1
|
Hisano H, Sakai H, Hamaoka M, Munemori H, Abe F, Meints B, Sato K, Hayes PM. Rapid development of naked malting barley germplasm through targeted mutagenesis. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:32. [PMID: 40061124 PMCID: PMC11889295 DOI: 10.1007/s11032-025-01553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/25/2025] [Indexed: 03/21/2025]
Abstract
Covered barley (Hordeum vulgare) has historically been preferred for malting, as the husk in this plant protects the embryo during harvest and acts as a filter during brewing. Naked barley, which is typically used as food, has the potential to be used in brewing due to recent technical advances, but the grains contain higher levels of β-glucan and polyphenols, which are undesirable in brewing. Introducing the naked trait into brewing cultivars through crossing is time-consuming due to the need to eliminate these undesirable traits. In this study, we rapidly developed naked barley that is potentially suitable for malting by introducing targeted mutations into Nudum (NUD) using CRISPR/Cas9-mediated targeted mutagenesis. The doubled haploid line 'DH120366', which was used as the parental line, was derived from a cross between two covered malting barley cultivars. We generated CRISPR/Cas9-mediated targeted mutagenized barley harboring mutations in NUD via Agrobacterium tumefaciens-mediated transformation and confirmed the presence of mosaic mutations in one individual from among 16 T0 transformants. We sowed T1 grains exhibiting the naked trait and sequenced the NUD gene in these T1 seedlings, identifying two types of mutations. Shotgun high-throughput whole-genome sequencing confirmed the absence of the transgene in at least one nud mutant line following k-mer-based analysis. Cultivation in a closed growth chamber revealed no significant differences in agronomic traits between the nud mutants and the wild type. This study demonstrates the feasibility of rapidly developing naked barley with potential use for malting and brewing by targeting only NUD via targeted mutagenesis. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-025-01553-5.
Collapse
Affiliation(s)
- Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046 Japan
| | - Hiroaki Sakai
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Mika Hamaoka
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046 Japan
| | - Hiromi Munemori
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046 Japan
| | - Fumitaka Abe
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Brigid Meints
- Department Crop and Soil Science, Oregon State University, Corvallis, OR USA
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046 Japan
- Faculty of Agriculture, Setsunan University, Hirakata, Japan
- Kazusa DNA Research Institute, Kisarazu, Japan
| | - Patrick M. Hayes
- Department Crop and Soil Science, Oregon State University, Corvallis, OR USA
| |
Collapse
|
2
|
Gerasimova SV, Korotkova AM, Rodrigues TDS, Vikhorev A, Kolosovskaya EV, Vasiliev GV, Melzer M, Hertig CW, Kumlehn J, Khlestkina EK. Shedding New Light on the Hull-Pericarp Adhesion Mechanisms of Barley Grains by Transcriptomics Analysis of Isogenic NUD1 and nud1 Lines. Int J Mol Sci 2024; 25:13108. [PMID: 39684819 DOI: 10.3390/ijms252313108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
In barley having adherent hulls, an irreversible connection between the pericarp with both palea and lemma is formed during grain maturation. A mutation in the NUDUM 1 (NUD1) gene prevents this connection and leads to the formation of barley with non-adherent hulls. A genetic model of two isogenic lines was used to elucidate the genetic mechanisms of hull adhesion: a doubled haploid line having adherent hulls and its derivative with non-adherent hulls obtained by targeted mutagenesis of the NUD1 gene. Comparative transcriptomics analysis of the grain coats was performed at two stages of development: the milk stage, when the hulls can still be easily detached from the pericarp, and the dough stage when the hull adhesion process occurs. It was shown that the main differences in the transcriptomes lie in the genes related to DNA replication and chromatin assembly, cell wall organization, and cuticle formation. Meanwhile, genes involved in lipid biosynthesis mostly show minor differences in expression between stages and genotypes and represent a limited set of active genes. Among the 3-ketoacyl-CoA synthase (KCS) genes active during grain development, candidates for key enzymes responsible for very long-chain fatty acid elongation were identified.
