1
|
Teshome A, Habte E, Cheema J, Mekasha A, Lire H, Muktar MS, Quiroz-Chavez J, Domoney C, Jones CS. A population genomics approach to unlock the genetic potential of lablab (Lablab purpureus (L.) Sweet), an underutilized tropical forage crop. BMC Genomics 2024; 25:1241. [PMID: 39719589 PMCID: PMC11668113 DOI: 10.1186/s12864-024-11104-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 11/28/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Lablab is one of the conventionally grown multi-purpose crops that originated in Africa. It is an annual or short-lived perennial forage legume which has versatile uses (as a vegetable and dry seeds, as food or feed, or as green manure) but is yet to receive adequate research attention and hence remains underexploited. To develop new and highly productive lablab varieties, using genomics-assisted selection, the present study aimed to identify quantitative trait loci associated with agronomically important traits in lablab and to assess the stability of these traits across two different agro-ecologies in Ethiopia. Here, we resequenced one hundred and forty-two lablab accessions, utilised whole genome genotyping approaches, and conducted multi-locational phenotyping over two years. RESULTS The selected lablab accessions displayed significant agro-morphological variation in eight analysed traits, including plant height, total fresh weight, and total dry weight. Furthermore, the agronomic performance of the accessions was significantly different across locations and years, highlighting substantial genotype-by-environment interactions. The population genetic structure of the lablab accessions, based on ~ 500,000 informative single nucleotide polymorphisms (SNPs), revealed an independent domestication pattern for two-seeded and four-seeded lablab accessions. Finally, based on multi-environmental trial data, a genome-wide association study (GWAS) identified useful SNPs and k-mers for key traits, such as plant height and total dry weight. CONCLUSIONS The publicly available genomic tools and field evaluation data from this study will offer a valuable resource for plant breeders and researchers to inform a new cycle of lablab breeding. With the aid of these tools, the breeding cycle will be significantly reduced and livestock farmers will have access to improved lablab varieties in a shorter time-frame.
Collapse
Affiliation(s)
- A Teshome
- Feed and Forage Development, International Livestock Research Institute, Addis Ababa, Ethiopia
| | - E Habte
- Feed and Forage Development, International Livestock Research Institute, Addis Ababa, Ethiopia
| | - J Cheema
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - A Mekasha
- Ethiopian Institute of Agricultural Research (EIAR), Melkassa Research Centre, Melkassa, Ethiopia
| | - H Lire
- Ethiopian Institute of Agricultural Research (EIAR), Wondogenet Research Centre, Wondogenet, Ethiopia
| | - M S Muktar
- Feed and Forage Development, International Livestock Research Institute, Addis Ababa, Ethiopia
| | - J Quiroz-Chavez
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - C Domoney
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - C S Jones
- Feed and Forage Development, International Livestock Research Institute, Addis Ababa, Ethiopia.
| |
Collapse
|
2
|
Daduwal HS, Bhardwaj R, Srivastava RK. Pearl millet a promising fodder crop for changing climate: a review. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:169. [PMID: 38913173 DOI: 10.1007/s00122-024-04671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/05/2024] [Indexed: 06/25/2024]
Abstract
The agricultural sector faces colossal challenges amid environmental changes and a burgeoning human population. In this context, crops must adapt to evolving climatic conditions while meeting increasing production demands. The dairy industry is anticipated to hold the highest value in the agriculture sector in future. The rise in the livestock population is expected to result in an increased demand for fodder feed. Consequently, it is crucial to seek alternative options, as crops demand fewer resources and are resilient to climate change. Pearl millet offers an apposite key to these bottlenecks, as it is a promising climate resilience crop with significantly low energy, water and carbon footprints compared to other crops. Numerous studies have explored its potential as a fodder crop, revealing promising performance. Despite its capabilities, pearl millet has often been overlooked. To date, few efforts have been made to document molecular aspects of fodder-related traits. However, several QTLs and candidate genes related to forage quality have been identified in other fodder crops, which can be harnessed to enhance the forage quality of pearl millet. Lately, excellent genomic resources have been developed in pearl millet allowing deployment of cutting-edge genomics-assisted breeding for achieving a higher rate of genetic gains. This review would facilitate a deeper understanding of various aspects of fodder pearl millet in retrospect along with the future challenges and their solution. This knowledge may pave the way for designing efficient breeding strategies in pearl millet thereby supporting sustainable agriculture and livestock production in a changing world.
Collapse
Affiliation(s)
- Harmanpreet Singh Daduwal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | - Ruchika Bhardwaj
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Rakesh K Srivastava
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India.
