1
|
Krüger T, Brandt D, Sodenkamp J, Gasper M, Romera-Branchat M, Ahloumessou F, Gehring E, Drotleff J, Bell C, Kramer K, Eirich J, Soppe WJJ, Finkemeier I, Née G. DOG1 controls dormancy independently of ABA core signaling kinases regulation by preventing AFP dephosphorylation through AHG1. SCIENCE ADVANCES 2025; 11:eadr8502. [PMID: 40020062 PMCID: PMC11870083 DOI: 10.1126/sciadv.adr8502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/28/2025] [Indexed: 03/03/2025]
Abstract
Seed dormancy determines germination timing, influencing seed plant adaptation and overall fitness. DELAY OF GERMINATION 1 (DOG1) is a conserved central regulator of dormancy cooperating with the phytohormone abscisic acid (ABA) through negative regulation of ABA HYPERSENSITIVE GERMINATION (AHG) 1 and AHG3 phosphatases. The current molecular mechanism of DOG1 signaling proposes it regulates the activation of central ABA-related SnRK2 kinases. Here, we unveil DOG1's functional autonomy from the regulation of ABA core signaling components and unravel its pivotal control over the activation of ABSCISIC ACID INSENSITIVE FIVE BINDING PROTEINs (AFPs). Our data revealed a molecular relay in which AFPs' genuine activation by AHG1 is contained by DOG1 to prevent the breakdown of maturation-imposed ABA responses independently of ABA-related kinase activation status. This work offers a molecular understanding of how plants fine-tune germination timing, while preserving seed responsiveness to adverse environmental cues, and thus represents a milestone in the realm of conservation and breeding programs.
Collapse
Affiliation(s)
- Thorben Krüger
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Dennis Brandt
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Johanna Sodenkamp
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Michael Gasper
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Maida Romera-Branchat
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Florian Ahloumessou
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
- West Africa Centre for Crop Improvement, University of Ghana, Legon, Ghana
| | - Elena Gehring
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Julia Drotleff
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Christopher Bell
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Katharina Kramer
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Wim J. J. Soppe
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Rijk Zwaan, De Lier, 2678 ZG, Netherlands
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Guillaume Née
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| |
Collapse
|
2
|
Han Y, Wang Z, Han B, Zhang Y, Liu J, Yang Y. Allelic variation of TaABI5-A4 significantly affects seed dormancy in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:240. [PMID: 39341982 DOI: 10.1007/s00122-024-04753-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
KEY MESSAGE We identified a pivotal transcription factor TaABI5-A4 that is significantly associated with pre-harvest sprouting in wheat; its function in regulating seed dormancy was confirmed in transgenic rice. ABI5 is a critical transcription factor in regulation of crop seed maturation, dormancy, germination, and post-germination. Sixteen copies of homologous sequences of ABI5 were identified in Chinese wheat line Zhou 8425B. Cultivars of two haplotypes TaABI5-A4a and TaABI5-A4b showed significantly different seed dormancies. Based on two SNPs between the sequences of TaABI5-A4a and TaABI5-A4b, two complementary dominant sequence-tagged site (STS) markers were developed and validated in a natural population of 103 Chinese wheat cultivars and advanced lines and 200 recombinant inbred lines (RILs) derived from the Yangxiaomai/Zhongyou 9507 cross; the STS markers can be used efficiently and reliably to evaluate the dormancy of wheat seeds. The transcription level of TaABI5-A4b was significantly increased in TaABI5-A4a-GFP transgenic rice lines compared with that in TaABI5-A4b-GFP. The average seed germination index of TaABI5-A4a-GFP transgenic rice lines was significantly lower than those of TaABI5-A4b-GFP. In addition, seeds of TaABI5-A4a-GFP transgenic lines had higher ABA sensitivity and endogenous ABA content, lower endogenous GA content and plant height, and thicker stem internodes than those of TaABI5-A4b-GFP. Allelic variation of TaABI5-A4-affected wheat seed dormancy and the gene function was confirmed in transgenic rice. The transgenic rice lines of TaABI5-A4a and TaABI5-A4b had significantly different sensitivities to ABA and contents of endogenous ABA and GA in mature seeds, thereby influencing the seed dormancy, plant height, and stem internode length and diameter.