Collapse
Affiliation(s)
- Sophia V Gerasimova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Anna M Korotkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
| | - Tamires de S Rodrigues
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas 13083-875, Brazil
| | - Alexander Vikhorev
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ekaterina V Kolosovskaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Gennady V Vasiliev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Christian W Hertig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Elena K Khlestkina
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
| |
Collapse
|
3
|
Jayakodi M, Lu Q, Pidon H, Rabanus-Wallace MT, Bayer M, Lux T, Guo Y, Jaegle B, Badea A, Bekele W, Brar GS, Braune K, Bunk B, Chalmers KJ, Chapman B, Jørgensen ME, Feng JW, Feser M, Fiebig A, Gundlach H, Guo W, Haberer G, Hansson M, Himmelbach A, Hoffie I, Hoffie RE, Hu H, Isobe S, König P, Kale SM, Kamal N, Keeble-Gagnère G, Keller B, Knauft M, Koppolu R, Krattinger SG, Kumlehn J, Langridge P, Li C, Marone MP, Maurer A, Mayer KFX, Melzer M, Muehlbauer GJ, Murozuka E, Padmarasu S, Perovic D, Pillen K, Pin PA, Pozniak CJ, Ramsay L, Pedas PR, Rutten T, Sakuma S, Sato K, Schüler D, Schmutzer T, Scholz U, Schreiber M, Shirasawa K, Simpson C, Skadhauge B, Spannagl M, Steffenson BJ, Thomsen HC, Tibbits JF, Nielsen MTS, Trautewig C, Vequaud D, Voss C, Wang P, Waugh R, Westcott S, Rasmussen MW, Zhang R, Zhang XQ, Wicker T, Dockter C, Mascher M, Stein N. Structural variation in the pangenome of wild and domesticated barley. Nature 2024; 636:654-662. [PMID: 39537924 PMCID: PMC11655362 DOI: 10.1038/s41586-024-08187-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Pangenomes are collections of annotated genome sequences of multiple individuals of a species1. The structural variants uncovered by these datasets are a major asset to genetic analysis in crop plants2. Here we report a pangenome of barley comprising long-read sequence assemblies of 76 wild and domesticated genomes and short-read sequence data of 1,315 genotypes. An expanded catalogue of sequence variation in the crop includes structurally complex loci that are rich in gene copy number variation. To demonstrate the utility of the pangenome, we focus on four loci involved in disease resistance, plant architecture, nutrient release and trichome development. Novel allelic variation at a powdery mildew resistance locus and population-specific copy number gains in a regulator of vegetative branching were found. Expansion of a family of starch-cleaving enzymes in elite malting barleys was linked to shifts in enzymatic activity in micro-malting trials. Deletion of an enhancer motif is likely to change the developmental trajectory of the hairy appendages on barley grains. Our findings indicate that allelic diversity at structurally complex loci may have helped crop plants to adapt to new selective regimes in agricultural ecosystems.
Collapse
Affiliation(s)
- Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Department of Soil and Crop Sciences, Texas A&M AgriLife Research-Dallas, Dallas, TX, USA
| | - Qiongxian Lu
- Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Hélène Pidon
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- IPSiM, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | | | | - Thomas Lux
- PGSB-Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Yu Guo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Benjamin Jaegle
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture et Agri-Food Canada, Brandon, Manitoba, Canada
| | - Wubishet Bekele
- Ottawa Research and Development Centre, Agriculture et Agri-Food Canada, Ottawa, Ontario, Canada
| | - Gurcharn S Brar
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Agricultural, Life and Environmental Sciences (ALES), University of Alberta, Edmonton, Alberta, Canada
| | | | - Boyke Bunk
- DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Kenneth J Chalmers
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
| | - Brett Chapman
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | | | - Jia-Wu Feng
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Manuel Feser
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Heidrun Gundlach
- PGSB-Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Georg Haberer
- PGSB-Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Mats Hansson
- Department of Biology, Lund University, Lund, Sweden
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Iris Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Robert E Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Haifei Hu
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | | - Patrick König
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Sandip M Kale
- Carlsberg Research Laboratory, Copenhagen, Denmark
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Nadia Kamal
- PGSB-Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Gabriel Keeble-Gagnère
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Agribio, La Trobe University, Bundoora, Victoria, Australia
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Manuela Knauft
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Ravi Koppolu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
| | - Chengdao Li
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
- Department of Primary Industry and Regional Development, Government of Western Australia, Perth, Western Australia, Australia
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Marina P Marone
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Andreas Maurer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Klaus F X Mayer
- PGSB-Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | | | - Sudharsan Padmarasu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | - Curtis J Pozniak
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Shun Sakuma
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kazuhiro Sato
- Kazusa DNA Research Institute, Kisarazu, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Danuta Schüler