| |
Collapse
|
3
|
Kumar K, Kumari A, Durgesh K, Sevanthi AM, Sharma S, Singh NK, Gaikwad K. Identification of superior haplotypes for flowering time in pigeonpea through candidate gene-based association study of a diverse minicore collection. PLANT CELL REPORTS 2024; 43:156. [PMID: 38819495 DOI: 10.1007/s00299-024-03230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/05/2024] [Indexed: 06/01/2024]
Abstract
KEY MESSAGE In current study candidate gene (261 genes) based association mapping on 144 pigeonpea accessions for flowering time and related traits and 29 MTAs producing eight superior haplotypes were identified. In the current study, we have conducted an association analysis for flowering-associated traits in a diverse pigeonpea mini-core collection comprising 144 accessions using the SNP data of 261 flowering-related genes. In total, 13,449 SNPs were detected in the current study, which ranged from 743 (ICP10228) to 1469 (ICP6668) among the individuals. The nucleotide diversity (0.28) and Watterson estimates (0.34) reflected substantial diversity, while Tajima's D (-0.70) indicated the abundance of rare alleles in the collection. A total of 29 marker trait associations (MTAs) were identified, among which 19 were unique to days to first flowering (DOF) and/or days to fifty percent flowering (DFF), 9 to plant height (PH), and 1 to determinate (Det) growth habit using 3 years of phenotypic data. Among these MTAs, six were common to DOF and/or DFF, and four were common to DOF/DFF along with the PH, reflecting their pleiotropic action. These 29 MTAs spanned 25 genes, among which 10 genes clustered in the protein-protein network analysis, indicating their concerted involvement in floral induction. Furthermore, we identified eight haplotypes, four of which regulate late flowering, while the remaining four regulate early flowering using the MTAs. Interestingly, haplotypes conferring late flowering (H001, H002, and H008) were found to be taller, while those involved in early flowering (H003) were shorter in height. The expression pattern of these genes, as inferred from the transcriptome data, also underpinned their involvement in floral induction. The haplotypes identified will be highly useful to the pigeonpea breeding community for haplotype-based breeding.
Collapse
Affiliation(s)
- Kuldeep Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa, New Delhi, India
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Anita Kumari
- Department of Botany, North Campus, University of Delhi, Delhi, New Delhi, India
| | - Kumar Durgesh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | | | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, Pusa, New Delhi, India
| | | | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, Pusa, New Delhi, India.
| |
Collapse
|
4
|
Cane JH. The Extraordinary Alkali Bee, Nomia melanderi (Halictidae), the World's Only Intensively Managed Ground-Nesting Bee. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:99-116. [PMID: 37585607 DOI: 10.1146/annurev-ento-020623-013716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Among the ground-nesting bees are several proven crop pollinators, but only the alkali bee (Nomia melanderi) has been successfully managed. In <80 years, it has become the world's most intensely studied ground-nesting solitary bee. In many ways, the bee seems paradoxical. It nests during the torrid, parched midsummer amid arid valleys and basins of the western United States, yet it wants damp nesting soil. In these basins, extensive monocultures of an irrigated Eurasian crop plant, alfalfa (lucerne), subsidize millions of alkali bees. Elsewhere, its polylectic habits and long foraging range allow it to stray into neighboring crops contaminated with insecticides. Primary wild floral hosts are either non-native or poorly known. Kleptoparasitic bees plague most ground nesters, but not alkali bees, which do, however, host other well-studied parasitoids. Building effective nesting beds requires understanding the hydraulic conductivity of silty nesting soils and its important interplay with specific soil mineral salts. Surprisingly, some isolated populations endure inhospitably cold climates by nesting amid hot springs. Despite the peculiarities and challenges associated with its management, the alkali bee remains the second most valuable managed solitary bee for US agriculture and perhaps the world.
Collapse
|
5
|
Galindo-Sotomonte L, Jozefkowicz C, Gómez C, Stritzler M, Frare R, Bottero E, Tajima H, Blumwald E, Ayub N, Soto G. CRISPR/Cas9-mediated knockout of a polyester synthase-like gene delays flowering time in alfalfa. PLANT CELL REPORTS 2023; 42:953-956. [PMID: 36840757 DOI: 10.1007/s00299-023-02997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/02/2023] [Indexed: 05/06/2023]
Abstract
KEY MESSAGE T-DNA and CRISPR/Cas9-mediated knockout of polyester synthase-like genes delays flowering time in Arabidopsis thaliana and Medicago sativa (alfalfa). Thus, we here present the first report of edited alfalfa with delayed flowering.
Collapse
Affiliation(s)
- Luisa Galindo-Sotomonte
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO, CONICET-INTA), Buenos Aires, Argentina
- Instituto de Genética (IGEAF, INTA), Buenos Aires, Argentina
| | - Cintia Jozefkowicz
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO, CONICET-INTA), Buenos Aires, Argentina
- Instituto de Genética (IGEAF, INTA), Buenos Aires, Argentina
| | - Cristina Gómez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO, CONICET-INTA), Buenos Aires, Argentina
- Instituto de Genética (IGEAF, INTA), Buenos Aires, Argentina
| | - Margarita Stritzler
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO, CONICET-INTA), Buenos Aires, Argentina
- Instituto de Genética (IGEAF, INTA), Buenos Aires, Argentina
| | - Romina Frare
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO, CONICET-INTA), Buenos Aires, Argentina
- Instituto de Genética (IGEAF, INTA), Buenos Aires, Argentina
| | - Emilia Bottero
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO, CONICET-INTA), Buenos Aires, Argentina
- Instituto de Genética (IGEAF, INTA), Buenos Aires, Argentina
| | - Hiromi Tajima
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Nicolas Ayub
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO, CONICET-INTA), Buenos Aires, Argentina
- Instituto de Genética (IGEAF, INTA), Buenos Aires, Argentina
| | - Gabriela Soto
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO, CONICET-INTA), Buenos Aires, Argentina.