Collapse
Affiliation(s)
- Yang Han
- College of Life Sciences, Inner Mongolia Agricultural University/Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, 306 Zhaowuda Road, Hohhot, 010018, Inner Mongolia, China
| | - Zeng Wang
- College of Life Sciences, Inner Mongolia Agricultural University/Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, 306 Zhaowuda Road, Hohhot, 010018, Inner Mongolia, China
| | - Bing Han
- College of Life Sciences, Inner Mongolia Agricultural University/Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, 306 Zhaowuda Road, Hohhot, 010018, Inner Mongolia, China
| | - Yingjun Zhang
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050031, Hebei, China
| | - Jindong Liu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yan Yang
- College of Life Sciences, Inner Mongolia Agricultural University/Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, 306 Zhaowuda Road, Hohhot, 010018, Inner Mongolia, China.
| |
Collapse
|
3
|
Xiao B, Qie Y, Jin Y, Yu N, Sun N, Liu W, Wang X, Wang J, Qian Z, Zhao Y, Yuan T, Li L, Wang F, Liu C, Ma P. Genetic basis of an elite wheat cultivar Guinong 29 with harmonious improvement between multiple diseases resistance and other comprehensive traits. Sci Rep 2024; 14:14336. [PMID: 38906938 PMCID: PMC11192888 DOI: 10.1038/s41598-024-64998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
Fungal diseases, such as powdery mildew and rusts, significantly affect the quality and yield of wheat. Pyramiding diverse types of resistance genes into cultivars represents the preferred strategy to combat these diseases. Moreover, achieving collaborative improvement between diseases resistance, abiotic stress, quality, and agronomic and yield traits is difficult in genetic breeding. In this study, the wheat cultivar, Guinong 29 (GN29), showed high resistance to powdery mildew and stripe rust at both seedling and adult plant stages, and was susceptible to leaf rust at the seedling stage but slow resistance at the adult-plant stage. Meanwhile, it has elite agronomic and yield traits, indicating promising coordination ability among multiple diseases resistance and other key breeding traits. To determine the genetic basis of these elite traits, GN29 was tested with 113 molecular markers for 98 genes associated with diseases resistance, stress tolerance, quality, and adaptability. The results indicated that two powdery mildew resistance (Pm) genes, Pm2 and Pm21, confirmed the outstanding resistance to powdery mildew through genetic analysis, marker detection, genomic in situ hybridization (GISH), non-denaturing fluorescence in situ hybridization (ND-FISH), and homology-based cloning; the stripe rust resistance (Yr) gene Yr26 and leaf rust resistance (Lr) genes Lr1 and Lr46 conferred the stripe rust and slow leaf rust resistance in GN29, respectively. Meanwhile, GN29 carries dwarfing genes Rht-B1b and Rht-D1a, vernalization genes vrn-A1, vrn-B1, vrn-D1, and vrn-B3, which were consistent with the phenotypic traits in dwarf characteristic and semi-winter property; carries genes Dreb1 and Ta-CRT for stress tolerance to drought, salinity, low temperature, and abscisic acid (ABA), suggesting that GN29 may also have elite stress-tolerance ability; and carries two low-molecular-weight glutenin subunit genes Glu-B3b and Glu-B3bef which contributed to high baking quality. This study not only elucidated the genetic basis of the elite traits in GN29 but also verified the capability for harmonious improvement in both multiple diseases resistance and other comprehensive traits, offering valuable information for breeding breakthrough-resistant cultivars.
