene expression and is closely related to tumorigenesis. The incidence of thyroid cancer (THCA) has increased during the past decade, and the role of AS in THCA is still unclear. Here, we used TCGA and to generate AS maps in patients with THCA. Univariate analysis revealed 825 AS events related to the survival of THCA. Five prognostic models of AA, AD, AT, ES, and ME events were obtained through lasso and multivariate analyses, and the final prediction model was established by integrating all the AS events in the five prediction models. Kaplan–Meier survival analysis revealed that the overall survival rate of patients in the high-risk group was significantly shorter than that of patients in the low-risk group. The ROC results revealed that the prognostic capabilities of each model at 3, 5, and 8 years were all greater than 0.7, and the final prognostic capabilities of the models were all greater than 0.9. By reviewing other databases and utilizing qPCR, we verified the established THCA gene model. In addition, gene set enrichment analysis showed that abnormal AS events might play key roles in tumor development and progression of THCA by participating in changes in molecular structure, homeostasis of the cell environment and in cell energy. Finally, a splicing correlation network was established to reveal the potential regulatory patterns between the predicted splicing factors and AS event candidates. In summary, AS should be considered an important prognostic indicator of THCA. Our results will help to elucidate the underlying mechanism of AS in the process of THCA tumorigenesis and broaden the prognostic and clinical application of molecular targeted therapy for THCA.
Collapse
Affiliation(s)
- Baoai Han
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minlan Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiuping Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengzhi Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiang Xie
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guorun Fan
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Davood K Hosseini
- Department of Internal Medicine, Hackensack University Medical Center, Hackensack, NJ, United States
| | - Jintao Yu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haiying Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Loeuille B, Thode V, Siniscalchi C, Andrade S, Rossi M, Pirani JR. Extremely low nucleotide diversity among thirty-six new chloroplast genome sequences from Aldama (Heliantheae, Asteraceae) and comparative chloroplast genomics analyses with closely related genera. PeerJ 2021; 9:e10886. [PMID: 33665028 PMCID: PMC7912680 DOI: 10.7717/peerj.10886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/12/2021] [Indexed: 01/23/2023] Open
Abstract
Aldama (Heliantheae, Asteraceae) is a diverse genus in the sunflower family. To date, nearly 200 Asteraceae chloroplast genomes have been sequenced, but the plastomes of Aldama remain undescribed. Plastomes in Asteraceae usually show little sequence divergence, consequently, our hypothesis is that species of Aldama will be overall conserved. In this study, we newly sequenced 36 plastomes of Aldama and of five species belonging to other Heliantheae genera selected as outgroups (i.e., Dimerostemma asperatum, Helianthus tuberosus, Iostephane heterophylla, Pappobolus lanatus var. lanatus, and Tithonia diversifolia). We analyzed the structure and gene content of the assembled plastomes and performed comparative analyses within Aldama and with other closely related genera. As expected, Aldama plastomes are very conserved, with the overall gene content and orientation being similar in all studied species. The length of the plastome is also consistent and the junction between regions usually contain the same genes and have similar lengths. A large ∼20 kb and a small ∼3 kb inversion were detected in the Large Single Copy (LSC) regions of all assembled plastomes, similarly to other Asteraceae species. The nucleotide diversity is very low, with only 1,509 variable sites in 127,466 bp (i.e., 1.18% of the sites in the alignment of 36 Aldama plastomes, with one of the IRs removed, is variable). Only one gene, rbcL, shows signatures of positive selection. The plastomes of the selected outgroups feature a similar gene content and structure compared to Aldama and also present the two inversions in the LSC region. Deletions of different lengths were observed in the gene ycf2. Multiple SSRs were identified for the sequenced Aldama and outgroups. The phylogenetic analysis shows that Aldama is not monophyletic due to the position of the Mexican species A. dentata. All Brazilian species form a strongly supported clade. Our results bring new understandings into the evolution and diversity of plastomes at the species level.
