1
|
Zheng X, Jian Y, Long Q, Luo Y, Xu X, Zhang Q, Cheng Y, Huang B, Qiu D, Li Z, Zheng J, Zhang W, Deng W. SlASR3 mediates crosstalk between auxin and jasmonic acid signaling to regulate trichome formation in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70053. [PMID: 39981944 DOI: 10.1111/tpj.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
Trichomes play a pivotal role in plant resistance to biotic and abiotic stresses. Both auxin and jasmonic acid (JA) could induce tomato type II, V, and VI trichome formation. However, the existence of crosstalk between auxin and JA in trichome formation is not yet fully elucidated. In this study, we identified a Trihelix/MYB-like gene, SlASR3, is inhibited by both auxin and JA and is expressed in type II and VI trichomes in tomatoes. Knock-down or knockout of SlASR3 increased the densities of type II and VI trichomes, whereas overexpression of SlASR3 reduced the densities of type II and VI trichomes. SlASR3 was involved in the indole acetic acid (IAA)- and JA-induced formation of these trichome types. SlARF4 negatively regulated the transcription of SlASR3, and its effect on IAA-induced trichome formation depended on SlASR3. Likewise, SlMYC1 negatively regulated the transcription of SlASR3, and the regulation of SlMYC1 on JA-induced trichome formation was also SlASR3-dependent. Knock-down or knockout of SlASR3 increased the resistance to two-spotted spider mites in tomatoes. The research findings demonstrate that SlASR3 acts as a mediator in the crosstalk between JA and auxin signaling to regulate trichome formation and provide a new candidate gene for enhancing resistance to two-spotted spider mites.
Collapse
Affiliation(s)
- Xianzhe Zheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
- Southwest Research Center for Cross Breeding of Special Economic Plants, School of Life Science, Leshan Normal University, Sichuan, 614000, China
| | - Yongfei Jian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Qian Long
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Yingqing Luo
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Qiongdan Zhang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Baowen Huang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Dan Qiu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Jirong Zheng
- Hangzhou Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310024, China
| | - Weiqing Zhang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
2
|
Mildažienė V, Žūkienė R, Fomins LD, Naučienė Z, Minkutė R, Jarukas L, Drapak I, Georgiyants V, Novickij V, Koga K, Shiratani M, Mykhailenko O. Effects of Corm Treatment with Cold Plasma and Electromagnetic Field on Growth and Production of Saffron Metabolites in Crocus sativus. Int J Mol Sci 2024; 25:10412. [PMID: 39408740 PMCID: PMC11477176 DOI: 10.3390/ijms251910412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Crocus sativus L. is a widely cultivated traditional plant for obtaining dried red stigmas known as "saffron," the most expensive spice in the world. The response of C. sativus to pre-sowing processing of corms with cold plasma (CP, 3 and 5 min), vacuum (3 min), and electromagnetic field (EMF, 5 min) was assessed to verify how such treatments affect plant performance and the quality and yield of herbal raw materials. The results show that applied physical stressors did not affect the viability of corms but caused stressor-dependent changes in the kinetics of sprouting, growth parameters, leaf trichome density, and secondary metabolite content in stigmas. The effect of CP treatment on plant growth and metabolite content was negative, but all stressors significantly (by 42-74%) increased the number of leaf trichomes. CP3 treatment significantly decreased the length and dry weight of flowers by 43% and 60%, respectively, while EMF treatment increased the length of flowers by 27%. However, longer CP treatment (5 min) delayed germination. Vacuum treatment improved the uniformity of germination by 28% but caused smaller changes in the content of stigma compounds compared with CP and EMF. Twenty-six compounds were identified in total in Crocus stigma samples by the HPLC-DAD method, including 23 crocins, rutin, picrocrocin, and safranal. Processing of Crocus corms with EMF showed the greatest efficiency in increasing the production of secondary metabolites in saffron. EMF increased the content of marker compounds in stigmas (crocin 4: from 8.95 to 431.17 mg/g; crocin 3: from 6.27 to 164.86 mg/g; picrocrocin: from 0.4 to 1.0 mg/g), although the observed effects on growth were neutral or slightly positive. The obtained findings indicate that treatment of C. sativus corms with EMF has the potential application for increasing the quality of saffron by enhancing the amounts of biologically active compounds.