Collapse
Affiliation(s)
- Bei Xiao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Yanmin Qie
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Key Laboratory of Crop Genetic and Breeding, Shijiazhuang, 050035, China
| | - Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ningning Yu
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Nina Sun
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Wei Liu
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Xiaolu Wang
- Crop Research Institute, Shandong Academy of Agriculture Sciences, Jinan, 250100, China
| | - Jiaojiao Wang
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Zejun Qian
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ya Zhao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Tangyu Yuan
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Linzhi Li
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Fengtao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agriculture Sciences, Jinan, 250100, China.
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China.
| |
Collapse
|
4
|
Albrecht T, Oberforster M, Hartl L, Mohler V. Assessing Falling Number Stability Increases the Genomic Prediction Ability of Pre-Harvest Sprouting Resistance in Common Winter Wheat. Genes (Basel) 2024; 15:794. [PMID: 38927730 PMCID: PMC11202678 DOI: 10.3390/genes15060794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Pre-harvest sprouting (PHS) resistance is a complex trait, and many genes influencing the germination process of winter wheat have already been described. In the light of interannual climate variation, breeding for PHS resistance will remain mandatory for wheat breeders. Several tests and traits are used to assess PHS resistance, i.e., sprouting scores, germination index, and falling number (FN), but the variation of these traits is highly dependent on the weather conditions during field trials. Here, we present a method to assess falling number stability (FNS) employing an after-ripening period and the wetting of the kernels to improve trait variation and thus trait heritability. Different genome-based prediction scenarios within and across two subsequent seasons based on overall 400 breeding lines were applied to assess the predictive abilities of the different traits. Based on FNS, the genome-based prediction of the breeding values of wheat breeding material showed higher correlations across seasons (r=0.505-0.548) compared to those obtained for other traits for PHS assessment (r=0.216-0.501). By weighting PHS-associated quantitative trait loci (QTL) in the prediction model, the average predictive abilities for FNS increased from 0.585 to 0.648 within the season 2014/2015 and from 0.649 to 0.714 within the season 2015/2016. We found that markers in the Phs-A1 region on chromosome 4A had the highest effect on the predictive abilities for FNS, confirming the influence of this QTL in wheat breeding material, whereas the dwarfing genes Rht-B1 and Rht-D1 and the wheat-rye translocated chromosome T1RS.1BL exhibited effects, which are well-known, on FN per se exclusively.
Collapse
Affiliation(s)
- Theresa Albrecht
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, 85354 Freising, Germany; (T.A.); (L.H.)
| | - Michael Oberforster
- Austrian Agency for Health and Food Safety (AGES), Institute for Sustainable Plant Production, Spargelfeldstr. 191, 1220 Vienna, Austria
| | - Lorenz Hartl
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, 85354 Freising, Germany; (T.A.); (L.H.)
| | - Volker Mohler
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, 85354 Freising, Germany; (T.A.); (L.H.)
| |
Collapse
|
5
|
Dallinger HG, Löschenberger F, Azrak N, Ametz C, Michel S, Bürstmayr H. Genome-wide association mapping for pre-harvest sprouting in European winter wheat detects novel resistance QTL, pleiotropic effects, and structural variation in multiple genomes. THE PLANT GENOME 2024; 17:e20301. [PMID: 36851839 DOI: 10.1002/tpg2.20301] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/20/2022] [Indexed: 06/18/2023]
Abstract
Pre-harvest sprouting (PHS), germination of seeds before harvest, is a major problem in global wheat (Triticum aestivum L.) production, and leads to reduced bread-making quality in affected grain. Breeding for PHS resistance can prevent losses under adverse conditions. Selecting resistant lines in years lacking pre-harvest rain, requires challenging of plants in the field or in the laboratory or using genetic markers. Despite the availability of a wheat reference and pan-genome, linking markers, genes, allelic, and structural variation, a complete understanding of the mechanisms underlying various sources of PHS resistance is still lacking. Therefore, we challenged a population of European wheat varieties and breeding lines with PHS conditions and phenotyped them for PHS traits, grain quality, phenological and agronomic traits to conduct genome-wide association mapping. Furthermore, we compared these marker-trait associations to previously reported PHS loci and evaluated their usefulness for breeding. We found markers associated with PHS on all chromosomes, with strong evidence for novel quantitative trait locus/loci (QTL) on chromosome 1A and 5B. The QTL on chromosome 1A lacks pleiotropic effect, for the QTL on 5B we detected pleiotropic effects on phenology and grain quality. Multiple peaks on chromosome 4A co-located with the major resistance locus Phs-A1, for which two causal genes, TaPM19 and TaMKK3, have been proposed. Mapping markers and genes to the pan-genome and chromosomal alignments provide evidence for structural variation around this major PHS-resistance locus. Although PHS is controlled by many loci distributed across the wheat genome, Phs-A1 on chromosome 4A seems to be the most effective and widely deployed source of resistance, in European wheat varieties.