Collapse
Affiliation(s)
- Benoit Loeuille
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Verônica Thode
- Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carolina Siniscalchi
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States of America
| | - Sonia Andrade
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - José Rubens Pirani
- Departamento de Botânica, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Qi W, Lu H, Zhang Y, Cheng J, Huang B, Lu X, Sheteiwy MSA, Kuang S, Shao H. Oil crop genetic modification for producing added value lipids. Crit Rev Biotechnol 2020; 40:777-786. [PMID: 32605455 DOI: 10.1080/07388551.2020.1785384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Plant lipids, mainly stored in seeds and other plant parts, are not only a crucial resource for food and fodder but are also a promising alternative to fossil oils as a chemical industry feedstock. Oil crop cultivation and processing are always important parts of agriculture worldwide. Vegetable oils containing polyunsaturated fatty acids, very long chain fatty acids, conjugated fatty acids, hydroxy fatty acids and wax esters, have outstanding nutritional, lubricating, surfactant, and artificial-fibre-synthesis properties, amongst others. Enhancing the production of such specific lipid components is of economic interest. There has been a considerable amount of information reported about plant lipid biosynthesis, including identification of the pathway map of carbon flux, key enzymes (and the coding genes), and substrate affinities. Plant lipid biosynthesis engineering to produce special oil compounds has become feasible, although until now, only limited progress has been made in the laboratory. It is relatively easy to achieve the experimental objectives, for example, accumulating novel lipid compounds in given plant tissues facilitated by genetic modification. Applying such technologies to agricultural production is difficult, and the challenge is to make engineered crops economically attractive, which is impeded by only moderate success. To achieve this goal, more complicated and systematic strategies should be developed and discussed based on the relevant results currently available.
Collapse
Affiliation(s)
- Weicong Qi
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China.,Key Laboratory of Oil Crops in Huanghuaihai Plain, Ministry of Agriculture, PR China,Henan Provincial Key Laboratory for Oil Crops Improvement, Zheng Zhou, PR China
| | - Haiying Lu
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China
| | - Yang Zhang
- Key Laboratory of Oil Crops in Huanghuaihai Plain, Ministry of Agriculture, PR China,Henan Provincial Key Laboratory for Oil Crops Improvement, Zheng Zhou, PR China
| | - Jihua Cheng
- Yuan Longping High-tech Agriculture Co., LTD, Changsha, PR China
| | - Bangquan Huang
- College of Life Sciences, Hubei University, Wuhan, PR China
| | - Xin Lu
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China
| | - Mohamed Salah Amr Sheteiwy
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China.,Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, PR China
| | - Hongbo Shao
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China.,College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, PR China.,Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, PR China
| |
Collapse
|
9
|
Li B, Lin F, Huang P, Guo W, Zheng Y. Development of nuclear SSR and chloroplast genome markers in diverse Liriodendron chinense germplasm based on low-coverage whole genome sequencing. Biol Res 2020; 53:21. [PMID: 32410692 PMCID: PMC7227249 DOI: 10.1186/s40659-020-00289-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 04/29/2020] [Indexed: 01/25/2023] Open
Abstract
Background Liriodendron chinense ranges widely in subtropical China and northern Vietnam; however, it inhabits several small, isolated populations and is now an endangered species due to its limited seed production. The objective of this study was to develop a set of nuclear SSR (simple sequence repeats) and multiple chloroplast genome markers for genetic studies in L. chinense and their characterization in diverse germplasm. Results We performed low-coverage whole genome sequencing of the L. chinense from four genotypes, assembled the chloroplast genome and identified nuclear SSR loci by searching in contigs for SSR motifs. Comparative analysis of the four chloroplast genomes of L. chinense revealed 45 SNPs, 17 indels, 49 polymorphic SSR loci, and five small inversions. Most chloroplast intraspecific polymorphisms were located in the interspaces of single-copy regions. In total, 6147 SSR markers were isolated from low-coverage whole genome sequences. The most common SSR motifs were dinucleotide (70.09%), followed by trinucleotide motifs (23.10%). The motif AG/TC (33.51%) was the most abundant, followed by TC/AG (25.53%). A set of 13 SSR primer combinations were tested for amplification and their ability to detect polymorphisms in a set of 109 L. chinense individuals, representing distinct varieties or germplasm. The number of alleles per locus ranged from 8 to 28 with an average of 21 alleles. The expected heterozygosity (He) varied from 0.19 to 0.93 and the observed heterozygosity (Ho) ranged from 0.11 to 0.79. Conclusions The genetic resources characterized and tested in this study provide a valuable tool to detect polymorphisms in L. chinense for future genetic studies and breeding programs.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, China
| | - Furong Lin
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, China
| | - Ping Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, China
| | - Wenying Guo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, China
| | - Yongqi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China. .,Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China. .,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, China.