Collapse
Affiliation(s)
- Vida Mildažienė
- Department of Biochemistry, Faculty of Natural Sciences, Vytautas Magnus University, Studentu Str. 10, LT-53361 Akademija, Lithuania; (R.Ž.); (L.D.F.); (Z.N.)
| | - Rasa Žūkienė
- Department of Biochemistry, Faculty of Natural Sciences, Vytautas Magnus University, Studentu Str. 10, LT-53361 Akademija, Lithuania; (R.Ž.); (L.D.F.); (Z.N.)
| | - Laima Degutytė Fomins
- Department of Biochemistry, Faculty of Natural Sciences, Vytautas Magnus University, Studentu Str. 10, LT-53361 Akademija, Lithuania; (R.Ž.); (L.D.F.); (Z.N.)
| | - Zita Naučienė
- Department of Biochemistry, Faculty of Natural Sciences, Vytautas Magnus University, Studentu Str. 10, LT-53361 Akademija, Lithuania; (R.Ž.); (L.D.F.); (Z.N.)
| | - Rima Minkutė
- Department of Clinical pharmacy, Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, LT-44307 Kaunas, Lithuania;
| | - Laurynas Jarukas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, LT-44307 Kaunas, Lithuania;
| | - Iryna Drapak
- Department of General, Bioinorganic, Physical and Colloidal Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska Str. 69, 79010 Lviv, Ukraine;
| | - Victoriya Georgiyants
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4-Valentinivska St., 61168 Kharkiv, Ukraine;
| | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, LT-08406 Vilnius, Lithuania
| | - Kazunori Koga
- Center of Plasma Nano-interface Engineering, Kyushu University, Fukuoka 819-0395, Japan; (K.K.); (M.S.)
- Center for Novel Science Initiatives, National Institutes of Natural Sciences, Tokyo 105-0001, Japan
| | - Masaharu Shiratani
- Center of Plasma Nano-interface Engineering, Kyushu University, Fukuoka 819-0395, Japan; (K.K.); (M.S.)
| | - Olha Mykhailenko
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4-Valentinivska St., 61168 Kharkiv, Ukraine;
- Department of Pharmaceutical and Biological Chemistry, Pharmacognosy and Phytotherapy Group, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
- Department of Pharmaceutical Biology, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
3
|
Xu H, Teng H, Zhang B, Liu W, Sui Y, Yan X, Wang Z, Cui H, Zhang H. NtHD9 modulates plant salt tolerance by regulating the formation of glandular trichome heads in Nicotiana tabacum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108765. [PMID: 38795550 DOI: 10.1016/j.plaphy.2024.108765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Salt stress is one of the main abiotic factor affecting plant growth. We have previously identified a key gene (NtHD9) in Nicotiana tabacum L. that positively regulates the formation of long glandular trichomes (LGTs). Here, we verified that both abiotic stress (aphids, drought and salt stress) could restore the phenotype lacking LGTs in NtHD9-knockout (NtHD9-KO) plants. The abiotic stress response assays indicated that NtHD9 is highly sensitive to salt stress. Compared with cultivated tobacco "K326" (CK) plants, NtHD9-overexpressing (NtHD9-OE) plants with more LGTs exhibited stronger salt tolerance, whereas NtHD9-KO with no LGTs showed weaker tolerance to salt. The densities and sizes of the glandular heads gradually increased with increasing NaCl concentrations in NtHD9-KO plants. Mineral element determination showed that leaves and trichomes of NtHD9-OE plants accumulated less Na+ but had higher K+ contents under salt stress, thus maintaining ion homeostasis in plants, which could contribute to a robust photosynthetic and antioxidant system under salt stress. Therefore, NtHD9-OE plants maintained a larger leaf area and root length under high-salt conditions than CK and NtHD9-KO plants. We verified that NtHD9 could individually interact with NtHD5, NtHD7, NtHD12, and NtJAZ10 proteins. Salt stress led to an increase in jasmonic acid (JA) levels and activated the expression of NtHDs while inhibiting the expression of NtJAZ. This study suggests that the glandular heads play an important role in plant resistance to salt stress. The activation of JA signaling leading to JAZ protein degradation may be key factors regulating the glandular heads development under salt stress.