Collapse
Affiliation(s)
- Hermann G Dallinger
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 20, Tulln, Austria
- Saatzucht Donau GesmbH & Co KG, Saatzuchtstrasse 11, Probstdorf, Austria
| | | | - Naim Azrak
- Saatzucht Donau GesmbH & Co KG, Saatzuchtstrasse 11, Probstdorf, Austria
| | - Christian Ametz
- Saatzucht Donau GesmbH & Co KG, Saatzuchtstrasse 11, Probstdorf, Austria
| | - Sebastian Michel
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 20, Tulln, Austria
| | - Hermann Bürstmayr
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 20, Tulln, Austria
| |
Collapse
|
6
|
Ahmed MIY, Gorafi YSA, Kamal NM, Balla MY, Tahir ISA, Zheng L, Kawakami N, Tsujimoto H. Mining Aegilops tauschii genetic diversity in the background of bread wheat revealed a novel QTL for seed dormancy. FRONTIERS IN PLANT SCIENCE 2023; 14:1270925. [PMID: 38107013 PMCID: PMC10723804 DOI: 10.3389/fpls.2023.1270925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Due to the low genetic diversity in the current wheat germplasm, gene mining from wild relatives is essential to develop new wheat cultivars that are more resilient to the changing climate. Aegilops tauschii, the D-genome donor of bread wheat, is a great gene source for wheat breeding; however, identifying suitable genes from Ae. tauschii is challenging due to the different morphology and the wide intra-specific variation within the species. In this study, we developed a platform for the systematic evaluation of Ae. tauschii traits in the background of the hexaploid wheat cultivar 'Norin 61' and thus for the identification of QTLs and genes. To validate our platform, we analyzed the seed dormancy trait that confers resistance to preharvest sprouting. We used a multiple synthetic derivative (MSD) population containing a genetic diversity of 43 Ae. tauschii accessions representing the full range of the species. Our results showed that only nine accessions in the population provided seed dormancy, and KU-2039 from Afghanistan had the highest level of seed dormancy. Therefore, 166 backcross inbred lines (BILs) were developed by crossing the synthetic wheat derived from KU-2039 with 'Norin 61' as the recurrent parent. The QTL mapping revealed one novel QTL, Qsd.alrc.5D, associated with dormancy explaining 41.7% of the phenotypic variation and other five unstable QTLs, two of which have already been reported. The Qsd.alrc.5D, identified for the first time within the natural variation of wheat, would be a valuable contribution to breeding after appropriate validation. The proposed platform that used the MSD population derived from the diverse Ae. tauschii gene pool and recombinant inbred lines proved to be a valuable platform for mining new and important QTLs or alleles, such as the novel seed dormancy QTL identified here. Likewise, such a platform harboring genetic diversity from wheat wild relatives could be a useful source for mining agronomically important traits, especially in the era of climate change and the narrow genetic diversity within the current wheat germplasm.
