1
|
Nidhi, Iqbal N, Khan NA. Synergistic effects of phytohormones and membrane transporters in plant salt stress mitigation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109685. [PMID: 40007372 DOI: 10.1016/j.plaphy.2025.109685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/06/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Plants are frequently exposed to high salinity, negatively affecting their development and productivity. This review examined the complex roles of membrane transporters (MTs) and phytohormones in mediating salt stress. MTs are crucial in capturing sodium ions (Na+) and maintaining a delicate balance between sodium (Na+) and potassium (K+), essential for supporting cellular homeostasis and enhancing overall plant health. These MTs were instrumental in regulating ion balance and promoting the absorption and segregation of vital nutrients, thereby enhancing salt stress tolerance. Various plant hormones, including abscisic acid, auxin, ethylene, cytokinin, and gibberellins, along with gaseous growth regulators such as nitric oxide and hydrogen sulfide, collaborate to regulate and synchronize numerous aspects of plant growth, development, and stress responses to environmental factors. These transporters and other phytohormones, including brassinosteroids, melatonin, and salicylic acid, also collaborated to initiate adaptation processes, such as controlling osmotic pressure, removing ions, and initiating stress signaling pathways. This study consolidated the advancements in understanding the molecular and physiological processes contributing to plant salt tolerance, emphasizing the intricate relationships between MTs and phytohormones. The aim was to elucidate these interactions to promote further research and develop strategies for enhancing plant salt tolerance.
Collapse
Affiliation(s)
- Nidhi
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Noushina Iqbal
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
2
|
Wang YZ, Zhao HM, Huang XP, Zhang Y, Ye JC, Feng NX, Li YW, Liu BL, Cai QY, Xiang L, Mo CH, Li QX. Variety-dependent seed endophytic bacteria enhance stress tolerance to and bioaccumulation of ciprofloxacin in choy sum (Brassica parachinensis). MICROBIOME 2025; 13:80. [PMID: 40121500 PMCID: PMC11929246 DOI: 10.1186/s40168-025-02073-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Accumulation of antibiotics in crops threatens human health. However, the mechanisms and effects of microorganisms on the uptake and accumulation of antibiotics in crops remain poorly understood. This study aimed to investigate the impact and underlying mechanisms of seed-borne microbiota in root on ciprofloxacin (CIP) accumulation in two choy sum varieties through amplicon sequencing, multiple statistical analyses, and subsequent validation of key bacteria via isolation and co-culturing with plants. RESULTS Bacillaceae (mainly Bacillus) was enriched specifically in the roots of CIP high-antibiotic-accumulating variety (HAV) via seed-based vertical transmission activated by the root exudate-derived maleic acid. The relative abundance of Bacillaceae was 9.2 to 27.7 times higher in roots of HAV relative to the low-antibiotic-accumulating variety (LAV). The enrichment of Bacillaceae facilitated a cooperative and beneficial bacterial community formed by the deterministic process. The community in HAV could not only stimulate antioxidase activities and decrease membrane lipid peroxidation via secreting indoleacetic acid and siderophore but also promote its biomass, especially the root length and biomass of HAV, thus greatly improving its tolerance to and absorption of CIP. The variety-specific plant-microbial interactions caused 1.6- to 3.2-fold higher CIP accumulation in shoots of HAV relative to LAV shoots. CONCLUSIONS The findings highlight the crucial roles of the seed-borne microbiota in regulating the uptake and accumulation of antibiotics in crops, giving new understanding on the accumulation of organic pollutants in plants, with an emphasis on plant-microbial interactions Video Abstract.
Collapse
Affiliation(s)
- Yi-Ze Wang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | | | - Xian-Pei Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yu Zhang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jin-Cheng Ye
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
3
|
Wu T, Han B, Wang Y, Zhang B, Wang C, Wang S, Cai H, Liu Z, Hammond JP, Kant S, Ding G, Xu F, Shi L. The BnamiR827-BnaA09.NLA1-BnaPHT1 module regulates phosphate homeostasis, pollen viability, and seed yield in Brassica napus. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1333-1350. [PMID: 39722233 DOI: 10.1093/jxb/erae484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
Phosphorus (P) is an essential macronutrient for the growth and yield of crops. However, there is limited understanding of the regulatory mechanisms of phosphate (Pi) homeostasis, and its impact on growth, development, and yield-related traits in Brassica napus. Here, we identified four NITROGEN LIMITATION ADAPTATION1 (BnaNLA1) genes in B. napus; their expression was predominant in roots and suppressed by Pi starvation-induced BnamiR827. All the BnaNLA1 proteins have similar sequences, subcellular localizations, and abilities to rescue the growth defects of the atnla1 mutant. One of the genes, BnaA09.NLA1, is expressed abundantly in roots, and also in old leaves, anthers, and pollen. Knocking out BnaNLA1 genes or overexpressing BnamiR827 resulted in increased concentrations of Pi in leaves and stamens and reduced pollen viability, thereby negatively impacting seed yield. Bimolecular fluorescence complementation (BiFC) and split-ubiquitin yeast two-hybrid (Y2H) analyses demonstrated that BnaA09.NLA1 interacted with seven Pi transporters highly expressed in roots and/or anthers (i.e. BnaPT8/10/11/27/35/37/42) to regulate Pi uptake and Pi allocation in anthers. Taken together, this study demonstrates that the BnamiR827-BnaA09.NLA1-BnaPHT1 module is involved in the regulation of Pi uptake and Pi allocation in floral organs, which is vital for the growth, pollen viability, and seed yield of B. napus.