| |
Collapse
|
10
|
Munyao JN, Dong X, Yang JX, Mbandi EM, Wanga VO, Oulo MA, Saina JK, Musili PM, Hu GW. Complete Chloroplast Genomes of Chlorophytum comosum and Chlorophytum gallabatense: Genome Structures, Comparative and Phylogenetic Analysis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E296. [PMID: 32121524 PMCID: PMC7154914 DOI: 10.3390/plants9030296] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 11/16/2022]
Abstract
The genus Chlorophytum includes many economically important species well-known for medicinal, ornamental, and horticultural values. However, to date, few molecular genomic resources have been reported for this genus. Therefore, there is limited knowledge of phylogenetic studies, and the available chloroplast (cp) genome of Chlorophytum (C. rhizopendulum) does not provide enough information on this genus. In this study, we present genomic resources for C. comosum and C. gallabatense, which had lengths of 154,248 and 154,154 base pairs (bp), respectively. They had a pair of inverted repeats (IRa and IRb) of 26,114 and 26,254 bp each in size, separating the large single-copy (LSC) region of 84,004 and 83,686 bp from the small single-copy (SSC) region of 18,016 and 17,960 bp in C. comosum and C. gallabatense, respectively. There were 112 distinct genes in each cp genome, which were comprised of 78 protein-coding genes, 30 tRNA genes, and four rRNA genes. The comparative analysis with five other selected species displayed a generally high level of sequence resemblance in structural organization, gene content, and arrangement. Additionally, the phylogenetic analysis confirmed the previous phylogeny and produced a phylogenetic tree with similar topology. It showed that the Chlorophytum species (C. comosum, C. gallabatense and C. rhizopendulum) were clustered together in the same clade with a closer relationship than other plants to the Anthericum ramosum. This research, therefore, presents valuable records for further molecular evolutionary and phylogenetic studies which help to fill the gap in genomic resources and resolve the taxonomic complexes of the genus.
Collapse
Affiliation(s)
- Jacinta N. Munyao
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Dong
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Xin Yang
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Elijah M. Mbandi
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Vincent O. Wanga
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Millicent A. Oulo
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Josphat K. Saina
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Paul M. Musili
- East Africa Herbarium, National Museums of Kenya, P.O. Box 45166 00100 Nairobi, Kenya;
| | - Guang-Wan Hu
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Conservation and innovation: Plastome evolution during rapid radiation of Rhodiola on the Qinghai-Tibetan Plateau. Mol Phylogenet Evol 2019; 144:106713. [PMID: 31863901 DOI: 10.1016/j.ympev.2019.106713] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 01/25/2023]
Abstract
The amount of plastome sequence data available has soared in the last decade, but the nature of plastome evolution during rapid radiations is largely unknown. Moreover, although there is increasing evidence showing that plastomes may have undergone adaptive evolution in order to allow adaptation to various environments, few studies have systematically investigated the role of the plastome in alpine adaptation. To address these questions, we sequenced and analyzed 12 representative species of Rhodiola, a genus which includes ca. 70 perennial herbs mainly growing in alpine habitats in the Qinghai-Tibet Plateau and the Hengduan Mountains. Rapid radiation in this genus was triggered by the uplift of the Qinghai-Tibet Plateau. We also included nine species of Crassulaceae as the outgroups. All plastomes were conserved with respect to size, structure, and gene content and order, with few variations: each contained 134 genes, including 85 protein-coding genes, 37 tRNAs, 8 rRNAs, and 4 potential pseudogenes. Four types of repeat sequence were detected. Slight contraction and expansion of the inverted repeats were also revealed. Both the genome-wide alignment and sequence polymorphism analyses showed that the inverted repeats and coding regions were more conserved than the single-copy regions and the non-coding regions. Positive selection analyses identified three genes containing sites of positive selection (rpl16, ndhA, ndhH), and one gene with a faster than average rate of evolution (psaA). The products of these genes may be involved in the adaptation of Rhodiola to alpine environments such as low CO2 concentration and high-intensity light.