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Thomas Schmutzer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | | | | | | | | | - Manuel Spannagl
- PGSB-Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | | | - Josquin F Tibbits
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Agribio, La Trobe University, Bundoora, Victoria, Australia
| | | | - Corinna Trautewig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | | | - Cynthia Voss
- Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Penghao Wang
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | - Robbie Waugh
- The James Hutton Institute, Dundee, UK
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Sharon Westcott
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | | | | | - Xiao-Qi Zhang
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| | | | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
4
|
Chen Z, Guo Z, Li L, Halford NG, Guo G, Zhang S, Zong Y, Liu S, Liu C, Zhou L. Genetic Diversity and Genome-Wide Association Analysis of the Hulled/Naked Trait in a Barley Collection from Shanghai Agricultural Gene Bank. Int J Mol Sci 2024; 25:5217. [PMID: 38791258 PMCID: PMC11120781 DOI: 10.3390/ijms25105217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Barley is one of the most important cereal crops in the world, and its value as a food is constantly being revealed, so the research into and the use of barley germplasm are very important for global food security. Although a large number of barley germplasm samples have been collected globally, their specific genetic compositions are not well understood, and in many cases their origins are even disputed. In this study, 183 barley germplasm samples from the Shanghai Agricultural Gene Bank were genotyped using genotyping-by-sequencing (GBS) technology, SNPs were identified and their genetic parameters were estimated, principal component analysis (PCA) was preformed, and the phylogenetic tree and population structure of the samples were also analyzed. In addition, a genome-wide association study (GWAS) was carried out for the hulled/naked grain trait, and a KASP marker was developed using an associated SNP. The results showed that a total of 181,906 SNPs were identified, and these barley germplasm samples could be roughly divided into three categories according to the phylogenetic analysis, which was generally consistent with the classification of the traits of row type and hulled/naked grain. Population structure analysis showed that the whole barley population could be divided into four sub-populations (SPs), the main difference from previous classifications being that the two-rowed and the hulled genotypes were sub-divided into two SPs. The GWAS analysis of the hulled/naked trait showed that many associated loci were unrelated to the Nud/nud locus, indicating that there might be new loci controlling the trait. A KASP marker was developed for one exon-type SNP on chromosome 7. Genotyping based on the KASP assay was consistent with that based on SNPs, indicating that the gene of this locus might be associated with the hulled/naked trait. The above work not only lays a good foundation for the future utilization of this barley germplasm population but it provides new loci and candidate genes for the hulled/naked trait.
Collapse
Affiliation(s)
- Zhiwei Chen
- Shanghai Key Laboratory of Agricultural Genetics and Breeding (21DZ2271900), Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Shanghai Agricultural Biosafety Evaluation and Testing Professional Technical Service Platform (23DZ2290700), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Z.G.); (L.L.); (G.G.); (S.Z.); (Y.Z.); (S.L.); (C.L.)
| | - Zhenzhu Guo
- Shanghai Key Laboratory of Agricultural Genetics and Breeding (21DZ2271900), Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Shanghai Agricultural Biosafety Evaluation and Testing Professional Technical Service Platform (23DZ2290700), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Z.G.); (L.L.); (G.G.); (S.Z.); (Y.Z.); (S.L.); (C.L.)
| | - Luli Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding (21DZ2271900), Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Shanghai Agricultural Biosafety Evaluation and Testing Professional Technical Service Platform (23DZ2290700), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Z.G.); (L.L.); (G.G.); (S.Z.); (Y.Z.); (S.L.); (C.L.)
| | | | - Guimei Guo
- Shanghai Key Laboratory of Agricultural Genetics and Breeding (21DZ2271900), Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Shanghai Agricultural Biosafety Evaluation and Testing Professional Technical Service Platform (23DZ2290700), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Z.G.); (L.L.); (G.G.); (S.Z.); (Y.Z.); (S.L.); (C.L.)
| | - Shuwei Zhang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding (21DZ2271900), Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Shanghai Agricultural Biosafety Evaluation and Testing Professional Technical Service Platform (23DZ2290700), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Z.G.); (L.L.); (G.G.); (S.Z.); (Y.Z.); (S.L.); (C.L.)
| | - Yingjie Zong
- Shanghai Key Laboratory of Agricultural Genetics and Breeding (21DZ2271900), Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Shanghai Agricultural Biosafety Evaluation and Testing Professional Technical Service Platform (23DZ2290700), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Z.G.); (L.L.); (G.G.); (S.Z.); (Y.Z.); (S.L.); (C.L.)
| | - Shiseng Liu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding (21DZ2271900), Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Shanghai Agricultural Biosafety Evaluation and Testing Professional Technical Service Platform (23DZ2290700), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Z.G.); (L.L.); (G.G.); (S.Z.); (Y.Z.); (S.L.); (C.L.)
| | - Chenghong Liu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding (21DZ2271900), Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Shanghai Agricultural Biosafety Evaluation and Testing Professional Technical Service Platform (23DZ2290700), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Z.G.); (L.L.); (G.G.); (S.Z.); (Y.Z.); (S.L.); (C.L.)