Collapse
Affiliation(s)
- Hanchi Xu
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Huanyu Teng
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Bokai Zhang
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wei Liu
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yalin Sui
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaoxiao Yan
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhaojun Wang
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hong Cui
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Hongying Zhang
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
4
|
Liu L, Zhang L, Yang L, Zheng J, Jin J, Tong S, Wu Y. Genome-wide characterization and expression analysis of the HD-Zip II gene family in response to drought and GA 3 stresses in Nicotiana tabacum. Mol Biol Rep 2024; 51:581. [PMID: 38668759 DOI: 10.1007/s11033-024-09527-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/05/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Homeodomain-leucine ZIPper (HD-ZIP) transcription factors play crucial roles in plant growth, development, and stress responses. The HD-ZIP family is categorised into four groups (HD-ZIP I-IV). While extensive genome-wide studies have been conducted on the HD-ZIP I, III, and IV subfamily in Nicotiana tabacum (tobacco), comprehensive reports on the HD-ZIP II subfamily genes are limited. METHODS Bioinformatics resources and tools were utilised to analyse molecular characteristics, phylogenetic homology, and protein interactions. Expression pattern analyses in various tissues and the relative expression of NtHD-ZIP II genes under drought and GA3 treatment were assessed by qRT-PCR. RESULTS In this study, 24 HD-ZIP II members were systematically identified and categorised into seven independent clades through phylogenetic analysis involving tobacco and other plant species. We found that 19 NtHD-ZIP II genes exhibited tissue-specific expression. The transcripts of NtHD-ZIPII3, 4, 14, 23, 24 were notably induced under the drought treatments, while those of NtHD-ZIPII7, 11, 12, 20 were suppressed. Furthermore, NtHD-ZIPII15 transcripts decreased following GA3 treatment, whereas the transcripts of NtHD-ZIPII7, 8, 11, 12 were induced after GA3 treatment. Notably, an increase in trichomes was observed in tobacco leaves treated with GA3 and subjected to drought. CONCLUSIONS The expression levels of some HD-ZIP II genes were altered, and an increase in glandular trichomes was induced under GA3 and drought treatments in tobacco. Overall, our findings provide insights into the expression patterns of NtHD-ZIP II genes and will facilitate their functional characterisation in future studies.
Collapse
Grants
- [Qian Ke He Zhi Cheng, no. (2021) 262, (2022) 172, (2022) 156, (2023) 455] Guizhou Provincial Science and Technology Projects
- [Qian Ke He Zhi Cheng, no. (2021) 262, (2022) 172, (2022) 156, (2023) 455] Guizhou Provincial Science and Technology Projects
- [Qian Ke He Zhi Cheng, no. (2021) 262, (2022) 172, (2022) 156, (2023) 455] Guizhou Provincial Science and Technology Projects
- [Qian Ke He Zhi Cheng, no. (2021) 262, (2022) 172, (2022) 156, (2023) 455] Guizhou Provincial Science and Technology Projects
- [Qianjiaohe KV (2021) 006] Engineering Technology Research Center for The Processing of Pepper Products of Guizhou
- [Qiankehe Platform Talent (2020) 2102] Engineering and Technology Research Center for Pepper Fermented Products of Guizhou
Collapse
Affiliation(s)
- Liu Liu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Lincheng Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Longhuan Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Jiahua Zheng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Jing Jin
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Shuoqiu Tong
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Yongjun Wu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
5
|