Collapse
|
12
|
Complete Chloroplast Genomes of Ampelopsis humulifolia and Ampelopsis japonica: Molecular Structure, Comparative Analysis, and Phylogenetic Analysis. PLANTS 2019; 8:plants8100410. [PMID: 31614980 PMCID: PMC6843361 DOI: 10.3390/plants8100410] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/06/2019] [Accepted: 10/11/2019] [Indexed: 02/05/2023]
Abstract
Ampelopsis humulifolia (A. humulifolia) and Ampelopsis japonica (A. japonica), which belong to the family Vitaceae, are valuably used as medicinal plants. The chloroplast (cp) genomes have been recognized as a convincing data for marker selection and phylogenetic studies. Therefore, in this study we reported the complete cp genome sequences of two Ampelopsis species. Results showed that the cp genomes of A. humulifolia and A. japonica were 161,724 and 161,430 bp in length, respectively, with 37.3% guanine-cytosine (GC) content. A total of 114 unique genes were identified in each cp genome, comprising 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. We determined 95 and 99 small sequence repeats (SSRs) in A. humulifolia and A. japonica, respectively. The location and distribution of long repeats in the two cp genomes were identified. A highly divergent region of psbZ (Photosystem II reaction center protein Z) -trnG (tRNA-Glycine) was found and could be treated as a potential marker for Vitaceae, and then the corresponding primers were designed. Additionally, phylogenetic analysis showed that Vitis was closer to Tetrastigma than Ampelopsis. In general, this study provides valuable genetic resources for DNA barcoding marker identification and phylogenetic analyses of Ampelopsis.
Collapse
|
13
|
An H, Jo IH, Oh YL, Jang KY, Kong WS, Sung JK, So YS, Chung JW. Molecular Characterization of 170 New gDNA-SSR Markers for Genetic Diversity in Button Mushroom ( Agaricus bisporus). MYCOBIOLOGY 2019; 47:527-532. [PMID: 32010475 PMCID: PMC6968487 DOI: 10.1080/12298093.2019.1667131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/20/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
We designed 170 new simple sequence repeat (SSR) markers based on the whole-genome sequence data of button mushroom (Agaricus bisporus), and selected 121 polymorphic markers. A total of 121 polymorphic markers, the average major allele frequency (MAF) and the average number of alleles (NA) were 0.50 and 5.47, respectively. The average number of genotypes (NG), observed heterozygosity (HO), expected heterozygosity (HE), and polymorphic information content (PIC) were 6.177, 0.227, 0.619, and 0.569, respectively. Pearson's correlation coefficient showed that MAF was negatively correlated with NG (-0.683), NA (-0.600), HO (-0.584), and PIC (-0.941). NG, NA, HO, and PIC were positively correlated with other polymorphic parameters except for MAF. UPGMA clustering showed that 26 A. bisporus accessions were classified into 3 groups, and each accession was differentiated. The 121 SSR markers should facilitate the use of molecular markers in button mushroom breeding and genetic studies.
Collapse
Affiliation(s)
- Hyejin An
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| | - Ick-Hyun Jo
- Department of Herbal Crop Research, Rural Development Administration, National Institute of Horticultural and Herbal Science, Eumseong, Republic of Korea
| | - Youn-Lee Oh
- Department of Herbal Crop Research, Rural Development Administration, National Institute of Horticultural and Herbal Science, Eumseong, Republic of Korea
| | - Kab-Yeul Jang
- Department of Herbal Crop Research, Rural Development Administration, National Institute of Horticultural and Herbal Science, Eumseong, Republic of Korea
| | - Won-Sik Kong
- Department of Herbal Crop Research, Rural Development Administration, National Institute of Horticultural and Herbal Science, Eumseong, Republic of Korea
| | - Jwa-Kyung Sung
- Department of Crop Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Yoon-Sup So
- Department of Crop Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Jong-Wook Chung
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
14
|
Thode VA, Lohmann LG. Comparative Chloroplast Genomics at Low Taxonomic Levels: A Case Study Using Amphilophium (Bignonieae, Bignoniaceae). FRONTIERS IN PLANT SCIENCE 2019; 10:796. [PMID: 31275342 PMCID: PMC6594259 DOI: 10.3389/fpls.2019.00796] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/03/2019] [Indexed: 05/13/2023]
Abstract
Chloroplast (cp) genome organization, gene order, and content have long been considered conserved among land plants. Despite that, the generation of thousands of complete plastomes through next-generation sequencing (NGS) has challenged their conserved nature. In this study, we analyze 11 new complete plastomes of Amphilophium (Bignonieae, Bignoniaceae), a diverse genus of Neotropical lianas, and that of Anemopaegma prostratum. We explored the structure and content of the assembled plastomes and performed comparative analyses within Amphilophium and among other plastomes available for Bignoniaceae. The overall gene content and orientation of plastomes is similar in all species studied. Plastomes are not conserved among Amphilophium, showing significant differences in length (155,262-164,786 bp), number of genes duplicated in the IRs (eight, 18, or 19), and location of the SC/IR boundaries (i.e., LSC/IRa junction between rps19 and rpl2 genes, within petD, or within petB). Length differences reflect expansions of the IRs and contractions of the LSC regions. The plastome of A. prostratum is 168,172 bp, includes 19 duplicated genes, and has the LSC/IRa boundary located within the petB gene. Amphilophium plastomes show high nucleotide diversity, with many hypervariable regions, and 16 genes with signatures of positive selection. Multiple SSRs and repeat regions were identified for Amphilophium and Anemopaegma prostratum. The differences in structure detected within Amphilophium plastomes in terms of LSC/IR and IR/SSC boundaries, number of duplicated genes, and genome sizes are mostly shared between taxa that belong to the same clade. Our results bring new insights into the evolution of plastomes at low taxonomic levels.