Collapse
Affiliation(s)
- Tao Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Bei Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yajie Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Bingbing Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuang Wang
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongmei Cai
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhu Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - John P Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6AR, UK
| | - Surya Kant
- School of Agriculture, Biomedicine & Environment, La Trobe University, AgriBio, 5 Ring Rd, Bundoora, Vic 3083, Australia
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Yi X, Hua W, Zhang Z, Liu L, Liu X, Liu F, Tang T, Yang H, Zhang J, Wu D, Zhao X. Dissecting the Genetic Basis of Preharvest Sprouting in Rice Using a Genome-Wide Association Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3257-3267. [PMID: 39854728 DOI: 10.1021/acs.jafc.4c09230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Preharvest sprouting (PHS) is an unfavorable trait in cereal crops that significantly reduces grain yield and quality. However, the regulatory mechanisms underlying this complex trait are still largely unknown. Here, 276 rice accessions from the 3000 Rice Genomes Project were used to perform a genome-wide association study. In total, seven PHS-associated quantitative trait loci (QTLs) were identified, including two novel QTLs and five previously reported QTLs. Among them, four QTLs were identified in 2020 and 2021, and rice accessions carrying at least two favorable alleles exhibited significantly improved PHS resistance. Within these four stable QTLs, five candidate genes were identified based on haplotype and gene expression analyses, including two genes in qPhs-1.1, one gene in qPhs-3, one gene in qPhs-6, and one gene in qPhs-7. Notably, the novel QTL qPhs-6 was found to contain the candidate gene Pi starvation-induced transcription factor 1 (OsPTF1). We discovered that OsPTF1 plays a novel role in negatively regulating PHS in rice and identified two elite haplotypes of OsPTF1 associated with low PHS. Our results provide future insight into the genetic basis of PHS and will prove useful in the future studies on the role of OsPTF1 in PHS in rice.
Collapse
Affiliation(s)
- Xin Yi
- Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai'an 223300, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanyi Hua
- Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China
| | - Ziqiang Zhang
- Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China
| | - Lei Liu
- Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai'an 223300, China
| | - Xi Liu
- Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai'an 223300, China
| | - Fuxia Liu
- Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai'an 223300, China
| | - Tang Tang
- Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai'an 223300, China
| | - Hengxuan Yang
- Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China
| | - Jingtian Zhang
- Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China
| | - Depeng Wu
- Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai'an 223300, China
| | - Xiangxiang Zhao
- Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai'an 223300, China
| |
Collapse
|
5
|
Shi K, Liu J, Liang H, Dong H, Zhang J, Wei Y, Zhou L, Wang S, Zhu J, Cao M, Jones CS, Ma D, Wang Z. An alfalfa MYB-like transcriptional factor MsMYBH positively regulates alfalfa seedling drought resistance and undergoes MsWAV3-mediated degradation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:683-699. [PMID: 38358036 DOI: 10.1111/jipb.13626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Drought is a major threat to alfalfa (Medicago sativa L.) production. The discovery of important alfalfa genes regulating drought response will facilitate breeding for drought-resistant alfalfa cultivars. Here, we report a genome-wide association study of drought resistance in alfalfa. We identified and functionally characterized an MYB-like transcription factor gene (MsMYBH), which increases the drought resistance in alfalfa. Compared with the wild-types, the biomass and forage quality were enhanced in MsMYBH overexpressed plants. Combined RNA-seq, proteomics and chromatin immunoprecipitation analysis showed that MsMYBH can directly bind to the promoters of MsMCP1, MsMCP2, MsPRX1A and MsCARCAB to improve their expression. The outcomes of such interactions include better water balance, high photosynthetic efficiency and scavenge excess H2O2 in response to drought. Furthermore, an E3 ubiquitin ligase (MsWAV3) was found to induce MsMYBH degradation under long-term drought, via the 26S proteasome pathway. Furthermore, variable-number tandem repeats in MsMYBH promoter were characterized among a collection of germplasms, and the variation is associated with promoter activity. Collectively, our findings shed light on the functions of MsMYBH and provide a pivotal gene that could be leveraged for breeding drought-resistant alfalfa. This discovery also offers new insights into the mechanisms of drought resistance in alfalfa.
Collapse
Affiliation(s)
- Kun Shi
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jia Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Huan Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongbin Dong
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinli Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuanhong Wei
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Le Zhou
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shaopeng Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiahao Zhu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mingshu Cao
- AgResearch Grasslands Research Centre, Palmerston North, 4442, New Zealand
| | - Chris S Jones
- International Livestock Research Institute, Nairobi, 00100, Kenya
| | - Dongmei Ma
- School of Ecology and Environment, Ningxia University, Yinchuan, 750021, China
| | - Zan Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
6
|
Chen J, Jin Z, Xiang L, Chen Y, Zhang J, Zhao J, Huang F, Shi Y, Cheng F, Pan G. Ethanol suppresses rice seed germination through inhibiting ROS signaling. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154123. [PMID: 37907025 DOI: 10.1016/j.jplph.2023.154123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023]
Abstract
Ethanol is frequently used not only as priming but also as a solvent to dissolve hardly water-soluble phytohormones gibberellic acid (GA3) and abscisic acid (ABA) in seed germination. However, the molecular and physiological mechanisms of ethanol's impact on seed germination remain elusive. In this report, we investigated how ethanol affected reactive oxygen species (ROS) during rice seed germination. Ethanol at a concentration of 3.5% (v/v) inhibited 90% seed germination, which was almost reversed by H2O2. H2O2 contents in embryos were reduced by ethanol after 18 h imbibition. Antioxidant enzymes assays revealed that only superoxide dismutase (SOD) activities in seed embryos were lowered by ethanol, in line with the suppressed mRNA expression of SOD genes during imbibition. Additionally, compared to the mock condition, ethanol increased ABA contents but decreased GA (GA1 and GA3) in seed embryos, resulting in disharmonizing GA/ABA balance. Conceivably ethanol induced transcription of OsNCEDs, the key genes for ABA biosynthesis, and OsABA8ox3, a key gene for ABA catabolism. Furthermore, ethanol promoted ABA signaling by upregulating ABA receptor genes and ABA-responsive element (ABRE)-binding protein/ABRE-binding factors during imbibition. Overall, our results demonstrate that lowering of H2O2 levels due to suppressed SOD activities in rice germinating seed embryos is the decisive factor for ethanol-induced inhibition of seed germination, and GA/ABA balance and ABA signaling also play important roles in ethanol's inhibitory impact on seed germination.
Collapse
Affiliation(s)
- Jiameng Chen
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Zeyan Jin
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Longyi Xiang
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Yanyan Chen
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Jie Zhang
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Jiayi Zhao
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Fudeng Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Yongfeng Shi
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, PR China
| | - Fangmin Cheng
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Gang Pan
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
7
|
Li Y, Wang X, Zhang H, Ye X, Shi L, Xu F, Ding G. Phosphate Transporter BnaPT37 Regulates Phosphate Homeostasis in Brassica napus by Changing Its Translocation and Distribution In Vivo. PLANTS (BASEL, SWITZERLAND) 2023; 12:3362. [PMID: 37836101 PMCID: PMC10574216 DOI: 10.3390/plants12193362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Inorganic phosphate (Pi) is actively taken up by Pi transporters (PTs) from the soil and transported into the plant. Here, we functionally characterized the Brassica napus gene BnaPT37, which belongs to the PHT1 family. BnaPT37 is a plasma membrane-localized protein containing 534 amino acids. Expression of BnaPT37 increased significantly under Pi deficiency in various tissues, especially in fully expanded leaves. Expression of the β-glucuronidase reporter gene driven by the BnaPT37 promoter showed that BnaPT37 is expressed in the root, stem, calyx, and leaf under Pi deficiency. BnaPT37 can complement a yeast mutant strain defective in five Pi transporters and can restore the growth of the Arabidopsis atpt1/2 double mutant under Pi deprivation. Overexpression of BnaPT37 in rapeseed significantly increased Pi translocation from root to shoot. Moreover, the movement of Pi from fully expanded leaves to new leaves and roots was enhanced in the transgenic lines compared to the wild type. However, the overexpression of BnaPT37 inhibited the flowering time, plant height, and Pi accumulation in seeds. In conclusion, BnaPT37 functions as a plasma membrane-localized Pi transporter and might be involved in Pi translocation from root to shoot and Pi distribution from source to sink in B. napus.
Collapse
Affiliation(s)
- Yu Li
- College of Resources and Environment, Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Xue Wang
- College of Resources and Environment, Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Zhang
- College of Resources and Environment, Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangsheng Ye
- College of Resources and Environment, Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Shi
- College of Resources and Environment, Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- College of Resources and Environment, Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangda Ding
- College of Resources and Environment, Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Tuo D, Wu J, Zou J, Dong G, Zeng W, Li J, Du D. Analysis of Hormone Regulation on Seed Germination of Coix Based on Muli-Omics Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2700. [PMID: 37514314 PMCID: PMC10385750 DOI: 10.3390/plants12142700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/01/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023]
Abstract
Seed germination is an important stage of growth and reproduction and plays an important role in the life cycle of spermatophyte. It is co-determined by both genetic and environmental factors, and plant hormone regulation may be a highly conservative mechanism. Coix lachryrma-jobi (coix) is a grain with balanced nutrition for medicine and food and has substantial production value. It is an important part of agricultural production, and the efficiency of seed germination after sowing is a key link. In this study, coix species "small white shell Xingren" was used as the experimental material, and changes in gene expression levels and metabolite enrichment in seeds were identified by transcriptome and metabonomic analysis before and after seed germination. A total of 599 metabolites, including those from amino acid metabolism, sugar metabolism, and fatty acid metabolism, were significantly increased in germinating coix. Simultaneously, 10,929 differentially expressed genes (DEGs) were identified, and functional clusters of genes were also significantly clustered in hormone-signaling and glucose and fatty acid metabolism. In addition, this study found that a considerable number of hormone-signaling genes were significantly up-regulated during seed germination, activating multiple metabolic processes. The results of our conjoint analysis of multi omics showed that glucose and fatty acid metabolism played an important role in seed germination under hormone regulation.
Collapse
Affiliation(s)
- Donghao Tuo
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiawen Wu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Juan Zou
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Guoqing Dong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wanyong Zeng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jinhua Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dengxiang Du
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
9
|
Yugandhar P, Veronica N, Subrahmanyam D, Brajendra P, Nagalakshmi S, Srivastava A, Voleti SR, Sarla N, Sundaram RM, Sevanthi AM, Singh AK, Mangrauthia SK. Revealing the effect of seed phosphorus concentration on seedling vigour and growth of rice using mutagenesis approach. Sci Rep 2022; 12:1203. [PMID: 35075121 PMCID: PMC8786825 DOI: 10.1038/s41598-022-04983-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/29/2021] [Indexed: 01/24/2023] Open
Abstract
The harvested plant products, specifically, the grains of cereals are major drivers of soil phosphorus (P) depletion. However, the breeding or biotechnology efforts to develop low P seeds have not been attempted because of possible adverse effects on seedling vigour and crop establishment. Several studies have contradictory observations on influence of seed P on seedling vigour. Lack of appropriate genetic material has been the major bottleneck in reaching the consensus. In this study, we used 30 EMS induced mutants of rice cultivar Nagina22 to understand the role of seed P on seedling vigour and associated physiological processes. Seedling vigour, morpho-physiological characteristics, acid phosphatases, alpha-amylase, and expression of P transporter genes were analyzed in seedlings obtained from seeds of high and low grain P mutants. The study suggests that seed P has a significant role on seedling vigour, chlorophyll content and photosynthesis process of young seedlings, and P transport from roots. Notably, we identified few mutants such as NH4791, NH4785, NH4714, NH4663, NH4614, and NH4618 which showed least influence of low seed P on seedling vigour and other metabolic processes. Therefore, these mutants can be used in breeding programs aiming for development of low P grains. Also, these and other identified mutants can be used to decipher the genetic and molecular mechanisms regulating the differential response of seed P on germination, seedling vigour and several other physiological processes influencing the crop growth and establishment.