Zhang H, Sui Y, Liu W, Yan M, Wang Z, Yan X, Cui H. Identification of a cis-element for long glandular trichome-specific gene expression, which is targeted by a HD-ZIP IV protein. Int J Biol Macromol 2024; 264:130579. [PMID: 38432280 DOI: 10.1016/j.ijbiomac.2024.130579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Glandular trichomes are epidermal outgrowths that secret a variety of secondary metabolites, which not only help plants adapt to environmental stresses but also have important commercial value in fragrances, pharmaceuticals, and pesticides. In Nicotiana tabacum, it has been confirmed that a B-type cyclin, CycB2, negatively regulates the formation of long glandular trichomes (LGTs). This study aimed to identify the upstream regulatory gene involved in LGT formation by screening LGT-specific cis-elements within the NtCycB2 promoter. Using GUS as a reporter gene, the tissue-driven ability of NtCycB2 promoter showed that NtCycB2 promoter could drive GUS expression specifically in LGTs. Function analysis of a series of successive 5' truncations and synthetic segments of the NtCycB2 promoter indicated that the 87-bp region from -1221 to -1134 of the NtCycB2 promoter was required for gene expression in LGTs, and the L1-element (5'-AAAATTAATAAGAG-3') located in the 87-bp region contributed to the gene expression in the stalk of LGTs. Further Y1H and LUC assays confirmed that this L1-element exclusively binds to a HD-Zip IV protein, NtHD13. Gene function analysis revealed that NtHD13 positively controlled LGT formation, as overexpression of NtHD13 resulted in a high number of LGTs, whereas knockout of NtHD13 led to a decrease in LGTs. These findings demonstrate that NtHD13 can bind to an L1-element within the NtCycB2 promoter to regulate LGT formation.
Collapse
Affiliation(s)
- Hongying Zhang
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yalin Sui
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Wei Liu
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Meiqi Yan
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhaojun Wang
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoxiao Yan
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Hong Cui
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
6
|
Zhang H, Xu H, Xu M, Yan X, Wang Z, Yu J, Lei B, Cui H. Transcription factors NtHD9 and NtHD12 control long glandular trichome formation via jasmonate signaling. PLANT PHYSIOLOGY 2023; 191:2385-2399. [PMID: 36617228 PMCID: PMC10069880 DOI: 10.1093/plphys/kiad003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
Glandular trichomes are universal epidermal structures that produce abundant specialized metabolites. However, knowledge of the initiation of glandular heads in glandular trichomes is limited. Herein, we found an intrinsic link of morphogenesis between glandular trichomes and non-glandular trichomes. Two novel homeodomain leucine zipper II members in tobacco (Nicotiana tabacum), NtHD9 and NtHD12, played important roles in long glandular trichome formation: NtHD9 was responsible for glandular head formation, while NtHD12 simultaneously controlled the formation of stalks and glandular heads. DAP-seq analysis suggested that NtHD9 can bind to the KKGCATTWAWTR motif of the cytochromes P450 94C1 (NtCYP94C1) promoter, which is involved in jasmonoyl-isoleucine oxidation. RNA-seq analysis of non-transformed tobacco and nthd9 plants revealed that NtHD9 modulates the expression of jasmonate (JA) signaling- and six trichome development-related genes. Notably, MeJA treatment restored the morphogenesis of long glandular trichomes in nthd9 and nthd12 plants, and the size of glandular heads increased with increasing MeJA concentration. However, the phenotype of long glandular trichome absence in double mutants of NtHD9 and NtHD12 could not be restored by MeJA. Our data demonstrate that NtHD9 and NtHD12 have distinct major functions yet overlapping roles in long glandular trichome formation via JA signaling.