| | - Longhua Zhou
- Shanghai Key Laboratory of Agricultural Genetics and Breeding (21DZ2271900), Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Shanghai Agricultural Biosafety Evaluation and Testing Professional Technical Service Platform (23DZ2290700), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Z.G.); (L.L.); (G.G.); (S.Z.); (Y.Z.); (S.L.); (C.L.)
| |
Collapse
|
5
|
Antonova EV, Shimalina NS, Korotkova AM, Kolosovskaya EV, Gerasimova SV, Khlestkina EK. Germination and Growth Characteristics of nud Knockout and win1 Knockout Barley Lines under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1169. [PMID: 38732384 PMCID: PMC11085773 DOI: 10.3390/plants13091169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Hordeum vulgare genes NUD (HvNUD) and WIN1 (HvWIN1) play a regulatory role in cuticle organization. Because the cuticle is a key evolutionary acquisition of plants for protection against environmental factors, a knockout (KO) of each gene may alter their ability to adapt to unfavorable conditions. A potential pleiotropic effect of HvNUD or HvWIN1 gene mutations can be assessed under salt stress. Initial developmental stages are the most sensitive in living organisms; therefore, we evaluated salt tolerance of nud KO and win1 KO barley lines at the seedling stage. Air-dried barley grains of the KO lines and of a wild-type (WT) line were germinated in NaCl solutions (50, 100, or 150 mM). Over 30 physiological and morphological parameters of seedlings were assessed. Potential pleiotropic effects of the HvNUD gene KO under salt stress included the stimulation of root growth (which was lower under control conditions) and root necrosis. The pleiotropic effects of the HvWIN1 gene KO under the stressful conditions manifested themselves as maintenance of longer root length as compared to the other lines; stable variation of most of morphological parameters; lack of correlation between root lengths before and after exposure to NaCl solutions, as well as between shoot lengths; and the appearance of twins. Salt tolerance of the analyzed barley lines could be ranked as follows: nud KO > win1 KO ≈ WT, where nud KO lines were the most salt-tolerant. A comparison of effects of salinity and ionizing radiation on nud KO and win1 KO barley lines indicated differences in tolerance of the lines to these stressors.
Collapse
Affiliation(s)
- Elena V Antonova
- Institute of Plant and Animal Ecology (IPAE), Ural Branch of Russian Academy of Sciences, 8 Marta 202, Ekaterinburg 620144, Russia
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya 42-44, Saint Petersburg 190000, Russia
| | - Nadezhda S Shimalina
- Institute of Plant and Animal Ecology (IPAE), Ural Branch of Russian Academy of Sciences, 8 Marta 202, Ekaterinburg 620144, Russia
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya 42-44, Saint Petersburg 190000, Russia
| | - Anna M Korotkova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya 42-44, Saint Petersburg 190000, Russia
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentjeva 10, Novosibirsk 630090, Russia
| | - Ekaterina V Kolosovskaya
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya 42-44, Saint Petersburg 190000, Russia
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentjeva 10, Novosibirsk 630090, Russia
| | - Sophia V Gerasimova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya 42-44, Saint Petersburg 190000, Russia
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentjeva 10, Novosibirsk 630090, Russia
| | - Elena K Khlestkina
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya 42-44, Saint Petersburg 190000, Russia
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentjeva 10, Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Hisano H, Hoffie RE, Kumlehn J, Sato K. Targeted Modification of Grain Dormancy Genes in Barley. Methods Mol Biol 2024; 2830:149-161. [PMID: 38977576 DOI: 10.1007/978-1-0716-3965-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Transgenesis technologies, such as overexpression or RNA interference-mediated suppression, have often been used to alter the activity of target genes. More recently developed targeted genome modification methods using customizable endonucleases allow for the regulation or knockout mutation of target genes without the necessity of integrating recombinant DNA. Such approaches make it possible to create novel alleles of target genes, thereby significantly contributing to crop improvement. Among these technologies, the Cas9 endonuclease-based method is widely applied to several crops, including barley (Hordeum vulgare). In this chapter, we describe an Agrobacterium-based approach to the targeted modification of grain dormancy genes in barley using RNA-guided Cas9 nuclease.