Collapse
|
15
|
Bazzo BR, de Carvalho LM, Carazzolle MF, Pereira GAG, Colombo CA. Development of novel EST-SSR markers in the macaúba palm (Acrocomia aculeata) using transcriptome sequencing and cross-species transferability in Arecaceae species. BMC PLANT BIOLOGY 2018; 18:276. [PMID: 30419831 PMCID: PMC6233587 DOI: 10.1186/s12870-018-1509-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/29/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND The macaúba palm is a novel feedstock for oil production suitable for multiple uses, including as biodiesel and in the food and cosmetic industries. As an efficient alternative, the macaúba palm has limited genomic resources, particularly expressed sequence tag (EST) markers. We report a comprehensive set of validated EST-simple sequence repeat (SSR) markers by using transcriptome sequencing, its application in genetic diversity analysis and cross transferability in other palm trees with environmental and economic importance. RESULTS In this study, a total of 418 EST-SSRs were identified to be unique for one transcript and region; 232 EST-SSRs were selected, with trinucleotide repeats being the most frequent motif, representing 380 (90.9%), followed by composited (4.5%), di- (3.6%), and hexanucleotides (3.6%). A total of 145 EST-SSRs (62.5%) were validated for consistent amplification in seventeen macaúba palm samples, and 100 were determined to be polymorphic with PIC values ranging from 0.25 to 0.77. Genetic diversity analysis was performed with the 20 most informative EST-SSR markers showing a distinct separation of the different groups of macaúba palm. Additionally, these 145 markers were transferred in six other palm species resulting in transferability rates of 99% (144) in Acrocomia intumescens, 98% (143) in Acrocomia totai, 80.7% (117 EST-EST) in African oil palm (Elaeis guineensis) and peach palm (Bactris gasipaes) samples, 70% (102) in the juçara palm (Euterpe edulis) and 71.7% (104) in the hat palm (Sabal causiarum). Analysis of genetic distance showed a high separation in accordance with geographic location, establishing distinct groups by genera. CONCLUSIONS The EST markers identified in our study are a valuable resource and provide a genomic tool for genetic mapping and further genetic studies, as well as evaluation of co-location between QTLs and functionally associated markers.
Collapse
Affiliation(s)
- Bárbara Regina Bazzo
- Institute of Biology, Laboratory of Genomic and Expression, State University of Campinas, Campinas, Brazil
| | - Lucas Miguel de Carvalho
- Institute of Biology, Laboratory of Genomic and Expression, State University of Campinas, Campinas, Brazil
| | | | | | | |
Collapse
|
16
|
Bains S, Thakur V, Kaur J, Singh K, Kaur R. Elucidating genes involved in sesquiterpenoid and flavonoid biosynthetic pathways in Saussurea lappa by de novo leaf transcriptome analysis. Genomics 2018; 111:1474-1482. [PMID: 30343181 DOI: 10.1016/j.ygeno.2018.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/16/2018] [Accepted: 09/30/2018] [Indexed: 12/13/2022]
Abstract
Saussurea lappa (family Asteraceae) possesses immense pharmacological potential mainly due to the presence of sesquiterpene lactones. In spite of its medicinal importance, S. lappa has been poorly explored at the molecular level. We initiated leaf transcriptome sequencing of S. lappa using the illumina highseq 2000 platform and generated 62,039,614 raw reads. Trinity assembler generated 122,434 contigs with an N50 value of 1053 bp. The assembled transcripts were compared against the non-redundant protein database at NCBI. The Blast2GO analysis assigned gene ontology (GO) terms, categorized into molecular functions (3132), biological processes (4477) and cellular components (1.927). Using KEGG, around 476 contigs were assigned to 39 pathways. For secondary metabolic pathways, we identified transcripts encoding genes involved in sesquiterpenoid and flavonoid biosynthesis. Relatively low number of transcripts were also found encoding for genes involved in the alkaloid pathway. Our data will contribute to functional genomics and metabolic engineering studies in this plant.
Collapse
Affiliation(s)
- Savita Bains
- Deparment of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Vasundhara Thakur
- Deparment of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Jagdeep Kaur
- Deparment of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Kashmir Singh
- Deparment of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Ravneet Kaur
- Deparment of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India.
| |
Collapse
|
17
|
Li B, Zheng Y. Dynamic evolution and phylogenomic analysis of the chloroplast genome in Schisandraceae. Sci Rep 2018; 8:9285. [PMID: 29915292 PMCID: PMC6006245 DOI: 10.1038/s41598-018-27453-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/31/2018] [Indexed: 12/20/2022] Open
Abstract
Chloroplast genomes of plants are highly conserved in both gene order and gene content, are maternally inherited, and have a lower rate of evolution. Chloroplast genomes are considered to be good models for testing lineage-specific molecular evolution. In this study, we use Schisandraceae as an example to generate insights into the overall evolutionary dynamics in chloroplast genomes and to establish the phylogenetic relationship of Schisandraceae based on chloroplast genome data using phylogenomic analysis. By comparing three Schisandraceae chloroplast genomes, we demonstrate that the gene order, gene content, and length of chloroplast genomes in Schisandraceae are highly conserved but experience dynamic evolution among species. The number of repeat variations were detected, and the Schisandraceae chloroplast genome was revealed as unusual in having a 10 kb contraction of the IR due to the genome size variations compared with other angiosperms. Phylogenomic analysis based on 82 protein-coding genes from 66 plant taxa clearly elucidated that Schisandraceae is a sister to a clade that includes magnoliids, monocots, and eudicots within angiosperms. As to genus relationships within Schisandraceae, Kadsura and Schisandra formed a monophyletic clade which was sister to Illicium.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, China
| | - Yongqi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, China.
| |
Collapse
|
18
|
Qi W, Chen X, Fang P, Shi S, Li J, Liu X, Cao X, Zhao N, Hao H, Li Y, Han Y, Zhang Z. Genomic and transcriptomic sequencing of Rosa hybrida provides microsatellite markers for breeding, flower trait improvement and taxonomy studies. BMC PLANT BIOLOGY 2018; 18:119. [PMID: 29907083 PMCID: PMC6003205 DOI: 10.1186/s12870-018-1322-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/24/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Rosa hybrida is a valuable ornamental, food and medicinal crop worldwide, but with relatively limited molecular marker resources, especially for flower-specific markers. In this study, we performed genomic and floral transcriptomic sequencing of modern rose. We obtained comprehensive nucleotide information, from which numerous potential simple sequence repeat (SSR) markers were identified but were found to have high rates of amplification failure and PCR product redundancy. RESULTS We applied a filtering strategy for BLAST analysis with the assembled genomic sequence and identified 124,591 genomic and 2,292 EST markers with unique annealing sites. These markers had much greater reliability than those obtained before filtering. Additional BLAST analysis against the transcriptomic sequences uncovered 5225 genomic SSRs associated with 4100 transcripts, 2138 of which were associated with functional genes that were annotated against the non-redundant database. More than 90% of these newly developed molecular markers were polymorphic, based on PCR using a subset of SSRs to analyze tetraploid modern rose accessions, diploid Rosa species and one strawberry accession. The relationships among Rosa species determined by cluster analysis (based on these results) were in agreement with modern rose breeding history, whereas strawberry was isolated in a separate cluster, as expected. CONCLUSIONS Our results provide valuable molecular-genetic tools for rose flower trait improvement, breeding and taxonomy. Importantly, we describe a reproducible organ-specific strategy for molecular marker development and selection in plants, which can be applied to other crops.
Collapse
Affiliation(s)
- Weicong Qi
- Salt-Soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Xi Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Peihong Fang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193 China
| | - Shaochuan Shi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193 China
| | - Jingjing Li
- Nextomics Biosciences Co., Ltd., Wuhan, 430073 China
| | - Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193 China
| | - Xiaoqian Cao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193 China
| | - Na Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193 China
| | - Huiyuan Hao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193 China
| | - Yajie Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193 China
| | - Yujie Han
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193 China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193 China
| |
Collapse
|
19
|
Zhang L, Zeng T, Hu H, Fan L, Zheng H, Hu Q. Interspecific Divergence of Two Sinalliaria (Brassicaceae) Species in Eastern China. FRONTIERS IN PLANT SCIENCE 2018; 9:77. [PMID: 29445389 PMCID: PMC5797776 DOI: 10.3389/fpls.2018.00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
How endemic species originated in eastern Asia has interested botanists for a long time. In this study, we combined experimental and computational modeling approaches to examine the morphological and genetic divergence and reproductive isolation of two tentative species of Sinalliaria (Brassicaceae) endemic to eastern China, S. limprichtiana and S. grandifolia. Most of the examined morphological characters (including hairs of leaf blades and stems, corolla length and width, and flower stalk length) were well-delineated between two species at the same ploidy level, and there was clear evidence of reproductive isolation between them (mainly due to post-pollination barriers) in the common garden environment. There were also strong and consistent divergences in the population genetic data. Coalescent simulations based on sequence variation of the nuclear genes suggest that interspecific divergence began during the Pleistocene when the climate oscillated in eastern Asia. Gene flow between two species appears to have been very limited and asymmetrical. Our results suggested that both species are well-differentiated and that the fast divergence between them might have been together shaped by both stochastic processes and habitat selection pressures.
Collapse
|
20
|
Complete Chloroplast Genome Sequence of Decaisnea insignis: Genome Organization, Genomic Resources and Comparative Analysis. Sci Rep 2017; 7:10073. [PMID: 28855603 PMCID: PMC5577308 DOI: 10.1038/s41598-017-10409-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/08/2017] [Indexed: 11/09/2022] Open
Abstract
Decaisnea insignis is a wild resource plant and is used as an ornamental, medicinal, and fruit plant. High-throughput sequencing of chloroplast genomes has provided insight into the overall evolutionary dynamics of chloroplast genomes and has enhanced our understanding of the evolutionary relationships within plant families. In the present study, we sequenced the complete chloroplast genome of D. insignis and used the data to assess its genomic resources. The D. insignis chloroplast genome is 158,683 bp in length and includes a pair of inverted repeats of 26,167 bp that are separated by small and large single copy regions of 19,162 bp and 87,187 bp, respectively. We identified 83 simple sequence repeats and 18 pairs of large repeats. Most simple-sequence repeats were located in the noncoding sections of the large single-copy/small single-copy region and exhibited a high A/T content. The D. insignis chloroplast genome bias was skewed towards A/T on the basis of codon usage. A phylogenetic tree based on 82 protein-coding genes of 33 angiosperms showed that D. insignis was clustered with Akebia in Lardizabalaceae. Overall, the results of this study will contribute to better understanding the evolution, molecular biology and genetic improvement of D. insignis.
Collapse
|
21
|
Miao N, Zhang L, Li M, Fan L, Mao K. Development of EST-SSR markers for Taxillus nigrans (Loranthaceae) in southwestern China using next-generation sequencing. APPLICATIONS IN PLANT SCIENCES 2017; 5:apps1700010. [PMID: 28924510 PMCID: PMC5584814 DOI: 10.3732/apps.1700010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
PREMISE OF THE STUDY We developed transcriptome microsatellite markers (simple sequence repeats) for Taxillus nigrans (Loranthaceae) to survey the genetic diversity and population structure of this species. METHODS AND RESULTS We used Illumina HiSeq data to reconstruct the transcriptome of T. nigrans by de novo assembly and used the transcriptome to develop a set of simple sequence repeat markers. Overall, 40 primer pairs were designed and tested; 19 of them amplified successfully and demonstrated polymorphisms. Two loci that detected null alleles were eliminated, and the remaining 17, which were subjected to further analyses, yielded two to 21 alleles per locus. CONCLUSIONS The markers will serve as a basis for studies to assess the extent and pattern of distribution of genetic variation in T. nigrans, and they may also be useful in conservation genetic, ecological, and evolutionary studies of the genus Taxillus, a group of plant species of importance in Chinese traditional medicine.
Collapse
Affiliation(s)
- Ning Miao
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Lei Zhang
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Maoping Li
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Liqiang Fan
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Kangshan Mao
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, People’s Republic of China
| |
Collapse
|