Collapse
Affiliation(s)
- Hongying Zhang
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Hanchi Xu
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Mengxiao Xu
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoxiao Yan
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhaojun Wang
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Jing Yu
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Bo Lei
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Hong Cui
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
7
|
Genome-Wide Identification of Homeodomain Leucine Zipper (HD-ZIP) Transcription Factor, Expression Analysis, and Protein Interaction of HD-ZIP IV in Oil Palm Somatic Embryogenesis. Int J Mol Sci 2023; 24:ijms24055000. [PMID: 36902431 PMCID: PMC10002534 DOI: 10.3390/ijms24055000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Understanding the molecular mechanisms underlying somatic embryogenesis is essential for resolving the problems related to the long duration of the process and a low rate of somatic embryo induction in oil palm tissue culture. In this study, we conducted genome-wide identification of the oil palm homeodomain leucine zipper (EgHD-ZIP) family, which is one of the plant-specific transcription factors reported to be involved in embryogenesis. EgHD-ZIP proteins can be divided into four subfamilies, which have similarities in gene structure and protein-conserved motifs within a group. In silico expression analysis showed that the expression of EgHD-ZIP gene members in the EgHD-ZIP I and II families, as well as most members in the EgHD-ZIP IV family, were up-regulated during the zygotic and somatic embryo developmental stages. In contrast, the expression of EgHD-ZIP gene members in the EgHD-ZIP III family was down-regulated during zygotic embryo development. Moreover, the expression of EgHD-ZIP IV genes was validated in the oil palm callus and at the somatic embryo stages (globular, torpedo, and cotyledon). The results revealed that EgHD-ZIP IV genes were up-regulated at the late stages of somatic embryogenesis (torpedo and cotyledon). While BABY BOOM (BBM) gene was up-regulated at the early stage of somatic embryogenesis (globular). In addition, the Yeast-two hybrid assay revealed the direct binding between all members of the oil palm HD-ZIP IV subfamily (EgROC2, EgROC3, EgROC5, EgROC8, and EgBBM). Our findings suggested that the EgHD-ZIP IV subfamily and EgBBM work together to regulate somatic embryogenesis in oil palms. This process is important because it is widely used in plant biotechnology to produce large quantities of genetically identical plants, which can be used for oil palm tissue culture improvement.
Collapse
|
8
|
Zhang N, Yang H, Han T, Kim HS, Marcelis LFM. Towards greenhouse cultivation of Artemisia annua: The application of LEDs in regulating plant growth and secondary metabolism. FRONTIERS IN PLANT SCIENCE 2023; 13:1099713. [PMID: 36743532 PMCID: PMC9889874 DOI: 10.3389/fpls.2022.1099713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
Artemisinin is a sesquiterpene lactone produced in glandular trichomes of Artemisia annua, and is extensively used in the treatment of malaria. Growth and secondary metabolism of A. annua are strongly regulated by environmental conditions, causing unstable supply and quality of raw materials from field grown plants. This study aimed to bring A. annua into greenhouse cultivation and to increase artemisinin production by manipulating greenhouse light environment using LEDs. A. annua plants were grown in a greenhouse compartment for five weeks in vegetative stage with either supplemental photosynthetically active radiation (PAR) (blue, green, red or white) or supplemental radiation outside PAR wavelength (far-red, UV-B or both). The colour of supplemental PAR hardly affected plant morphology and biomass, except that supplemental green decreased plant biomass by 15% (both fresh and dry mass) compared to supplemental white. Supplemental far-red increased final plant height by 23% whereas it decreased leaf area, plant fresh and dry weight by 30%, 17% and 7%, respectively, compared to the treatment without supplemental radiation. Supplemental UV-B decreased plant leaf area and dry weight (both by 7%). Interestingly, supplemental green and UV-B increased leaf glandular trichome density by 11% and 9%, respectively. However, concentrations of artemisinin, arteannuin B, dihydroartemisinic acid and artemisinic acid only exhibited marginal differences between the light treatments. There were no interactive effects of far-red and UV-B on plant biomass, morphology, trichome density and secondary metabolite concentrations. Our results illustrate the potential of applying light treatments in greenhouse production of A. annua to increase trichome density in vegetative stage. However, the trade-off between light effects on plant growth and trichome initiation needs to be considered. Moreover, the underlying mechanisms of light spectrum regulation on artemisinin biosynthesis need further clarification to enhance artemisinin yield in greenhouse production of A. annua.
Collapse
Affiliation(s)
- Ningyi Zhang
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Haohong Yang
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Tianqi Han
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Hyoung Seok Kim
- Smart Farm Convergence Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| | - Leo F. M. Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
9
|
Yang Q, Xiang W, Li Z, Nian Y, Fu X, Zhou G, Li L, Zhang J, Huang G, Han X, Xu L, Bai X, Liu L, Wu D. Genome-Wide Characterization and Expression Analysis of HD-ZIP Gene Family in Dendrobium officinale. Front Genet 2022; 13:797014. [PMID: 35368655 PMCID: PMC8971680 DOI: 10.3389/fgene.2022.797014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/07/2022] [Indexed: 11/29/2022] Open
Abstract
The homeodomain-leucine zipper (HD-ZIP) gene family, as one of the plant-specific transcription factor families, plays an important role in regulating plant growth and development as well as in response to diverse stresses. Although it has been extensively characterized in many plants, the HD-ZIP family is not well-studied in Dendrobium officinale, a valuable ornamental and traditional Chinese medicinal herb. In this study, 37 HD-ZIP genes were identified in Dendrobium officinale (Dohdzs) through the in silico genome search method, and they were classified into four subfamilies based on phylogenetic analysis. Exon–intron structure and conserved protein domain analyses further supported the prediction with the same group sharing similar gene and protein structures. Furthermore, their expression patterns were investigated in nine various tissues and under cold stress based on RNA-seq datasets to obtain the tissue-specific and cold-responsive candidates. Finally, Dohdz5, Dohdz9, and Dohdz12 were selected to validate their expression through qRT-PCR analysis, and they displayed significantly differential expression under sudden chilling stress, suggesting they might be the key candidates underlying cold stress response. These findings will contribute to better understanding of the regulatory roles of the HD-ZIP family playing in cold stress and also will provide the vital targets for further functional studies of HD-ZIP genes in D. officinale.
Collapse
Affiliation(s)
- Qianyu Yang
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Weibo Xiang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Beijing, China
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, China
| | - Zhihui Li
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Yuxin Nian
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Xiaoyun Fu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Guangzhu Zhou
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Linbao Li
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Beijing, China
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, China
| | - Jun Zhang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Beijing, China
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, China
| | - Guiyun Huang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Beijing, China
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, China
| | - Xiao Han
- Natural Resources Affairs Service Center of Dalian, Dalian, China
| | - Lu Xu
- College of Horticulture, Hunan Agricultural University, Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Xiao Bai
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Lei Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- *Correspondence: Lei Liu, ; Di Wu,
| | - Di Wu
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Beijing, China
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, China
- *Correspondence: Lei Liu, ; Di Wu,
| |
Collapse
|
10
|
Wang Z, Li Y, Zhang H, Yan X, Cui H. Methyl jasmonate treatment, aphid resistance assay, and transcriptomic analysis revealed different herbivore defensive roles between tobacco glandular and non-glandular trichomes. PLANT CELL REPORTS 2022; 41:195-208. [PMID: 34647139 DOI: 10.1007/s00299-021-02801-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Methyl jasmonate treatment and aphid resistance assays reveal different roles in herbivore defensive responses between tobacco glandular and non-glandular trichomes. These roles correlate with trichome gene expression patterns. In plants, trichomes greatly contribute to biotic stress resistance. To better understand the different defensive functions between glandular and non-glandular trichomes, we used Nicotiana tabacum as a model. This species bears three types of trichomes: long and short stalk glandular trichomes (LGT and SGT, respectively), and non-glandular trichomes (NGT). Tobacco accession T.I.1068 (lacking NGT) and T.I.1112 (lacking LGT) were used for the experiment. After methyl jasmonate (MeJA) treatment, LGT formation was promoted not only in T.I.1068, but also in T.I.1112, whereas NGT remained absent in T.I.1068, and was slightly reduced in T.I.1112. Diterpenoids, which play important roles in herbivore resistance, accumulated abundantly in T.I.1068 and were elevated by MeJA; however, they were not found in T.I.1112 but became detectable after MeJA treatment. The aphid resistance of T.I.1068 was higher than that of T.I.1112, and both were enhanced by MeJA, which was closely correlated with LGT density. Trichomes detached from T.I.1068 and T.I.1112 were used for RNA-Seq analysis, the results showed that pentose phosphate, photosynthesis, and diterpenoid biosynthesis genes were much more expressed in T.I.1068 than in T.I.1112, which was consistent with the vigorous diterpenoid biosynthesis in T.I.1068. In T.I.1112, citrate cycle, propanoate, and glyoxylate metabolism processes were enriched, and some defensive protein genes were expressed at higher levels than those in T.I.1068.These results suggested that LGT plays a predominant role in aphid resistance, whereas NGT could strengthen herbivore resistance by accumulating defensive proteins, and the roles of LGT and NGT are associated with their gene expression patterns.
Collapse
Affiliation(s)
- Zhaojun Wang
- College of Tobacco Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Yanhua Li
- College of Tobacco Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Hongying Zhang
- College of Tobacco Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Xiaoxiao Yan
- College of Tobacco Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Hong Cui
- College of Tobacco Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China.
| |
Collapse
|
11
|
Xie L, Yan T, Li L, Chen M, Hassani D, Li Y, Qin W, Liu H, Chen T, Fu X, Shen Q, Rose JKC, Tang K. An HD-ZIP-MYB complex regulates glandular secretory trichome initiation in Artemisia annua. THE NEW PHYTOLOGIST 2021; 231:2050-2064. [PMID: 34043829 DOI: 10.1111/nph.17514] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/17/2021] [Indexed: 05/27/2023]
Abstract
Plant glandular secretory trichomes (GSTs) produce various specialized metabolites. Increasing GST density represents a strategy to enhance the yield of these chemicals; however, the gene regulatory network that controls GST initiation remains unclear. In a previous study of Artemisia annua L., we found that a HD-ZIP IV transcription factor, AaHD1, promotes GST initiation by directly regulating AaGSW2. Here, we identified two AaHD1-interacting transcription factors, namely AaMIXTA-like 2 (AaMYB16) and AaMYB5. Through the generation and characterization of transgenic plants, we found that AaMYB16 is a positive regulator of GST initiation, whereas AaMYB5 has the opposite effect. Notably, neither of them regulates GST formation independently. Rather, they act competitively, by interacting and modulating AaHD1 promoter binding activity. Additionally, the phytohormone jasmonic acid (JA) was shown to be associated with the AaHD1-AaMYB16/AaMYB5 regulatory network through transcriptional regulation via a JASMONATE-ZIM DOMAIN (JAZ) protein repressor. These results bring new insights into the mechanism of GST initiation through regulatory complexes, which appear to have similar functions in a range of vascular plant taxa.
Collapse
Affiliation(s)
- Lihui Xie
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tingxiang Yan
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Minghui Chen
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Danial Hassani
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongpeng Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Qin
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hang Liu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tiantian Chen
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Fu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Shen
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
12
|
Sharif R, Raza A, Chen P, Li Y, El-Ballat EM, Rauf A, Hano C, El-Esawi MA. HD-ZIP Gene Family: Potential Roles in Improving Plant Growth and Regulating Stress-Responsive Mechanisms in Plants. Genes (Basel) 2021; 12:1256. [PMID: 34440430 PMCID: PMC8394574 DOI: 10.3390/genes12081256] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Exploring the molecular foundation of the gene-regulatory systems underlying agronomic parameters or/and plant responses to both abiotic and biotic stresses is crucial for crop improvement. Thus, transcription factors, which alone or in combination directly regulated the targeted gene expression levels, are appropriate players for enlightening agronomic parameters through genetic engineering. In this regard, homeodomain leucine zipper (HD-ZIP) genes family concerned with enlightening plant growth and tolerance to environmental stresses are considered key players for crop improvement. This gene family containing HD and LZ domain belongs to the homeobox superfamily. It is further classified into four subfamilies, namely HD-ZIP I, HD-ZIP II, HD-ZIP III, and HD-ZIP IV. The first HD domain-containing gene was discovered in maize cells almost three decades ago. Since then, with advanced technologies, these genes were functionally characterized for their distinct roles in overall plant growth and development under adverse environmental conditions. This review summarized the different functions of HD-ZIP genes in plant growth and physiological-related activities from germination to fruit development. Additionally, the HD-ZIP genes also respond to various abiotic and biotic environmental stimuli by regulating defense response of plants. This review, therefore, highlighted the various significant aspects of this important gene family based on the recent findings. The practical application of HD-ZIP biomolecules in developing bioengineered plants will not only mitigate the negative effects of environmental stresses but also increase the overall production of crop plants.