- Instituto de Genética (IGEAF, INTA), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Jiang X, Yang X, Zhang F, Yang T, Yang C, He F, Gao T, Wang C, Yang Q, Wang Z, Kang J. Combining QTL mapping and RNA-Seq Unravels candidate genes for Alfalfa (Medicago sativa L.) leaf development. BMC PLANT BIOLOGY 2022; 22:485. [PMID: 36217123 PMCID: PMC9552516 DOI: 10.1186/s12870-022-03864-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Leaf size affects crop canopy morphology and photosynthetic efficiency, which can influence forage yield and quality. It is of great significance to mine the key genes controlling leaf development for breeding new alfalfa varieties. In this study, we mapped leaf length (LL), leaf width (LW), and leaf area (LA) in an F1 mapping population derived from a cultivar named ZhongmuNo.1 with larger leaf area and a landrace named Cangzhou with smaller leaf area. RESULTS This study showed that the larger LW was more conducive to increasing LA. A total of 24 significant quantitative trait loci (QTL) associated with leaf size were identified on both the paternal and maternal linkage maps. Among them, nine QTL explained about 11.50-22.45% phenotypic variation. RNA-seq analysis identified 2,443 leaf-specific genes and 3,770 differentially expressed genes. Combining QTL mapping, RNA-seq alalysis, and qRT-PCR, we identified seven candidate genes associated with leaf development in five major QTL regions. CONCLUSION Our study will provide a theoretical basis for marker-assisted breeding and lay a foundation for further revealing molecular mechanism of leaf development in alfalfa.
Collapse
Affiliation(s)
- Xueqian Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xijiang Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianhui Yang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Ningxia, China
| | - Changfu Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Gao
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Ningxia, China
| | - Chuan Wang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Ningxia, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
He F, Zhang F, Jiang X, Long R, Wang Z, Chen Y, Li M, Gao T, Yang T, Wang C, Kang J, Chen L, Yang Q. A Genome-Wide Association Study Coupled With a Transcriptomic Analysis Reveals the Genetic Loci and Candidate Genes Governing the Flowering Time in Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:913947. [PMID: 35898229 PMCID: PMC9310038 DOI: 10.3389/fpls.2022.913947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The transition to flowering at the right time is very important for adapting to local conditions and maximizing alfalfa yield. However, the understanding of the genetic basis of the alfalfa flowering time remains limited. There are few reliable genes or markers for selection, which hinders progress in genetic research and molecular breeding of this trait in alfalfa. We sequenced 220 alfalfa cultivars and conducted a genome-wide association study (GWAS) involving 875,023 single-nucleotide polymorphisms (SNPs). The phenotypic analysis showed that the breeding status and geographical origin strongly influenced the alfalfa flowering time. Our GWAS revealed 63 loci significantly related to the flowering time. Ninety-five candidate genes were detected at these SNP loci within 40 kb (20 kb up- and downstream). Thirty-six percent of the candidate genes are involved in development and pollen tube growth, indicating that these genes are key genetic mechanisms of alfalfa growth and development. The transcriptomic analysis showed that 1,924, 2,405, and 3,779 differentially expressed genes (DEGs) were upregulated across the three growth stages, while 1,651, 2,613, and 4,730 DEGs were downregulated across the stages. Combining the results of our GWAS and transcriptome analysis, in total, 38 candidate genes (7 differentially expressed during the bud stage, 13 differentially expressed during the initial flowering stage, and 18 differentially expressed during the full flowering stage) were identified. Two SNPs located in the upstream region of the Msa0888690 gene (which is involved in isop renoids) were significantly related to flowering. The two significant SNPs within the upstream region of Msa0888690 existed as four different haplotypes in this panel. The genes identified in this study represent a series of candidate targets for further research investigating the alfalfa flowering time and could be used for alfalfa molecular breeding.
Collapse
Affiliation(s)
- Fei He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueqian Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yishi Chen
- Center for Monitoring of Agricultural Ecological Environment and Quality Inspection of Agricultural Products of Tianjin, Tianjin, China
| | - Mingna Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Gao
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Tianhui Yang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Chuan Wang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Jiang X, Yang T, Zhang F, Yang X, Yang C, He F, Long R, Gao T, Jiang Y, Yang Q, Wang Z, Kang J. RAD-Seq-Based High-Density Linkage Maps Construction and Quantitative Trait Loci Mapping of Flowering Time Trait in Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:899681. [PMID: 35720570 PMCID: PMC9199863 DOI: 10.3389/fpls.2022.899681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Alfalfa (Medicago sativa L.) is a perennial forage crop known as the "Queen of Forages." To dissect the genetic mechanism of flowering time (FT) in alfalfa, high-density linkage maps were constructed for both parents of an F1 mapping population derived from a cross between Cangzhou (P1) and ZhongmuNO.1 (P2), consisting of 150 progenies. The FT showed a transgressive segregation pattern in the mapping population. A total of 13,773 single-nucleotide polymorphism markers was obtained by using restriction-site associated DNA sequencing and distributed on 64 linkage groups, with a total length of 3,780.49 and 4,113.45 cM and an average marker interval of 0.58 and 0.59 cM for P1 and P2 parent, respectively. Quantitative trait loci (QTL) analyses were performed using the least square means of each year as well as the best linear unbiased prediction values across 4 years. Sixteen QTLs for FT were detected for P1 and 22 QTLs for P2, accounting for 1.40-16.04% of FT variation. RNA-Seq analysis at three flowering stages identified 5,039, 7,058, and 7,996 genes that were differentially expressed between two parents, respectively. Based on QTL mapping, DEGs analysis, and functional annotation, seven candidate genes associated with flowering time were finally detected. This study discovered QTLs and candidate genes for alfalfa FT, making it a useful resource for breeding studies on this essential crop.
Collapse
Affiliation(s)
- Xueqian Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianhui Yang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Fan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xijiang Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changfu Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Gao
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Ma L, Zhang Y, Wen H, Liu W, Zhou Y, Wang X. Silencing of MsD14 Resulted in Enhanced Forage Biomass through Increasing Shoot Branching in Alfalfa ( Medicago sativa L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:939. [PMID: 35406919 PMCID: PMC9003486 DOI: 10.3390/plants11070939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Branching is one of the key determinants of plant architecture that dramatically affects crop yield. As alfalfa is the most important forage crop, understanding the genetic basis of branching in this plant can facilitate breeding for a high biomass yield. In this study, we characterized the strigolactone receptor gene MsD14 in alfalfa and demonstrated that MsD14 was predominantly expressed in flowers, roots, and seedpods. Furthermore, we found that MsD14 expression could significantly respond to strigolactone in alfalfa seedlings, and its protein was located in the nucleus, cytoplasm, and cytomembrane. Most importantly, transformation assays demonstrated that silencing of MsD14 in alfalfa resulted in increased shoot branching and forage biomass. Significantly, MsD14 could physically interact with AtMAX2 and MsMAX2 in the presence of strigolactone, suggesting a similarity between MsD14 and AtD14. Together, our results revealed the conserved D14-MAX2 module in alfalfa branching regulation and provided candidate genes for alfalfa high-yield molecular breeding.
Collapse
Affiliation(s)
- Lin Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (H.W.)
| | - Yongchao Zhang
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China; (Y.Z.); (W.L.)
| | - Hongyu Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (H.W.)
| | - Wenhui Liu
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China; (Y.Z.); (W.L.)
| | - Yu Zhou
- Institute of Characteristic Crops Research, Chongqing Academy of Agricultural Sciences, Chongqing 402160, China;
| | - Xuemin Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (H.W.)
| |
Collapse
|
10
|
Chiurazzi MJ, Nørrevang AF, García P, Cerdán PD, Palmgren M, Wenkel S. Controlling flowering of Medicago sativa (alfalfa) by inducing dominant mutations. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:205-214. [PMID: 34761872 PMCID: PMC9303315 DOI: 10.1111/jipb.13186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Breeding plants with polyploid genomes is challenging because functional redundancy hampers the identification of loss-of-function mutants. Medicago sativa is tetraploid and obligate outcrossing, which together with inbreeding depression complicates traditional breeding approaches in obtaining plants with a stable growth habit. Inducing dominant mutations would provide an alternative strategy to introduce domestication traits in plants with high gene redundancy. Here we describe two complementary strategies to induce dominant mutations in the M. sativa genome and how they can be relevant in the control of flowering time. First, we outline a genome-engineering strategy that harnesses the use of microProteins as developmental regulators. MicroProteins are small proteins that appeared during genome evolution from genes encoding larger proteins. Genome-engineering allows us to retrace evolution and create microProtein-coding genes de novo. Second, we provide an inventory of genes regulated by microRNAs that control plant development. Making respective gene transcripts microRNA-resistant by inducing point mutations can uncouple microRNA regulation. Finally, we investigated the recently published genomes of M. sativa and provide an inventory of breeding targets, some of which, when mutated, are likely to result in dominant traits.
Collapse
Affiliation(s)
- Maurizio Junior Chiurazzi
- NovoCrops CenterUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
- Copenhagen Plant Science CentreUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
- Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
| | - Anton Frisgaard Nørrevang
- NovoCrops CenterUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
- Copenhagen Plant Science CentreUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
- Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
| | - Pedro García
- Fundación Instituto LeloirIIBBA‐CONICETAvenida Patricias Argentinas 435Buenos Aires1405Argentina
| | - Pablo D. Cerdán
- Fundación Instituto LeloirIIBBA‐CONICETAvenida Patricias Argentinas 435Buenos Aires1405Argentina
| | - Michael Palmgren
- NovoCrops CenterUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
- Copenhagen Plant Science CentreUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
- Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
| | - Stephan Wenkel
- NovoCrops CenterUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
- Copenhagen Plant Science CentreUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
- Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
| |
Collapse
|
11
|
Long R, Zhang F, Zhang Z, Li M, Chen L, Wang X, Liu W, Zhang T, Yu LX, He F, Jiang X, Yang X, Yang C, Wang Z, Kang J, Yang Q. Genome assembly of alfalfa cultivar zhongmu-4 and identification of SNPs associated with agronomic traits. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:14-28. [PMID: 35033678 PMCID: PMC9510860 DOI: 10.1016/j.gpb.2022.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 12/21/2022]
Abstract
Alfalfa (Medicago sativa L.) is the most important legume forage crop worldwide with high nutritional value and yield. For a long time, the breeding of alfalfa was hampered by lacking reliable information on the autotetraploid genome and molecular markers linked to important agronomic traits. We herein reported the de novo assembly of the allele-aware chromosome-level genome of Zhongmu-4, a cultivar widely cultivated in China, and a comprehensive database of genomic variations based on resequencing of 220 germplasms. Approximate 2.74 Gb contigs (N50 of 2.06 Mb), accounting for 88.39% of the estimated genome, were assembled, and 2.56 Gb contigs were anchored to 32 pseudo-chromosomes. A total of 34,922 allelic genes were identified from the allele-aware genome. We observed the expansion of gene families, especially those related to the nitrogen metabolism, and the increase of repetitive elements including transposable elements, which probably resulted in the increase of Zhongmu-4 genome compared with Medicago truncatula. Population structure analysis revealed that the accessions from Asia and South America had relatively lower genetic diversity than those from Europe, suggesting that geography may influence alfalfa genetic divergence during local adaption. Genome-wide association studies identified 101 single nucleotide polymorphisms (SNPs) associated with 27 agronomic traits. Two candidate genes were predicted to be correlated with fall dormancy and salt response. We believe that the allele-aware chromosome-level genome sequence of Zhongmu-4 combined with the resequencing data of the diverse alfalfa germplasms will facilitate genetic research and genomics-assisted breeding in variety improvement of alfalfa.