Collapse
Affiliation(s)
- Poli Yugandhar
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | | | - D Subrahmanyam
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - P Brajendra
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - S Nagalakshmi
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | | | - S R Voleti
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - N Sarla
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - R M Sundaram
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | | | - A K Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
10
|
Gill RA, Ahmar S, Ali B, Saleem MH, Khan MU, Zhou W, Liu S. The Role of Membrane Transporters in Plant Growth and Development, and Abiotic Stress Tolerance. Int J Mol Sci 2021; 22:12792. [PMID: 34884597 PMCID: PMC8657488 DOI: 10.3390/ijms222312792] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
The proteins of membrane transporters (MTs) are embedded within membrane-bounded organelles and are the prime targets for improvements in the efficiency of water and nutrient transportation. Their function is to maintain cellular homeostasis by controlling ionic movements across cellular channels from roots to upper plant parts, xylem loading and remobilization of sugar molecules from photosynthesis tissues in the leaf (source) to roots, stem and seeds (sink) via phloem loading. The plant's entire source-to-sink relationship is regulated by multiple transporting proteins in a highly sophisticated manner and driven based on different stages of plant growth and development (PG&D) and environmental changes. The MTs play a pivotal role in PG&D in terms of increased plant height, branches/tiller numbers, enhanced numbers, length and filled panicles per plant, seed yield and grain quality. Dynamic climatic changes disturbed ionic balance (salt, drought and heavy metals) and sugar supply (cold and heat stress) in plants. Due to poor selectivity, some of the MTs also uptake toxic elements in roots negatively impact PG&D and are later on also exported to upper parts where they deteriorate grain quality. As an adaptive strategy, in response to salt and heavy metals, plants activate plasma membranes and vacuolar membrane-localized MTs that export toxic elements into vacuole and also translocate in the root's tips and shoot. However, in case of drought, cold and heat stresses, MTs increased water and sugar supplies to all organs. In this review, we mainly review recent literature from Arabidopsis, halophytes and major field crops such as rice, wheat, maize and oilseed rape in order to argue the global role of MTs in PG&D, and abiotic stress tolerance. We also discussed gene expression level changes and genomic variations within a species as well as within a family in response to developmental and environmental cues.
Collapse
Affiliation(s)
- Rafaqat Ali Gill
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
| | - Sunny Ahmar
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.A.); (M.H.S.)
| | - Basharat Ali
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.A.); (M.H.S.)
| | - Muhammad Umar Khan
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Weijun Zhou
- Institute of Crop Science, The Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China;
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
| |
Collapse
|
11
|
Liu H, Wang J, Zhang B, Yang X, Hammond JP, Ding G, Wang S, Cai H, Wang C, Xu F, Shi L. Genome-wide association study dissects the genetic control of plant height and branch number in response to low-phosphorus stress in Brassica napus. ANNALS OF BOTANY 2021; 128:919-930. [PMID: 34490877 PMCID: PMC8577194 DOI: 10.1093/aob/mcab115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS Oilseed rape (Brassica napus) is one of the most important oil crops worldwide. Phosphorus (P) deficiency severely decreases the plant height and branch number of B. napus. However, the genetic bases controlling plant height and branch number in B. napus under P deficiency remain largely unknown. This study aims to mine candidate genes for plant height and branch number by genome-wide association study (GWAS) and determine low-P-tolerance haplotypes. METHODS An association panel of B. napus was grown in the field with a low P supply (P, 0 kg ha-1) and a sufficient P supply (P, 40 kg ha-1) across 2 years and plant height and branch number were investigated. More than five million single-nucleotide polymorphisms (SNPs) were used to conduct GWAS of plant height and branch number at two contrasting P supplies. KEY RESULTS A total of 2127 SNPs were strongly associated (P < 6·25 × 10-07) with plant height and branch number at two P supplies. There was significant correlation between phenotypic variation and the number of favourable alleles of associated loci on chromosomes A10 (chrA10_821671) and C08 (chrC08_27999846), which will contribute to breeding improvement by aggregating these SNPs. BnaA10g09290D and BnaC08g26640D were identified to be associated with chrA10_821671 and chrC08_27999846, respectively. Candidate gene association analysis and haplotype analysis showed that the inbred lines carrying ATT at BnaA10g09290Hap1 and AAT at BnaC08g26640Hap1 had greater plant height than lines carrying other haplotype alleles at low P supply. CONCLUSION Our results demonstrate the power of GWAS in identifying genes of interest in B. napus and provided insights into the genetic basis of plant height and branch number at low P supply in B. napus. Candidate genes and favourable haplotypes may facilitate marker-based breeding efforts aimed at improving P use efficiency in B. napus.
Collapse
Affiliation(s)
- Haijiang Liu
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingchi Wang
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Bingbing Zhang
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyu Yang
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - John P Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6AR, UK
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | - Guangda Ding
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheliang Wang
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongmei Cai
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuang Wang
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Shi
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Huang KL, Tian J, Wang H, Fu YF, Li Y, Zheng Y, Li XB. Fatty acid export protein BnFAX6 functions in lipid synthesis and axillary bud growth in Brassica napus. PLANT PHYSIOLOGY 2021; 186:2064-2077. [PMID: 34618109 PMCID: PMC8331132 DOI: 10.1093/plphys/kiab229] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 06/13/2023]
Abstract
Sugar is considered as the primary regulator of plant apical dominance, whereby the outgrowth of axillary buds is inhibited by the shoot tip. However, there are some deficiencies in this theory. Here, we reveal that Fatty Acid Export 6 (BnFAX6) functions in FA transport, and linoleic acid or its derivatives acts as a signaling molecule in regulating apical dominance of Brassica napus. BnFAX6 is responsible for mediating FA export from plastids. Overexpression of BnFAX6 in B. napus heightened the expression of genes involved in glycolysis and lipid biosynthesis, promoting the flow of photosynthetic products to the biosynthesis of FAs (including linoleic acid and its derivatives). Enhancing expression of BnFAX6 increased oil content in seeds and leaves and resulted in semi-dwarf and increased branching phenotypes with more siliques, contributing to increased yield per plant relative to wild-type. Furthermore, decapitation led to the rapid flow of the carbon from photosynthetic products to FA biosynthesis in axillary buds, consistent with the overexpression of BnFAX6 in B. napus. In addition, free FAs, especially linoleic acid, were rapidly transported from leaves to axillary buds. Increasing linoleic acid in axillary buds repressed expression of a key transcriptional regulator responsible for maintaining bud dormancy, resulting in bud outgrowth. Taken together, we uncovered that BnFAX6 mediating FA export from plastids functions in lipid biosynthesis and in axillary bud dormancy release, possibly through enhancing linoleic acid level in axillary buds of B. napus.
Collapse
Affiliation(s)
- Ke-Lin Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Jing Tian
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Huan Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yi-Fan Fu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yong Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
13
|
Zhao Z, Wang S, White PJ, Wang Y, Shi L, Xu F. Boron and Phosphorus Act Synergistically to Modulate Absorption and Distribution of Phosphorus and Growth of Brassica napus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7830-7838. [PMID: 32614576 DOI: 10.1021/acs.jafc.0c02522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Rapeseed (Brassica napus L.) is highly susceptible to boron (B) and phosphorus (P) deficiencies, yet knowledge of how these two essential elements interact to contribute to plant growth and crop yield is limited. To this end, a pot experiment with three P application rates (5, 75, and 150 mg P2O5 kg-1 dry soil) and two B application rates (0.25 and 1 mg B kg-1 dry soil) was conducted. The results showed that high P combined with high B optimized plant growth and facilitated P distribution forward to seeds compared with high P and low B combination at the maturity stage. Under low P conditions, low B supply was more beneficial for P absorption at seedling and bolting stages and increased P distribution ratio in seeds at the maturity stage, resulting in higher photosynthetic efficiency and growth parameters than low P and high B combination. Interestingly, high B supply could upregulate the expression of the P-starvation-induced gene BnaC3.SPX3 and P transport genes in roots under low P conditions, so low B-facilitated P absorption appears to be a BnaPHT1s-independent process. Significant differences of B and P interaction on the seed yield, net photosynthetic rate, and total P absorption and distribution at the maturity stage between two cultivars might reflect the distinct genotypic properties. Overall, our findings highlight the importance of balanced B and P nutrition which acts synergistically to modulate growth and yield formation of B. napus either in nutrition deficiency or sufficiency.
Collapse
Affiliation(s)
- Zhe Zhao
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Philip John White
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, U.K
| | - Youqiang Wang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
14
|
Wan Y, Wang Z, Xia J, Shen S, Guan M, Zhu M, Qiao C, Sun F, Liang Y, Li J, Lu K, Qu C. Genome-Wide Analysis of Phosphorus Transporter Genes in Brassica and Their Roles in Heavy Metal Stress Tolerance. Int J Mol Sci 2020; 21:E2209. [PMID: 32210032 PMCID: PMC7139346 DOI: 10.3390/ijms21062209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 11/18/2022] Open
Abstract
Phosphorus transporter (PHT) genes encode H2PO4-/H+ co-transporters that absorb and transport inorganic nutrient elements required for plant development and growth and protect plants from heavy metal stress. However, little is known about the roles of PHTs in Brassica compared to Arabidopsis thaliana. In this study, we identified and extensively analyzed 336 PHTs from three diploid (B. rapa, B. oleracea, and B. nigra) and two allotetraploid (B. juncea and B. napus) Brassica species. We categorized the PHTs into five phylogenetic clusters (PHT1-PHT5), including 201 PHT1 homologs, 15 PHT2 homologs, 40 PHT3 homologs, 54 PHT4 homologs, and 26 PHT5 homologs, which are unevenly distributed on the corresponding chromosomes of the five Brassica species. All PHT family genes from Brassica are more closely related to Arabidopsis PHTs in the same vs. other clusters, suggesting they are highly conserved and have similar functions. Duplication and synteny analysis revealed that segmental and tandem duplications led to the expansion of the PHT gene family during the process of polyploidization and that members of this family have undergone purifying selection during evolution based on Ka/Ks values. Finally, we explored the expression profiles of BnaPHT family genes in specific tissues, at various developmental stages, and under heavy metal stress via RNA-seq analysis and qRT-PCR. BnaPHTs that were induced by heavy metal treatment might mediate the response of rapeseed to this important stress. This study represents the first genome-wide analysis of PHT family genes in Brassica species. Our findings improve our understanding of PHT family genes and provide a basis for further studies of BnaPHTs in plant tolerance to heavy metal stress.
Collapse
Affiliation(s)
- Yuanyuan Wan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhen Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jichun Xia
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Shulin Shen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Mingwei Guan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Meichen Zhu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Cailin Qiao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Fujun Sun
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Ying Liang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
15
|
Cao GH, Li ZD, Wang XF, Zhang X, Zhao RH, Gu W, Chen D, Yu J, He S. Phosphate transporters, PnPht1;1 and PnPht1;2 from Panax notoginseng enhance phosphate and arsenate acquisition. BMC PLANT BIOLOGY 2020; 20:124. [PMID: 32197586 PMCID: PMC7083058 DOI: 10.1186/s12870-020-2316-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/27/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Panax notoginseng is a medicinally important Chinese herb with a long history of cultivation and clinical application. The planting area is mainly distributed in Wenshan Prefecture, where the quality and safety of P. notoginseng have been threatened by high concentration of arsenic (As) from the soil. The roles of phosphate (Pi) transporters involved in Pi acquisition and arsenate (AsV) tolerance were still unclear in this species. RESULTS In this study, two open reading frames (ORFs) of PnPht1;1 and PnPht1;2 separated from P. notoginseng were cloned based on RNA-seq, which encoded 527 and 541 amino acids, respectively. The results of relative expression levels showed that both genes responded to the Pi deficiency or As exposure, and were highly upregulated. Heterologous expression in Saccharomyces cerevisiae MB192 revealed that PnPht1;1 and PnPht1;2 performed optimally in complementing the yeast Pi-transport defect, particularly in PnPht1;2. Cells expressing PnPht1;2 had a stronger AsV tolerance than PnPht1;1-expressing cells, and accumulated less As in cells under a high-Pi concentration. Combining with the result of plasma membrane localization, these data confirmed that transporters PnPht1;1 and PnPht1;2 were putative high-affinity H+/H2PO4- symporters, mediating the uptake of Pi and AsV. CONCLUSION PnPht1;1 and PnPht1;2 encoded functional plasma membrane-localized transporter proteins that mediated a putative high-affinity Pi/H+ symport activity. Expression of PnPht1;1 or PnPht1;2 in mutant strains could enhance the uptake of Pi and AsV, that is probably responsible for the As accumulation in the roots of P. notoginseng.
Collapse
Affiliation(s)
- Guan-Hua Cao
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, Yunnan, China
| | - Ze-Dong Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xi-Fu Wang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xue Zhang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Rong-Hua Zhao
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wen Gu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Di Chen
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jie Yu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| | - Sen He
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| |
Collapse
|
16
|
Li Y, Wang X, Zhang H, Wang S, Ye X, Shi L, Xu F, Ding G. Molecular identification of the phosphate transporter family 1 (PHT1) genes and their expression profiles in response to phosphorus deprivation and other abiotic stresses in Brassica napus. PLoS One 2019; 14:e0220374. [PMID: 31344115 PMCID: PMC6657917 DOI: 10.1371/journal.pone.0220374] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/14/2019] [Indexed: 11/18/2022] Open
Abstract
Phosphate (Pi) transporters play critical roles in Pi acquisition and homeostasis. However, little is known about these transporters in oilseed rape. Therefore, the aim of the present study was to characterize the members of the PHT1 gene family in allotetraploid Brassica napus and to analyze their expression profiles in response to environmental stresses. In total, 49 PHT1 family members were identified in B. napus, including 27 genes in the A subgenome and 22 in the C subgenome. Most of the PHT1 proteins were predicted to localize to the plasma membrane. Phylogenetic analysis suggested that the members of the PHT1 gene family can be divided into seven clades, with the introns/exons and protein motifs conserved in each clade. Collinearity analysis revealed that most of the BnaPHT1 genes shared syntenic relationships with PHT1 members in Arabidopsis thaliana, B. rapa, and B. oleracea, and that whole-genome duplication (polyploidy) played a major driving force for BnaPHT1 evolution in addition to segmental duplication. Transcript abundance analysis showed that a broad range of expression patterns of individual BnaPHT1 genes occurred in response to phosphorus (P) deficiency. In addition, the expression levels of BnaPHT1 genes can be regulated by different nutrient stresses, including nitrogen (N), potassium (K), sulfur (S) and iron (Fe) stresses. Moveover, salt and drought stresses can regulate the transcript abundances of BnaPHT1s, as well as phytohormones including auxin and cytokinin. Gene coexpression analysis based on the RNA-seq data implied that BnaPHT1s might cooperate with each other as well as with other genes to regulate nutrient homeostasis in B. napus. Further analysis of the promoters revealed that GT-1, DRE and P1BS elements are widely distributed within the promoter regions of BnaPHT1 genes. Our results indicate that BnaPHT1s might be involved in cross-talk for sensing the external status of P, N, K, S and Fe, as well as salt and drought stresses. Moreover, these processes might be mediated by phytohormones. Our findings provide the first step in the complex genetic dissection of the Pi transport system in plants and implicate multiple transcriptional regulation, which probably refers to new roles of PHT1 genes in B. napus.
Collapse
Affiliation(s)
- Yu Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Xue Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Hao Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Xiangsheng Ye
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
17
|
Zhang Y, Hu L, Yu D, Xu K, Zhang J, Li X, Wang P, Chen G, Liu Z, Peng C, Li C, Guo T. Integrative Analysis of the Wheat PHT1 Gene Family Reveals A Novel Member Involved in Arbuscular Mycorrhizal Phosphate Transport and Immunity. Cells 2019; 8:E490. [PMID: 31121904 PMCID: PMC6562588 DOI: 10.3390/cells8050490] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 11/16/2022] Open
Abstract
Phosphorus (P) deficiency is one of the main growth-limiting factors for plants. However, arbuscular mycorrhizal (AM) symbiosis can significantly promote P uptake. Generally, PHT1 transporters play key roles in plants' P uptake, and thus, PHT1 genes have been investigated in some plants, but the regulation and functions of these genes in wheat (TaPHT1) during AM symbiosis have not been studied in depth. Therefore, a comprehensive analysis of TaPHT1 genes was performed, including sequence, phylogeny, cis-elements, expression, subcellular localization and functions, to elucidate their roles in AM-associated phosphate transport and immunity. In total, 35 TaPHT1s were identified in the latest high-quality bread wheat genome, 34 of which were unevenly distributed on 13 chromosomes, and divided into five groups. Sequence analysis indicated that there are 11 types of motif architectures and five types of exon-intron structures in the TaPHT1 family. Duplication mode analysis indicated that the TaPHT1 family has expanded mainly through segmental and tandem duplication events, and that all duplicated gene pairs have been under purifying selection. Transcription analysis of the 35 TaPHT1s revealed that not only known the mycorrhizal-specific genes TaPht-myc, TaPT15-4B (TaPT11) and TaPT19-4D (TaPT10), but also four novel mycorrhizal-specific/inducible genes (TaPT3-2D, TaPT11-4A, TaPT29-6A, and TaPT31-7A) are highly up-regulated in AM wheat roots. Furthermore, the mycorrhizal-specific/inducible genes are significantly induced in wheat roots at different stages of infection by colonizing fungi. Transient Agrobacterium tumefaciens-mediated transformation expression in onion epidermal cells showed that TaPT29-6A is a membrane-localized protein. In contrast to other AM-specific/inducible PHT1 genes, TaPT29-6A is apparently required for the symbiotic and direct Pi pathway. TaPT29-6A-silenced lines exhibited reduced levels of AM fungal colonization and arbuscules, but increased susceptibility to biotrophic, hemi-biotrophic and necrotrophic pathogens. In conclusion, TaPT29-6A was not only essential for the AM symbiosis, but also played vital roles in immunity.
Collapse
Affiliation(s)
- Yi Zhang
- The Collaborative Innovation Center of Henan Food Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou Normal University, Zhoukou 466001, China.
| | - Lizong Hu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou Normal University, Zhoukou 466001, China.
| | - Deshui Yu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou Normal University, Zhoukou 466001, China.
| | - Kedong Xu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou Normal University, Zhoukou 466001, China.
| | - Ju Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou Normal University, Zhoukou 466001, China.
| | - Xiaoli Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou Normal University, Zhoukou 466001, China.
| | - Pengfei Wang
- The Collaborative Innovation Center of Henan Food Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
| | - Guo Chen
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou Normal University, Zhoukou 466001, China.
| | - Zhihui Liu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou Normal University, Zhoukou 466001, China.
| | - Chunfeng Peng
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou Normal University, Zhoukou 466001, China.
| | - Chengwei Li
- The Collaborative Innovation Center of Henan Food Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou Normal University, Zhoukou 466001, China.
- Henan Engineering Research Center of Grain Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Tiancai Guo
- The Collaborative Innovation Center of Henan Food Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|