Collapse
Affiliation(s)
- Rahat Sharif
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China;
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Ali Raza
- Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agriculture Science (CAAS), Wuhan 430062, China
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling 712100, China;
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Enas M. El-Ballat
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23430, Pakistan;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, Université d’Orléans, 28000 Chartres, France;
| | - Mohamed A. El-Esawi
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
13
|
Perotti MF, Arce AL, Chan RL. The underground life of homeodomain-leucine zipper transcription factors. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4005-4021. [PMID: 33713412 DOI: 10.1093/jxb/erab112] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Roots are the anchorage organs of plants, responsible for water and nutrient uptake, exhibiting high plasticity. Root architecture is driven by the interactions of biomolecules, including transcription factors and hormones that are crucial players regulating root plasticity. Multiple transcription factor families are involved in root development; some, such as ARFs and LBDs, have been well characterized, whereas others remain less well investigated. In this review, we synthesize the current knowledge about the involvement of the large family of homeodomain-leucine zipper (HD-Zip) transcription factors in root development. This family is divided into four subfamilies (I-IV), mainly according to structural features, such as additional motifs aside from HD-Zip, as well as their size, gene structure, and expression patterns. We explored and analyzed public databases and the scientific literature regarding HD-Zip transcription factors in Arabidopsis and other species. Most members of the four HD-Zip subfamilies are expressed in specific cell types and several individuals from each group have assigned functions in root development. Notably, a high proportion of the studied proteins are part of intricate regulation pathways involved in primary and lateral root growth and development.
Collapse
Affiliation(s)
- María Florencia Perotti
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe,Argentina
| | - Agustín Lucas Arce
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe,Argentina
| | - Raquel Lía Chan
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe,Argentina
| |
Collapse
|
14
|
Xie L, Yan T, Li L, Chen M, Ma Y, Hao X, Fu X, Shen Q, Huang Y, Qin W, Liu H, Chen T, Hassani D, Kayani SL, Rose JKC, Tang K. The WRKY transcription factor AaGSW2 promotes glandular trichome initiation in Artemisia annua. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1691-1701. [PMID: 33165526 DOI: 10.1093/jxb/eraa523] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/02/2020] [Indexed: 05/09/2023]
Abstract
Glandular secreting trichomes (GSTs) synthesize and secrete large quantities of secondary metabolites, some of which have well-established commercial value. An example is the anti-malarial compound artemisinin, which is synthesized in the GSTs of Artemisia annua. Accordingly, there is considerable interest in understanding the processes that regulate GST density as a strategy to increase artemisinin production. In this study, we identified a GST-specific WRKY transcription factor from A. annua, AaGSW2, which is positively regulated by the direct binding of the homeodomain proteins AaHD1 and AaHD8 to the L1-box of the AaGSW2 promoter. Overexpression of AaGSW2 in A. annua significantly increased GST density, while AaGSW2 knockdown lines showed impaired GST initiation. Ectopic expression of AaGSW2 homologs from two mint cultivars, Mentha spicata and Mentha haplocalyx, in A. annua also induced GST formation. These results reveal a molecular mechanism involving homeodomain and WRKY proteins that controls glandular trichome initiation, at least part of which is shared by A. annua and mint.
Collapse
Affiliation(s)
- Lihui Xie
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tingxiang Yan
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Minghui Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Ma
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolong Hao
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xueqing Fu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiwen Huang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Qin
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hang Liu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tiantian Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Danial Hassani
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sadaf-Llyas Kayani
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|