Collapse
Affiliation(s)
- Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fan Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99163, United States
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99163, United States
| | - Mingna Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lin Chen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenwen Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tiejun Zhang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Long-Xi Yu
- United States Department of Agriculture-Agricultural Research Service, Plant and Germplasm Introduction and Testing Research, Prosser, WA, 99350, United States
| | - Fei He
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xueqian Jiang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xijiang Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Changfu Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhen Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Junmei Kang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
12
|
Adhikari L, Makaju SO, Lindstrom OM, Missaoui AM. Mapping freezing tolerance QTL in alfalfa: based on indoor phenotyping. BMC PLANT BIOLOGY 2021; 21:403. [PMID: 34488630 PMCID: PMC8419964 DOI: 10.1186/s12870-021-03182-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 08/18/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Winter freezing temperature impacts alfalfa (Medicago sativa L.) persistence and seasonal yield and can lead to the death of the plant. Understanding the genetic mechanisms of alfalfa freezing tolerance (FT) using high-throughput phenotyping and genotyping is crucial to select suitable germplasm and develop winter-hardy cultivars. Several clones of an alfalfa F1 mapping population (3010 x CW 1010) were tested for FT using a cold chamber. The population was genotyped with SNP markers identified using genotyping-by-sequencing (GBS) and the quantitative trait loci (QTL) associated with FT were mapped on the parent-specific linkage maps. The ultimate goal is to develop non-dormant and winter-hardy alfalfa cultivars that can produce extended growth in the areas where winters are often mild. RESULTS Alfalfa FT screening method optimized in this experiment comprises three major steps: clone preparation, acclimation, and freezing test. Twenty clones of each genotype were tested, where 10 samples were treated with freezing temperature, and 10 were used as controls. A moderate positive correlation (r ~ 0.36, P < 0.01) was observed between indoor FT and field-based winter hardiness (WH), suggesting that the indoor FT test is a useful indirect selection method for winter hardiness of alfalfa germplasm. We detected a total of 20 QTL associated with four traits; nine for visual rating-based FT, five for percentage survival (PS), four for treated to control regrowth ratio (RR), and two for treated to control biomass ratio (BR). Some QTL positions overlapped with WH QTL reported previously, suggesting a genetic relationship between FT and WH. Some favorable QTL from the winter-hardy parent (3010) were from the potential genic region for a cold tolerance gene CBF. The BLAST alignment of a CBF sequence of M. truncatula, a close relative of alfalfa, against the alfalfa reference showed that the gene's ortholog resides around 75 Mb on chromosome 6. CONCLUSIONS The indoor freezing tolerance selection method reported is useful for alfalfa breeders to accelerate breeding cycles through indirect selection. The QTL and associated markers add to the genomic resources for the research community and can be used in marker-assisted selection (MAS) for alfalfa cold tolerance improvement.
Collapse
Affiliation(s)
- Laxman Adhikari
- Institute of Plant Breeding, Genetics and Genomics, The University of Georgia, Athens, GA, USA
| | - Shiva O Makaju
- Institute of Plant Breeding, Genetics and Genomics, The University of Georgia, Athens, GA, USA
| | | | - Ali M Missaoui
- Institute of Plant Breeding, Genetics and Genomics, The University of Georgia, Athens, GA, USA.
- Department of Crop and Soil Sciences, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
13
|
Tang Z, Parajuli A, Chen CJ, Hu Y, Revolinski S, Medina CA, Lin S, Zhang Z, Yu LX. Validation of UAV-based alfalfa biomass predictability using photogrammetry with fully automatic plot segmentation. Sci Rep 2021; 11:3336. [PMID: 33558558 PMCID: PMC7870825 DOI: 10.1038/s41598-021-82797-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 01/25/2021] [Indexed: 11/20/2022] Open
Abstract
Alfalfa is the most widely cultivated forage legume, with approximately 30 million hectares planted worldwide. Genetic improvements in alfalfa have been highly successful in developing cultivars with exceptional winter hardiness and disease resistance traits. However, genetic improvements have been limited for complex economically important traits such as biomass. One of the major bottlenecks is the labor-intensive phenotyping burden for biomass selection. In this study, we employed two alfalfa fields to pave a path to overcome the challenge by using UAV images with fully automatic field plot segmentation for high-throughput phenotyping. The first field was used to develop the prediction model and the second field to validate the predictions. The first and second fields had 808 and 1025 plots, respectively. The first field had three harvests with biomass measured in May, July, and September of 2019. The second had one harvest with biomass measured in September of 2019. These two fields were imaged one day before harvesting with a DJI Phantom 4 pro UAV carrying an additional Sentera multispectral camera. Alfalfa plot images were extracted by GRID software to quantify vegetative area based on the Normalized Difference Vegetation Index. The prediction model developed from the first field explained 50-70% (R Square) of biomass variation in the second field by incorporating four features from UAV images: vegetative area, plant height, Normalized Green-Red Difference Index, and Normalized Difference Red Edge Index. This result suggests that UAV-based, high-throughput phenotyping could be used to improve the efficiency of the biomass selection process in alfalfa breeding programs.
Collapse
Affiliation(s)
- Zhou Tang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Atit Parajuli
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Chunpeng James Chen
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Yang Hu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Samuel Revolinski
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Cesar Augusto Medina
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, 24106 N Bunn Road, Prosser, WA, 99350, USA
| | - Sen Lin
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, 24106 N Bunn Road, Prosser, WA, 99350, USA
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA.
| | - Long-Xi Yu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, 24106 N Bunn Road, Prosser, WA, 99350, USA.
| |
Collapse
|
14
|
Lu X, Wang J, Wang Y, Wen W, Zhang Y, Du J, Zhao Y, Guo X. Genome-Wide Association Study of Maize Aboveground Dry Matter Accumulation at Seedling Stage. Front Genet 2021; 11:571236. [PMID: 33519889 PMCID: PMC7838602 DOI: 10.3389/fgene.2020.571236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
Dry matter accumulation and partitioning during the early phases of development could significantly affect crop growth and productivity. In this study, the aboveground dry matter (DM), the DM of different organs, and partition coefficients of a maize association mapping panel of 412 inbred lines were evaluated at the third and sixth leaf stages (V3 and V6). Further, the properties of these phenotypic traits were analyzed. Genome-wide association studies (GWAS) were conducted on the total aboveground biomass and the DM of different organs. Analysis of GWAS results identified a total of 1,103 unique candidate genes annotated by 678 significant SNPs (P value < 1.28e-6). A total of 224 genes annotated by SNPs at the top five of each GWAS method and detected by multiple GWAS methods were regarded as having high reliability. Pathway enrichment analysis was also performed to explore the biological significance and functions of these candidate genes. Several biological pathways related to the regulation of seed growth, gibberellin-mediated signaling pathway, and long-day photoperiodism were enriched. The results of our study could provide new perspectives on breeding high-yielding maize varieties.
Collapse
Affiliation(s)
- Xianju Lu
- Beijing Key Laboratory of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jinglu Wang
- Beijing Key Laboratory of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yongjian Wang
- Beijing Key Laboratory of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Weiliang Wen
- Beijing Key Laboratory of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ying Zhang
- Beijing Key Laboratory of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jianjun Du
- Beijing Key Laboratory of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yanxin Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xinyu Guo
- Beijing Key Laboratory of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
15
|
Ma D, Liu B, Ge L, Weng Y, Cao X, Liu F, Mao P, Ma X. Identification and characterization of regulatory pathways involved in early flowering in the new leaves of alfalfa (Medicago sativa L.) by transcriptome analysis. BMC PLANT BIOLOGY 2021; 21:8. [PMID: 33407121 PMCID: PMC7788926 DOI: 10.1186/s12870-020-02775-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Alfalfa (Medicago sativa L.) is a perennial legume extensively planted throughout the world as a high nutritive value livestock forage. Flowering time is an important agronomic trait that contributes to the production of alfalfa hay and seeds. However, the underlying molecular mechanisms of flowering time regulation in alfalfa are not well understood. RESULTS In this study, an early-flowering alfalfa genotype 80 and a late-flowering alfalfa genotype 195 were characterized for the flowering phenotype. Our analysis revealed that the lower jasmonate (JA) content in new leaves and the downregulation of JA biosynthetic genes (i.e. lipoxygenase, the 12-oxophytodienoate reductase-like protein, and salicylic acid carboxyl methyltransferase) may play essential roles in the early-flowering phenotype of genotype 80. Further research indicated that genes encode pathogenesis-related proteins [e.g. leucine rich repeat (LRR) family proteins, receptor-like proteins, and toll-interleukin-like receptor (TIR)-nucleotide-binding site (NBS)-LRR class proteins] and members of the signaling receptor kinase family [LRR proteins, kinases domain of unknown function 26 (DUF26) and wheat leucine-rich repeat receptor-like kinase10 (LRK10)-like kinases] are related to early flowering in alfalfa. Additionally, those involved in secondary metabolism (2-oxoglutarate/Fe (II)-dependent dioxygenases and UDP-glycosyltransferase) and the proteasome degradation pathway [really interesting new gene (RING)/U-box superfamily proteins and F-box family proteins] are also related to early flowering in alfalfa. CONCLUSIONS Integrated phenotypical, physiological, and transcriptomic analyses demonstrate that hormone biosynthesis and signaling pathways, pathogenesis-related genes, signaling receptor kinase family genes, secondary metabolism genes, and proteasome degradation pathway genes are responsible for the early flowering phenotype in alfalfa. This will provide new insights into future studies of flowering time in alfalfa and inform genetic improvement strategies for optimizing this important trait.
Collapse
Affiliation(s)
- Dongmei Ma
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China/ Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, 750021 China
| | - Bei Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Lingqiao Ge
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yinyin Weng
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Xiaohui Cao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Fang Liu
- National Animal Husbandry Service, Maizidian Street, North Nongzhan Road, Chaoyang District, Beijing, 100125 China
| | - Peisheng Mao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Xiqing Ma
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
16
|
Biswas A, Andrade MHML, Acharya JP, de Souza CL, Lopez Y, de Assis G, Shirbhate S, Singh A, Munoz P, Rios EF. Phenomics-Assisted Selection for Herbage Accumulation in Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2021; 12:756768. [PMID: 34950163 PMCID: PMC8689394 DOI: 10.3389/fpls.2021.756768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/08/2021] [Indexed: 05/11/2023]
Abstract
The application of remote sensing in plant breeding is becoming a routine method for fast and non-destructive high-throughput phenotyping (HTP) using unmanned aerial vehicles (UAVs) equipped with sensors. Alfalfa (Medicago sativa L.) is a perennial forage legume grown in more than 30 million hectares worldwide. Breeding alfalfa for herbage accumulation (HA) requires frequent and multiple phenotyping efforts, which is laborious and costly. The objective of this study was to assess the efficiency of UAV-based imagery and spatial analysis in the selection of alfalfa for HA. The alfalfa breeding population was composed of 145 full-sib and 34 half-sib families, and the experimental design was a row-column with augmented representation of controls. The experiment was established in November 2017, and HA was harvested four times between August 2018 and January 2019. A UAV equipped with a multispectral camera was used for HTP before each harvest. Four vegetation indices (VIs) were calculated from the UAV-based images: NDVI, NDRE, GNDVI, and GRVI. All VIs showed a high correlation with HA, and VIs predicted HA with moderate accuracy. HA and NDVI were used for further analyses to calculate the genetic parameters using linear mixed models. The spatial analysis had a significant effect in both dimensions (rows and columns) for HA and NDVI, resulting in improvements in the estimation of genetic parameters. Univariate models for NDVI and HA, and bivariate models, were fit to predict family performance for scenarios with various levels of HA data (simulated in silico by assigning missing values to full dataset). The bivariate models provided higher correlation among predicted values, higher coincidence for selection, and higher genetic gain even for scenarios with only 30% of HA data. Hence, HTP is a reliable and efficient method to aid alfalfa phenotyping to improve HA. Additionally, the use of spatial analysis can also improve the accuracy of selection in breeding trials.
Collapse
Affiliation(s)
- Anju Biswas
- Department of Agronomy, University of Florida, Gainesville, FL, United States
| | | | - Janam P. Acharya
- Department of Agronomy, University of Florida, Gainesville, FL, United States
| | | | - Yolanda Lopez
- Department of Agronomy, University of Florida, Gainesville, FL, United States
| | | | - Shubham Shirbhate
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, United States
| | - Aditya Singh
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, United States
| | - Patricio Munoz
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
| | - Esteban F. Rios
- Department of Agronomy, University of Florida, Gainesville, FL, United States
- *Correspondence: Esteban F. Rios,
| |
Collapse
|
17
|
Ma L, Liu X, Liu W, Wen H, Zhang Y, Pang Y, Wang X. Characterization of Squamosa-Promoter Binding Protein-Box Family Genes Reveals the Critical Role of MsSPL20 in Alfalfa Flowering Time Regulation. FRONTIERS IN PLANT SCIENCE 2021; 12:775690. [PMID: 35069631 PMCID: PMC8766856 DOI: 10.3389/fpls.2021.775690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/14/2021] [Indexed: 05/22/2023]
Abstract
SQUAMOSA Promoter-binding protein-Like (SPL) genes affect a broad range of plant biological processes and show potential application in crop improvement by genetic modification. As the most widely planted forage crop in the world, biomass and abiotic stresses tolerance are important breeding targets for alfalfa (Medicago sativa L.). Nevertheless, the systematic analysis of SPL genes in alfalfa genome remains lacking. In the present study, we characterized 22 putative non-redundant SPL genes in alfalfa genome and uncovered the abundant structural variation among MsSPL genes. The phylogenetic analysis of plant SPL proteins separated them into 10 clades and clade J was an alfalfa-specific clade, suggesting SPL genes in alfalfa might have experienced gene duplication and functional differentiation within the genome. Meanwhile, 11 MsSPL genes with perfect matches to miRNA response elements (MREs) could be degraded by miR156, and the cleavage sites were gene specific. In addition, we investigated the temporal and spatial expression patterns of MsSPL genes and their expression patterns in response to multiple treatments, characterizing candidate SPL genes in alfalfa development and abiotic stress tolerant regulation. More importantly, overexpression of the alfalfa-specific SPL gene (MsSPL20) showed stable delayed flowering time, as well as increased biomass. Further studies indicated that MsSPL20 delayed flowering time by regulating the expression of genes involved in floret development, including HD3A, FTIP1, TEM1, and HST1. Together, our findings provide valuable information for future research and utilization of SPL genes in alfalfa and elucidate a possibly alfalfa-specific flowering time regulation, thereby supplying candidate genes for alfalfa molecular-assisted breeding.
Collapse
Affiliation(s)
- Lin Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiqiang Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Wenhui Liu
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Hongyu Wen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongchao Zhang
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Yongzhen Pang,
| | - Xuemin Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Xuemin Wang,
| |
Collapse
|
18
|
Ma L, Yi D, Yang J, Liu X, Pang Y. Genome-Wide Identification, Expression Analysis and Functional Study of CCT Gene Family in Medicago truncatula. PLANTS 2020; 9:plants9040513. [PMID: 32316208 PMCID: PMC7238248 DOI: 10.3390/plants9040513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/01/2023]
Abstract
The control of flowering time has an important impact on biomass and the environmental adaption of legumes. The CCT (CO, COL and TOC1) gene family was elucidated to participate in the molecular regulation of flowering in plants. We identified 36 CCT genes in the M. truncatula genome and they were classified into three distinct subfamilies, PRR (7), COL (11) and CMF (18). Synteny and phylogenetic analyses revealed that CCT genes occurred before the differentiation of monocot and dicot, and CCT orthologous genes might have diversified among plants. The diverse spatial-temporal expression profiles indicated that MtCCT genes could be key regulators in flowering time, as well as in the development of seeds and nodules in M. truncatula. Notably, 22 MtCCT genes with typical circadian rhythmic variations suggested their different responses to light. The response to various hormones of MtCCT genes demonstrated that they participate in plant growth and development via varied hormones dependent pathways. Moreover, six MtCCT genes were dramatically induced by salinity and dehydration treatments, illustrating their vital roles in the prevention of abiotic injury. Collectively, our study provides valuable information for the in-depth investigation of the molecular mechanism of flowering time in M. truncatula, and it also provides candidate genes for alfalfa molecular breeding with ideal flowering time.
Collapse
Affiliation(s)
- Lin Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (D.Y.); (J.Y.); (X.L.)
| | - Dengxia Yi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (D.Y.); (J.Y.); (X.L.)
| | - Junfeng Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (D.Y.); (J.Y.); (X.L.)
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Xiqiang Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (D.Y.); (J.Y.); (X.L.)
- Department of Grassland Science, China Agriculture University, Beijing 100193, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (D.Y.); (J.Y.); (X.L.)
- Correspondence: ; Tel.: +86-10-6287-6460
| |
Collapse
|
19
|
Anwar A, Kim JK. Transgenic Breeding Approaches for Improving Abiotic Stress Tolerance: Recent Progress and Future Perspectives. Int J Mol Sci 2020; 21:E2695. [PMID: 32295026 PMCID: PMC7216248 DOI: 10.3390/ijms21082695] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
The recent rapid climate changes and increasing global population have led to an increased incidence of abiotic stress and decreased crop productivity. Environmental stresses, such as temperature, drought, nutrient deficiency, salinity, and heavy metal stresses, are major challenges for agriculture, and they lead to a significant reduction in crop growth and productivity. Abiotic stress is a very complex phenomenon, involving a variety of physiological and biochemical changes in plant cells. Plants exposed to abiotic stress exhibit enhanced levels of ROS (reactive oxygen species), which are highly reactive and toxic and affect the biosynthesis of chlorophyll, photosynthetic capacity, and carbohydrate, protein, lipid, and antioxidant enzyme activities. Transgenic breeding offers a suitable alternative to conventional breeding to achieve plant genetic improvements. Over the last two decades, genetic engineering/transgenic breeding techniques demonstrated remarkable developments in manipulations of the genes for the induction of desired characteristics into transgenic plants. Transgenic approaches provide us with access to identify the candidate genes, miRNAs, and transcription factors (TFs) that are involved in specific plant processes, thus enabling an integrated knowledge of the molecular and physiological mechanisms influencing the plant tolerance and productivity. The accuracy and precision of this phenomenon assures great success in the future of plant improvements. Hence, transgenic breeding has proven to be a promising tool for abiotic stress improvement in crops. This review focuses on the potential and successful applications, recent progress, and future perspectives of transgenic breeding for improving abiotic stress tolerance and productivity in plants.
Collapse
Affiliation(s)
| | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea;
| |
Collapse
|
20
|
Adhikari L, Makaju SO, Missaoui AM. Correction to: QTL mapping of flowering time and biomass yield in tetraploid alfalfa (Medicago sativa L.). BMC PLANT BIOLOGY 2019; 19:452. [PMID: 31660861 PMCID: PMC6816199 DOI: 10.1186/s12870-019-2020-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In the article [1], in 'Methods' section and 'G x E and heritability' subsection, there is an error in the formula of heritability (H2).
Collapse
Affiliation(s)
- Laxman Adhikari
- Institute of Plant Breeding, Genetics and Genomics and Department of Crop and Soil Sciences, The University of Georgia, Athens, GA, USA
| | - Shiva Om Makaju
- Institute of Plant Breeding, Genetics and Genomics and Department of Crop and Soil Sciences, The University of Georgia, Athens, GA, USA
| | - Ali M Missaoui
- Institute of Plant Breeding, Genetics and Genomics and Department of Crop and Soil Sciences, The University of Georgia, Athens, GA, USA.
| |
Collapse
|