Collapse
Affiliation(s)
- Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan.
| | - Robert E Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Faculty of Agriculture, Setsunan University, Hirakata, Japan
- Kazusa DNA Research Institute, Kisarazu, Japan
| |
Collapse
|
7
|
Ahmar S, Hensel G, Gruszka D. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives. Biotechnol Adv 2023; 69:108248. [PMID: 37666372 DOI: 10.1016/j.biotechadv.2023.108248] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Cereal crops, including triticeae species (barley, wheat, rye), as well as edible cereals (wheat, corn, rice, oat, rye, sorghum), are significant suppliers for human consumption, livestock feed, and breweries. Over the past half-century, modern varieties of cereal crops with increased yields have contributed to global food security. However, presently cultivated elite crop varieties were developed mainly for optimal environmental conditions. Thus, it has become evident that taking into account the ongoing climate changes, currently a priority should be given to developing new stress-tolerant cereal cultivars. It is necessary to enhance the accuracy of methods and time required to generate new cereal cultivars with the desired features to adapt to climate change and keep up with the world population expansion. The CRISPR/Cas9 system has been developed as a powerful and versatile genome editing tool to achieve desirable traits, such as developing high-yielding, stress-tolerant, and disease-resistant transgene-free lines in major cereals. Despite recent advances, the CRISPR/Cas9 application in cereals faces several challenges, including a significant amount of time required to develop transgene-free lines, laboriousness, and a limited number of genotypes that may be used for the transformation and in vitro regeneration. Additionally, developing elite lines through genome editing has been restricted in many countries, especially Europe and New Zealand, due to a lack of flexibility in GMO regulations. This review provides a comprehensive update to researchers interested in improving cereals using gene-editing technologies, such as CRISPR/Cas9. We will review some critical and recent studies on crop improvements and their contributing factors to superior cereals through gene-editing technologies.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany; Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
| |
Collapse
|
8
|
Xie P, Wu Y, Xie Q. Evolution of cereal floral architecture and threshability. TRENDS IN PLANT SCIENCE 2023; 28:1438-1450. [PMID: 37673701 DOI: 10.1016/j.tplants.2023.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/07/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
Hulled grains, while providing natural protection for seeds, pose a challenge to manual threshing due to the pair of glumes tightly encasing them. Based on natural evolution and artificial domestication, gramineous crops evolved various hull-like floral organs. Recently, progress has been made in uncovering novel domesticated genes associated with cereal threshability and deciphering common regulatory modules pertinent to the specification of hull-like floral organs. Here we review morphological similarities, principal regulators, and common mechanisms implicated in the easy-threshing traits of crops. Understanding the shared and unique features in the developmental process of cereal threshability may not only shed light on the convergent evolution of cereals but also facilitate the de novo domestication of wild cereal germplasm resources through genome-editing technologies.
Collapse
Affiliation(s)
- Peng Xie
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Yaorong Wu
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding, National Center of Technology Innovation for Maize, Syngenta Group China, Beijing 102206, China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| |
Collapse
|
9
|
Pathi KM, Sprink T. From Petri Dish to Field: Plant Tissue Culture and Genetic Engineering of Oats for Improved Agricultural Outcomes. PLANTS (BASEL, SWITZERLAND) 2023; 12:3782. [PMID: 37960138 PMCID: PMC10647551 DOI: 10.3390/plants12213782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Oats (Avena sativa) hold immense economic and nutritional value as a versatile crop. They have long been recognized as an exceptional choice for human consumption and animal feed. Oats' unique components, including proteins, starches, and β-glucans, have led to its widespread use in various food products such as bread, noodles, flakes, and milk. The popularity of oat milk as a vegan alternative to dairy milk has soared due to the increasing number of vegetarians/vegans and growing environmental awareness. Oat milk offers a sustainable option with reduced greenhouse gas emissions during its production, rendering it an appropriate choice for individuals who are lactose-intolerant or have dairy allergies. To ensure improved adaptability and enhanced nutrition, the development of new oat varieties is crucial, considering factors like cultivation, climate, and growing conditions. Plant cell culture plays a crucial role in both traditional and contemporary breeding methods. In classical breeding, plant cell culture facilitates the rapid production of double haploid plants, which can be employed to accelerate the breeding process. In modern breeding methods, it enables genetic manipulation and precise genome editing at the cellular level. This review delves into the importance of oats and their diverse applications, highlighting the advantages of plant cell culture in both classical and modern breeding methods. Specifically, it provides an overview of plant tissue culture, encompassing genetic transformation, haploid technology, protoplast technology, and genome editing.
Collapse
Affiliation(s)
- Krishna Mohan Pathi
- Julius Kuehn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, 06484 Quedlinburg, Germany
| | - Thorben Sprink
- Julius Kuehn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, 06484 Quedlinburg, Germany
| |
Collapse
|
10
|
Tamilselvan-Nattar-Amutha S, Hiekel S, Hartmann F, Lorenz J, Dabhi RV, Dreissig S, