1
|
Wu Q, Yin J, Jiang M, Zhang J, Sui Z. Identification, characterization and expression profiles of E2 and E3 gene superfamilies during the development of tetrasporophytes in Gracilariopsis lemaneiformis (Rhodophyta). BMC Genomics 2023; 24:549. [PMID: 37723489 PMCID: PMC10506303 DOI: 10.1186/s12864-023-09639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
E2 ubiquitin conjugating enzymes and E3 ubiquitin ligases play important roles in the growth and development of plants and animals. To date, the systematic analysis of E2 and E3 genes in Rhodophyta is limited. In this study, 14 E2 genes and 51 E3 genes were identified in Gracilariopsis lemaneiformis, an economically important red alga. E2 genes were classified into four classes according to the structure of the conserved domain, UBC. E3 genes were classified into 12 subfamilies according to individual conserved domains. A phylogenetic tree of seven algae species showed that functional differentiation of RING-type E3s was the highest, and the similarity between orthologous genes was high except in Chlamydomonas reinhardtii and Chara braunii. RNA-seq data analysis showed significant differential expression levels of E2 and E3 genes under the life stages of tetraspore formation and release, especially GlUBCN and GlAPC3. According to GO and KEGG analysis of two transcriptomes, GlUBCN and GlAPC3 were involved in ubiquitin-mediated proteolysis, and other subunits of the anaphase promoting complex or cyclosome (APC/C) and its activators GlCDC20 and GlCDH1 were also enriched into this process. The CDH1 and CDC20 in 981 were down-regulated during tetraspores formation and release, with the down-regulation of CDH1 being particularly significant; CDH1 and CDC20 in WLP-1, ZC, and WT were up-regulated during tetraspores formation and release, with CDC20 being more significantly up-regulated. Therefore, GlCDH1, rather than GlCDC20, in '981' might play the leading role in the activation of the APC/C, and GlCDC20 might play the leading role rather than GlCDH1 in strains WLP-1, ZC and wild type. The low fertility of cultivar 981 might be highly correlated with the inactivity of activators CDH1 and CDC20. This study provided a basic and comprehensive understanding of characteristic of E2 and E3 genes in Gp. lemaneiformis and set a foundation for further understanding of E2 ubiquitin conjugating enzymes and E3 ubiquitin ligase in regulating tetrasporophytes development of Gp. lemaneiformis.
Collapse
Affiliation(s)
- Qiong Wu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China), Qingdao, 266003, China
| | - Jingru Yin
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China), Qingdao, 266003, China
| | - Min Jiang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China), Qingdao, 266003, China
| | - Jingyu Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China), Qingdao, 266003, China
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China), Qingdao, 266003, China.
| |
Collapse
|
2
|
Song Y, Wang H, Wang X, Wang X, Cong P, Xu J, Xue C. Comparative Lipidomics Study of Four Edible Red Seaweeds Based on RPLC-Q-TOF. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2183-2196. [PMID: 36669856 DOI: 10.1021/acs.jafc.2c07988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Red seaweeds (Rhodophyta) are becoming increasingly important as a food and medicine source in blue biotechnology applications such as functional foods, feeds, and pharmaceuticals. Compared to fatty acid composition and sterols, the lipidome in red seaweeds is still in an early disclosure stage. In this study, the lipidomes of four red seaweeds (Gracilaria sjoestedtii, Gracilaria verrucosa, Gelidium amansii, and Chondrus ocellatus) collected from the coastal area in north China were characterized using reversed-phase liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (RPLC-Q-TOF). Hundreds of lipid molecular species including glycolipids, phospholipids, sphingolipids, glycerolipids, and betaine lipids were identified and quantified. Novel lipids with unique molecular structures such as glucuronosyldiacylglycerols (GlcADG), head-group acylated GlcADG (acGlcADG), and hexose-inositol-phosphoceramides (Hex-IPC) were discovered in red seaweeds for the first time, greatly expanding our knowledge on glycolipids and sphingolipids in seaweeds. Glycolipids were the dominant components (45.6-67.7% of total lipids) with a high proportion of polyunsaturated fatty acids (PUFA) including arachidonic acid (AA) and eicosapentaenoic acid (EPA), indicating the potential nutritional value of the four red seaweeds. The investigated red seaweeds showed a distinctive sphingolipid profile with the t18:1 being the predominant LCB in Cer (41.1-71.5%) and HexCer (91.3-97.9%) except for Gelidium amansii, which had the highest proportion of t18:0. Comparison of lipid profiles among the four red seaweeds revealed that AA- and EPA-glycolipids are good lipid markers for the differentiation of red seaweed samples. The AA proportion in glycolipids of Gracilaria genus was much higher than Gelidium genus and Chondrus genus. This study acquired comprehensive lipid profiles from four red seaweeds, revealing the uniqueness of natural biochemical fingerprints of red seaweeds and further promoting their utilization.
Collapse
Affiliation(s)
- Yu Song
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong, China
| | - Haitang Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong, China
| | - Xincen Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong, China
| | - Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1, Wenhai Road, Qingdao 266237, Shandong, China
| |
Collapse
|
3
|
Annum N, Ahmed M, Tester M, Mukhtar Z, Saeed NA. Physiological responses induced by phospholipase C isoform 5 upon heat stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1076331. [PMID: 36760629 PMCID: PMC9905699 DOI: 10.3389/fpls.2023.1076331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Plant's perception of heat stress involves several pathways and signaling molecules, such as phosphoinositide, which is derived from structural membrane lipids phosphatidylinositol. Phospholipase C (PLC) is a well-known signaling enzyme containing many isoforms in different organisms. In the present study, Phospholipase C Isoform 5 (PLC5) was investigated for its role in thermotolerance in Arabidopsis thaliana. Two over-expressing lines and one knock-down mutant of PLC5 were first treated at a moderate temperature (37 °C) and left for recovery. Then again exposed to a high temperature (45 °C) to check the seedling viability and chlorophyll contents. Root behavior and changes in 32Pi labeled phospholipids were investigated after their exposure to high temperatures. Over-expression of PLC5 (PLC5 OE) exhibited quick and better phenotypic recovery with bigger and greener leaves followed by chlorophyll contents as compared to wild-type (Col-0) and PLC5 knock-down mutant in which seedling recovery was compromised. PLC5 knock-down mutant illustrated well-developed root architecture under controlled conditions but stunted secondary roots under heat stress as compared to over-expressing PLC5 lines. Around 2.3-fold increase in phosphatidylinositol 4,5-bisphosphate level was observed in PLC5 OE lines upon heat stress compared to wild-type and PLC5 knock-down mutant lines. A significant increase in phosphatidylglycerol was also observed in PLC5 OE lines as compared to Col-0 and PLC5 knock-down mutant lines. The results of the present study demonstrated that PLC5 over-expression contributes to heat stress tolerance while maintaining its photosynthetic activity and is also observed to be associated with primary and secondary root growth in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Nazish Annum
- Wheat Biotechnology Lab, Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering Constituent College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Moddassir Ahmed
- Wheat Biotechnology Lab, Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering Constituent College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Mark Tester
- Center for Desert Agriculture (CDA), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Zahid Mukhtar
- Wheat Biotechnology Lab, Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering Constituent College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Nasir Ahmad Saeed
- Wheat Biotechnology Lab, Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering Constituent College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| |
Collapse
|
4
|
Lu Q, Zhou X, Liu R, Shi G, Zheng N, Gao G, Wang Y. Impacts of a bacterial algicide on metabolic pathways in Chlorella vulgaris. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114451. [PMID: 38321670 DOI: 10.1016/j.ecoenv.2022.114451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/04/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2024]
Abstract
Chlorella is a dominant species during harmful algal blooms (HABs) worldwide, which bring about great environmental problems and are also a serious threat to drinking water safety. Application of bacterial algicides is a promising way to control HABs. However, the identified bacterial algicides against Chlorella and the understanding of their effects on algal metabolism are very limited. Here, we isolated a novel bacterium Microbacterium paraoxydans strain M1 that has significant algicidal activities against Chlorella vulgaris (algicidal rate 64.38 %, at 120 h). Atrazine-desethyl (AD) was then identified from strain M1 as an effective bacterial algicide, with inhibition or algae-lysing concentration values (EC50) of 1.64 μg/mL and 1.38 μg/mL, at 72 h and 120 h, respectively. LAD (2 μg/mL AD) or HAD (20 μg/mL AD) causes morphology alteration and ultrastructure damage, chlorophyll a reduction, gene expression regulation (for example, psbA, 0.05 fold at 24 h, 2.97 fold at 72 h, and 0.23 fold of the control in HAD), oxidative stress, lipid oxidation (MDA, 2.09 and 3.08 fold of the control in LAD and HAD, respectively, at 120 h) and DNA damage (average percentage of tail DNA 6.23 % at 120 h in HAD, slight damage: 5∼20 %) in the algal cells. The impacts of AD on algal metabolites and metabolic pathways, as well as the algal response to the adverse effects were investigated. The results revealed that amino acids, amines, glycosides and urea decreased significantly compared to the control after 24 h exposure to AD (p < 0.05). The main up-regulated metabolic pathways implied metabonomic resistance and defense against osmotic pressure, oxidative stress, photosynthesis inhibition or partial cellular structure damage, such as phenylalanine metabolism, arginine biosynthesis. The down-regulated glycine, serine and threonine metabolism is a major lead in the algicidal mechanism according to the value of pathway impact. The down-regulated glycine, and serine are responsible for the downregulation of glyoxylate and dicarboxylate metabolism, aminoacyl-tRNA biosynthesis, glutathione metabolism, and sulfur metabolism, which strengthen the algae-lysing effect. It is the first time to highlight the pivotal role of glycine, serine and threonine metabolism in algicidal activities, which provided a new perspective for understanding the mechanism of bacterial algicides exerting on algal cells at the metabolic level.
Collapse
Affiliation(s)
- Qianqian Lu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China
| | - Xinzhu Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China
| | - Ruidan Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China
| | - Guojing Shi
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China
| | - Ningning Zheng
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China
| | - Guanghai Gao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China; State key Laboratory of Hydroscience and Engineering, Tsinghua University, China.
| | - Yingying Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China; Nankai International Advanced Research Institute (Shenzhen Futian), Shenzhen, China.
| |
Collapse
|
5
|
Deciphering the mechanism of anhydrobiosis in the entomopathogenic nematode Heterorhabditis indica through comparative transcriptomics. PLoS One 2022; 17:e0275342. [PMID: 36301967 PMCID: PMC9612587 DOI: 10.1371/journal.pone.0275342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 09/14/2022] [Indexed: 11/07/2022] Open
Abstract
The entomopathogenic nematode, Heterorhabditis indica, is a popular biocontrol agent of high commercial significance. It possesses tremendous genetic architecture to survive desiccation stress by undergoing anhydrobiosis to increase its lifespan-an attribute exploited in the formulation technology. The comparative transcriptome of unstressed and anhydrobiotic H. indica revealed several previously concealed metabolic events crucial for adapting towards the moisture stress. During the induction of anhydrobiosis in the infective juveniles (IJ), 1584 transcripts were upregulated and 340 downregulated. As a strategy towards anhydrobiotic survival, the IJ showed activation of several genes critical to antioxidant defense, detoxification pathways, signal transduction, unfolded protein response and molecular chaperones and ubiquitin-proteasome system. Differential expression of several genes involved in gluconeogenesis - β-oxidation of fatty acids, glyoxylate pathway; glyceroneogenesis; fatty acid biosynthesis; amino-acid metabolism - shikimate pathway, sachharopine pathway, kyneurine pathway, lysine biosynthesis; one-carbon metabolism-polyamine pathway, transsulfuration pathway, folate cycle, methionine cycle, nucleotide biosynthesis; mevalonate pathway; and glyceraldehyde-3-phosphate dehydrogenase were also observed. We report the role of shikimate pathway, sachharopine pathway and glyceroneogenesis in anhydrobiotes, and seven classes of repeat proteins, specifically in H. indica for the first time. These results provide insights into anhydrobiotic survival strategies which can be utilized to strengthen the development of novel formulations with enhanced and sustained shelf-life.
Collapse
|
6
|
Sun T, Yang Z, Chen J, Li Y, Wang J, Wang X, Tang X, Xiao H. Effects of Water Loss Stress under Tidal Effects on the Epiphytic Bacterial Community of Sargassum thunbergii in the Intertidal Zone. mSphere 2022; 7:e0030722. [PMID: 36173121 PMCID: PMC9599519 DOI: 10.1128/msphere.00307-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022] Open
Abstract
Intertidal macroalgae face periodic water loss and rehydration caused by daily tidal changes. However, the effect of water loss stress on algal epiphytic bacteria has not yet been reported. In this study, the effects of water loss stress on the epiphytic bacteria community of Sargassum thunbergii were analyzed, and the different responses of epiphytic bacteria to water loss stress were compared between male and female algae. The results showed that after water loss stress, the diversity of the epiphytic bacterial community of S. thunbergii first decreased and then increased. Among the dominant taxa, the abundance of Cyanobacteria decreased significantly, whereas the abundance of Portibacter and Aquimarina first increased and then decreased. Additionally, the indicator species and the abundance of predicted functional genes related to carbon, nitrogen, and sulfur metabolism both changed significantly. More importantly, when the epiphytic bacteria were analyzed separately according to the algal sex, the changes in algal epiphytic bacterial community structure and indicator species were more significant, and there were sexual differences. Therefore, it was concluded that water loss stress has a significant effect on the community structure and function of the epiphytic bacteria on S. thunbergii. Meanwhile, the epiphytic bacteria community of two sexes of S. thunbergii differed in the response to water loss stress. IMPORTANCE Periodic water loss caused by the tide is an important environmental factor that is faced by intertidal macroalgae, but the impact of periodic water loss on the epiphytic bacterial communities associated with macroalgae is still unknown. Through this study, we found that the diversity, the relative abundance of dominant taxa, the indicator species, and the abundance of the predicted functional genes in the epiphytic bacteria on S. thunbergii changed with the time of water loss. Moreover, male and female S. thunbergii exhibited different responses to water loss stress. This study not only paves the way for the delineation of the interactions between S. thunbergii and its epiphytic bacteria but also provides new insights for the mechanisms of the adaptation and evolution of macroalgae in the intertidal zone.
Collapse
Affiliation(s)
- Tao Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhibo Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yang Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jing Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiya Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui Xiao
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
7
|
Zhu H, Wu Y, Zheng Y. Effects of heat shock on photosynthesis-related characteristics and lipid profile of Cycas multipinnata and C. panzhihuaensis. BMC PLANT BIOLOGY 2022; 22:442. [PMID: 36109687 PMCID: PMC9476270 DOI: 10.1186/s12870-022-03825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cycas multipinnata and C. panzhihuaensis are two attractive ornamental tree species. With the global climate change, the temperature in the natural habitats of both the species shows a marked rising trend. However, how the two species respond to extreme high temperatures are not clear. Chlorophyll fluorescence parameters, chlorophyll content, chloroplast ultrastructure and lipid metabolism in the two species were determined following plant exposure to heat stress. RESULTS The results demonstrated that the photosynthetic efficiency decreased significantly in both the species following heat shock and recovery, but to a greater extent in C. panzhihuaensis. Compared to the control, chlorophyll content of C. multipinnata did not change significantly following heat stress and recovery. However, chlorophyll content of C. panzhihuaensis increased significantly after 1 d of recovery in comparison with the control. Chloroplast ultrastructures of C. panzhihuaensis were more severely affected by heat shock than C. multipinnata. C. multipinnata and C. panzhihuaensis followed a similar change trend in the amounts of most of the lipid categories after heat stress. However, only the amounts of lysophospholipids and fatty acyls differed significantly between the two species following heat treatment. Additionally, the unsaturation levels of the major lipid classes in C. multipinnata were significantly lower than or equal to those in C. panzhihuaensis. CONCLUSIONS C. multipinnata was less affected by extremely high temperatures than C. panzhihuaensis. The differential stability of chlorophyll and chloroplast ultrastructure and the differential adjustment of lipid metabolism might contribute to the different responses to heat shock between the two species.
Collapse
Affiliation(s)
- Huan Zhu
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, Yunnan, China
| | - Yangyang Wu
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, Yunnan, China
| | - Yanling Zheng
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, Yunnan, China.
| |
Collapse
|
8
|
Shen Y, Xia H, Tu Z, Zong Y, Yang L, Li H. Genetic divergence and local adaptation of Liriodendron driven by heterogeneous environments. Mol Ecol 2021; 31:916-933. [PMID: 34773328 DOI: 10.1111/mec.16271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
Ecological adaptive differentiation alters both the species diversity and intraspecific genetic diversity in forests, thus affecting the stability of forest ecosystems. Therefore, knowledge of the genetic underpinnings of the ecological adaptive differentiation of forest species is critical for effective species conservation. In this study, single-nucleotide polymorphisms (SNPs) from population transcriptomes were used to investigate the spatial distribution of genetic variation in Liriodendron to assess whether environmental variables can explain genetic divergence. We examined the contributions of environmental variables to population divergence and explored the genetic underpinnings of local adaptation using a landscape genomic approach. Niche models and statistical analyses showed significant niche divergence between L. chinense and L. tulipifera, suggesting that ecological adaptation may play a crucial role in driving interspecific divergence. We detected a new fine-scale genetic structure in L. chinense, and divergence of the six groups occurred during the late Pliocene to early Pleistocene. Redundancy analysis (RDA) revealed significant associations between genetic variation and multiple environmental variables. Environmental association analyses identified 67 environmental association loci (EALs; nonsynonymous SNPs) that underwent interspecific or intraspecific differentiation, 28 of which were associated with adaptive genes. These 28 candidate adaptive loci provide substantial evidence for local adaptation in Liriodendron. Our findings reveal ecological adaptive divergence pattern between Liriodendron species and provide novel insight into the role of heterogeneous environments in shaping genetic structure and driving local adaptation among populations, informing future L. chinense conservation efforts.
Collapse
Affiliation(s)
- Yufang Shen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Hui Xia
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhonghua Tu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yaxian Zong
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lichun Yang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Huogen Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
9
|
Zheng Y, Xia Z, Wu J, Ma H. Effects of repeated drought stress on the physiological characteristics and lipid metabolism of Bombax ceiba L. during subsequent drought and heat stresses. BMC PLANT BIOLOGY 2021; 21:467. [PMID: 34645412 PMCID: PMC8513192 DOI: 10.1186/s12870-021-03247-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/29/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Trees of Bombax ceiba L. could produce a large number of viable seeds in the dry-hot valleys. However, the seedling regeneration of the species is difficult in these areas as mild drought often occur repeatedly which might be followed by heat stress. However, how the repeated drought affects the subsequent drought and heat tolerance of B. ceiba is not clear. In this study, chlorophyll fluorescence, soluble sugar content and lipid metabolism were measured for the drought-treated seedlings and heat-treated seedlings with or without drought hardening. RESULTS Neither the first nor third dehydration treatments affected the photosynthetic activity and soluble sugar content of B. ceiba seedlings. However, they differentially affected the fluidity of the local membranes and the levels of diacylglycerol and phosphatidic acid. Heat shock severely decreased the photosynthetic efficiency but drought priming reduced the effects of heat shock. Moreover, heat shock with or without drought priming had differential effects on the metabolism of soluble sugars and some lipids. In addition, the unsaturation level of membrane glycerolipids increased following heat shock for non-drought-hardened seedlings which, however, maintained for drought-hardened seedlings. CONCLUSIONS The results suggest that two cycles of dehydration/recovery can affect the metabolism of some lipids during the third drought stress and may enhance the heat tolerance of B. ceiba by adjusting lipid composition and membrane fluidity.
Collapse
Affiliation(s)
- Yanling Zheng
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, Yunnan, China
| | - Zhining Xia
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, Yunnan, China
| | - Jianrong Wu
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, Yunnan, China
| | - Huancheng Ma
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, Yunnan, China.
| |
Collapse
|
10
|
Yu X, Mo Z, Tang X, Gao T, Mao Y. Genome-wide analysis of HSP70 gene superfamily in Pyropia yezoensis (Bangiales, Rhodophyta): identification, characterization and expression profiles in response to dehydration stress. BMC PLANT BIOLOGY 2021; 21:435. [PMID: 34560838 PMCID: PMC8464122 DOI: 10.1186/s12870-021-03213-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/14/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Heat shock proteins (HSPs) perform a fundamental role in protecting plants against abiotic stresses. Individual family members have been analyzed in previous studies, but there has not yet been a comprehensive analysis of the HSP70 gene family in Pyropia yezoensis. RESULTS We investigated 15 putative HSP70 genes in Py. yezoensis. These genes were classified into two sub-families, denoted as DnaK and Hsp110. In each sub-family, there was relative conservation of the gene structure and motif. Synteny-based analysis indicated that seven and three PyyHSP70 genes were orthologous to HSP70 genes in Pyropia haitanensis and Porphyra umbilicalis, respectively. Most PyyHSP70s showed up-regulated expression under different degrees of dehydration stress. PyyHSP70-1 and PyyHSP70-3 were expressed in higher degrees compared with other PyyHSP70s in dehydration treatments, and then expression degrees somewhat decreased in rehydration treatment. Subcellular localization showed PyyHSP70-1-GFP and PyyHSP70-3-GFP were in the cytoplasm and nucleus/cytoplasm, respectively. Similar expression patterns of paired orthologs in Py. yezoensis and Py. haitanensis suggest important roles for HSP70s in intertidal environmental adaptation during evolution. CONCLUSIONS These findings provide insight into the evolution and modification of the PyyHSP70 gene family and will help to determine the functions of the HSP70 genes in Py. yezoensis growth and development.
Collapse
Affiliation(s)
- Xinzi Yu
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences , Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Zhaolan Mo
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences , Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xianghai Tang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences , Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Tian Gao
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences , Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yunxiang Mao
- Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource (Hainan Tropical Ocean University), Ministry of Education, Sanya, 572022, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|