Collapse
Affiliation(s)
| | - Yasir Serag Alnor Gorafi
- International Platform for Dryland Research and Education, Tottori University, Tottori, Japan
- Gezira Research Station, Agricultural Research Corporation (ARC), Wad-Medani, Sudan
| | - Nasrein Mohamed Kamal
- Gezira Research Station, Agricultural Research Corporation (ARC), Wad-Medani, Sudan
- Arid Land Research Center, Tottori University, Tottori, Japan
| | - Mohammed Yousif Balla
- Gezira Research Station, Agricultural Research Corporation (ARC), Wad-Medani, Sudan
- Arid Land Research Center, Tottori University, Tottori, Japan
| | - Izzat Sidahmed Ali Tahir
- Gezira Research Station, Agricultural Research Corporation (ARC), Wad-Medani, Sudan
- Arid Land Research Center, Tottori University, Tottori, Japan
| | - Lipeng Zheng
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Naoto Kawakami
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | | |
Collapse
|
7
|
Li Q, Zhang C, Wen J, Chen L, Shi Y, Yang Q, Li D. Transcriptome Analyses Show Changes in Gene Expression Triggered by a 31-bp InDel within OsSUT3 5'UTR in Rice Panicle. Int J Mol Sci 2023; 24:10640. [PMID: 37445819 DOI: 10.3390/ijms241310640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Pollen development and its fertility are obligatory conditions for the reproductive success of flowing plants. Sucrose transporter 3 (OsSUT3) is known to be preferentially expressed and may play critical role in developing pollen. A 31-bp InDel was identified as a unique variation and was shown to be responsible for the expression of downstream gene in our previous study. In this study, to analyze the changes of gene expression triggered by 31-bp InDel during pollen development, two vectors (p385-In/Del::OsSUT3-GUS) were constructed and then stably introduced into rice. Histochemical and quantitative real-time PCR (qRT-PCR) analysis of transgenic plants showed that 31-bp deletion drastically reduced the expressions of downstream genes, including both OsSUT3 and GUS in rice panicle at booting stage, especially that of OsSUT3. The transcriptome profile of two types of panicles at booting stage revealed a total of 1028 differentially expressed genes (DEGs) between 31-bp In and 31-bp Del transgenic plants. Further analyses showed that 397 of these genes were significantly enriched for the 'metabolic process' and 'binding'. Among them, nineteen genes had a strong relationship with starch and sucrose metabolism and were identified as candidate genes potentially associated with the starch accumulation in rice pollen, which that was also verified via qRT-PCR. In summary, 31-bp InDel plays a crucial role not only in the regulation of downstream genes but in the expression of sucrose-starch metabolizing genes in multiple biological pathways, and provides a different regulation mechanism for sucrose metabolism in pollen.
Collapse
Affiliation(s)
- Qiuping Li
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China
| | - Chunlong Zhang
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China
| | - Jiancheng Wen
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China
| | - Lijuan Chen
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China
| | - Yitong Shi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Qinghui Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Dandan Li
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
8
|
Xiao L, Jin Y, Liu W, Liu J, Song H, Li D, Zheng J, Wang D, Yin Y, Liu Y, Wang H, Li L, Sun N, Liu M, Ma P. Genetic basis analysis of key Loci in 23 Yannong series wheat cultivars/lines. FRONTIERS IN PLANT SCIENCE 2022; 13:1037027. [PMID: 36299791 PMCID: PMC9589233 DOI: 10.3389/fpls.2022.1037027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Fungal diseases, drought, pre-harvest sprouting (PHS) and other biotic and abiotic stresses have seriously affected the quality and yield in wheat production. Identifying related genes/loci in released cultivars/lines can provide reference information and theoretical basis for wheat improvement. Yannong series wheat cultivars/lines have distinctive characteristics in wheat cultivars and play an important role in genetic improvement and production of Chinese wheat production system. To dissect their genetic basis of the stress-resistant traits, in this study, 23 representative Yannong series wheat cultivars/lines were tested by 58 molecular markers for 40 genes related to adaptability, disease resistance and stress tolerance to clarify the genetic composition of the key loci. The results showed that most of the tested wheat accessions carried dwarfing genes RhtB1b/RhtD1b/Rht8 and recessive vernalization genes vrn-A1/vrn-B1/vrn-D1/vrn-B3. It was also consistent with the phenotypic traits of tested Yannong series wheat which were dwarf and winter or semi winter wheat. In addition, the overall level of seedling powdery mildew resistance in 23 Yannong wheat cultivars/lines was moderate or inadequate. Eleven accessions carried none of the tested Pm genes and twelve accessions carried Pm2, Pm6, Pm42 and Pm52 singly or in combination. Then, 23 wheat cultivars/lines were also tested by 17 diagnostic markers for 14 Yr genes. The results showed that 16 wheat cultivars/lines were likely to carry one or more of tested Yr genes, whereas Yannong 15, Yannong 17, Yannong 23, Yannong 24, Yannong 377, Yannong 572 and Yannong 999 carried none of the tested Yr genes. Moreover, in our study, nine markers for four genes related to drought tolerance and PHS were used to evaluate the stress tolerance of the 23 wheat cultivars/lines. The results indicated that all 23 wheat cultivars/lines carried drought resistance genes Ta-Dreb1/TaCRT-D, indicating that they had the drought resistance to the extent. Except for Yannong 30, Yannong 377, Yannong 390, Yannong 745 and Yannong 1766, other wheat cultivars/lines carried one to three elite PHS-resistant alleles Vp-1Bc/Vp-1Bf/TaAFP-1Bb.
Collapse
Affiliation(s)
- Luning Xiao
- College of Life Sciences, Yantai University, Yantai, China
| | - Yuli Jin
- College of Life Sciences, Yantai University, Yantai, China
| | - Wei Liu
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Jie Liu
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Huajie Song
- Rongcheng Science and Technology Bureau, Rongcheng, China
| | - Dong Li
- Shandong Seed Administration Station, Jinan, China
| | - Jianpeng Zheng
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Dongmei Wang
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Yan Yin
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Yang Liu
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Hao Wang
- College of Life Sciences, Yantai University, Yantai, China
| | - Linzhi Li
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Nina Sun
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Minxiao Liu
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Pengtao Ma
- College of Life Sciences, Yantai University, Yantai, China
| |
Collapse
|
9
|
Feng Y, Han Y, Han B, Zhao Y, Yang Y, Xing Y. A 4 bp InDel in the Promoter of Wheat Gene TaAFP-B Affecting Seed Dormancy Confirmed in Transgenic Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:837805. [PMID: 35432414 PMCID: PMC9008840 DOI: 10.3389/fpls.2022.837805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Wheat (Triticum aestivum L.) ABA insensitive five (ABI5) binding protein gene (TaAFP) is a homologue of the ABI5 binding protein (AFP) gene in Arabidopsis thaliana. It is well documented that AtAFP is a negative regulator of ABA signaling that regulates embryo germination and seed dormancy. TaABI5 was earlier shown to be expressed specifically in seed and its transcript accumulated during wheat grain maturation and acquisition of dormancy. It plays an important role in seed dormancy. In a previous study, we identified two allelic variants TaAFP-B1a and TaAFP-B1b of TaAFP on chromosome arm 2BS in common wheat, designated as, respectively. Sequence analysis revealed a 4 bp insertion in the promoter of TaAFP-B1a compared with TaAFP-B1b that affected mRNA transcription level, mRNA stability, GUS and tdTomatoER translation level, and GUS activity determining seed dormancy. RESULTS The transcription and translation levels of TaAFP-B were significantly reduced in TaAFP-Ba and TaAFP-Ba-GFP transgenic plants compared with TaAFP-Bb and TaAFP-Bb-GFP. The average GI (germination index) values of TaAFP-Ba and TaAFP-Ba-GFP were significantly lower than those of TaAFP-Bb and TaAFP-Bb-GFP in T1 and T2 transgenic rice seeds, whereas mature TaAFP-Ba and TaAFP-Ba-GFP transgenic seeds exhibited increased ABA sensitivity and content of endogenous ABA compared with TaAFP-Bb and TaAFP-Bb-GFP. CONCLUSION The 4 bp insertion in the promoter of TaAFP-Ba decreased transcript abundance and translation level in transgenic rice. This insertion increased sensitivity to ABA and content of endogenous ABA in mature seeds, leading to a higher seed dormancy and pre-harvest sprouting tolerance in transgenic rice.
Collapse
Affiliation(s)
- Yumei Feng
- Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Yang Han
- Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Bing Han
- Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Yongying Zhao
- Henan Key Laboratory of Wheat Biology, National Engineering Laboratory for Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huang-Huai Region, Ministry of Agriculture and Rural Affairs, Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yan Yang
- Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanping Xing
- Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
10
|
Matilla AJ. Exploring Breakthroughs in Three Traits Belonging to Seed Life. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040490. [PMID: 35214823 PMCID: PMC8875957 DOI: 10.3390/plants11040490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 05/06/2023]
Abstract
Based on prior knowledge and with the support of new methodology, solid progress in the understanding of seed life has taken place over the few last years. This update reflects recent advances in three key traits of seed life (i.e., preharvest sprouting, genomic imprinting, and stored-mRNA). The first breakthrough refers to cloning of the mitogen-activated protein kinase-kinase 3 (MKK3) gene in barley and wheat. MKK3, in cooperation with ABA signaling, controls seed dormancy. This advance has been determinant in producing improved varieties that are resistant to preharvest sprouting. The second advance concerns to uniparental gene expression (i.e., imprinting). Genomic imprinting primarily occurs in the endosperm. Although great advances have taken place in the last decade, there is still a long way to go to complete the puzzle regarding the role of genomic imprinting in seed development. This trait is probably one of the most important epigenetic facets of developing endosperm. An example of imprinting regulation is polycomb repressive complex 2 (PRC2). The mechanism of PRC2 recruitment to target endosperm with specific genes is, at present, robustly studied. Further progress in the knowledge of recruitment of PRC2 epigenetic machinery is considered in this review. The third breakthrough referred to in this update involves stored mRNA. The role of the population of this mRNA in germination is far from known. Its relations to seed aging, processing bodies (P bodies), and RNA binding proteins (RBPs), and how the stored mRNA is targeted to monosomes, are aspects considered here. Perhaps this third trait is the one that will require greater experimental dedication in the future. In order to make progress, herein are included some questions that are needed to be answered.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional (Área Fisiología Vegetal), Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
11
|
Tai L, Wang HJ, Xu XJ, Sun WH, Ju L, Liu WT, Li WQ, Sun J, Chen KM. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2857-2876. [PMID: 33471899 DOI: 10.1093/jxb/erab024] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/18/2021] [Indexed: 05/22/2023]
Abstract
With the growth of the global population and the increasing frequency of natural disasters, crop yields must be steadily increased to enhance human adaptability to risks. Pre-harvest sprouting (PHS), a term mainly used to describe the phenomenon in which grains germinate on the mother plant directly before harvest, is a serious global problem for agricultural production. After domestication, the dormancy level of cultivated crops was generally lower than that of their wild ancestors. Although the shortened dormancy period likely improved the industrial performance of cereals such as wheat, barley, rice, and maize, the excessive germination rate has caused frequent PHS in areas with higher rainfall, resulting in great economic losses. Here, we systematically review the causes of PHS and its consequences, the major indicators and methods for PHS assessment, and emphasize the biological significance of PHS in crop production. Wheat quantitative trait loci functioning in the control of PHS are also comprehensively summarized in a meta-analysis. Finally, we use Arabidopsis as a model plant to develop more complete PHS regulatory networks for wheat. The integration of this information is conducive to the development of custom-made cultivated lines suitable for different demands and regions, and is of great significance for improving crop yields and economic benefits.
Collapse
Affiliation(s)
- Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hong-Jin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiao-Jing Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei-Hang Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lan Ju
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
12
|
Mares DJ, Mrva K, Cheong J, Fox R, Mather DE. Dormancy and dormancy release in white-grained wheat (Triticum aestivum L.). PLANTA 2021; 253:5. [PMID: 33387045 DOI: 10.1007/s00425-020-03518-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Dormancy in white-grained wheat is conditioned by the cumulative effects of several QTL that delay the onset of the capacity to germinate during ripening and after-ripening. Grain dormancy at harvest-ripeness is a major component of resistance to preharvest sprouting in wheat (Triticum aestivum L.) and an important trait in regions where rain is common during the harvest period. Breeding lines developed in Australia maintained their dormancy phenotype over multiple seasons and during grain ripening, the time between anthesis and the acquisition of the capacity to germinate, dormancy release, increased in line with the strength of dormancy. Genetic dissection of two dormant lines indicated that dormancy was due to the cumulative action of between one and three major genetic loci and several minor loci. This presents a significant challenge for breeders targeting environments with a high risk of sprouting where strong dormancy is desirable. Only around half of the difference in dormancy between the dormant lines and a non-dormant variety could be attributed to the major genetic loci on chromosomes 4A and 3A. A QTL that was mapped on chromosome 5A may be an orthologue of a minor QTL for dormancy in barley. At each locus, the dormancy allele increased the time to dormancy release during ripening. In combination, these alleles had cumulative effects. Embryo sensitivity to abscisic acid was related to the dormancy phenotype of the whole caryopsis, however, changes in concentrations of abscisic acid and gibberellins in embryo sections and de-embryonated grains during ripening and after-ripening could not be linked to the timing of dormancy release.
Collapse
Affiliation(s)
- Daryl J Mares
- School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Glen Osmond, SA, 5064, Australia.
| | - Kolumbina Mrva
- School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Glen Osmond, SA, 5064, Australia
| | - Judy Cheong
- SARDI, Waite Precinct, Urrbrae, SA, Australia
| | - Rebecca Fox
- School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Glen Osmond, SA, 5064, Australia
| | - Diane E Mather
- School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
13
|
Kroupin PY, Chernook AG, Bazhenov MS, Karlov GI, Goncharov NP, Chikida NN, Divashuk MG. Allele mining of TaGRF-2D gene 5'-UTR in Triticum aestivum and Aegilops tauschii genotypes. PLoS One 2020; 15:e0231704. [PMID: 32298343 PMCID: PMC7162470 DOI: 10.1371/journal.pone.0231704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/30/2020] [Indexed: 11/18/2022] Open
Abstract
The low diversity of the D-subgenome of bread wheat requires the involvement of new alleles for breeding. In grasses, the allelic state of Growth Regulating Factor (GRF) gene is correlated with nitrogen uptake. In this study, we characterized the sequence of TaGRF-2D and assessed its diversity in bread wheat and goatgrass Aegilops tauschii (genome DD). In silico analysis was performed for reference sequence searching, primer pairs design and sequence assembly. The gene sequence was obtained using Illumina and Sanger sequencing. The complete sequences of TaGRF-2D were obtained for 18 varieties of wheat. The polymorphism in the presence/absence of two GCAGCC repeats in 5' UTR was revealed and the GRF-2D-SSR marker was developed. Our results showed that the alleles 5' UTR-250 and 5' UTR-238 were present in wheat varieties, 5' UTR-250 was presented in the majority of wheat varieties. In Ae. tauschii ssp. strangulata (likely donor of the D-subgenome of polyploid wheat), most accessions carried the 5' UTR-250 allele, whilst most Ae. tauschii ssp. tauschii have 5' UTR-244. The developed GRF-2D-SSR marker can be used to study the genetic diversity of wheat and Ae. tauschii.
Collapse
Affiliation(s)
- Pavel Yu. Kroupin
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Anastasiya G. Chernook
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Mikhail S. Bazhenov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Gennady I. Karlov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Nikolay P. Goncharov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nadezhda N. Chikida
- Federal Research Center Vavilov All-Russian Institute of Plant Genetic Resources, Saint Petersburg, Russia
| | - Mikhail G. Divashuk
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
- Centre for Molecular Biotechnology, Russian State Agrarian University–Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Kurchatov Genomics Center-ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| |
Collapse
|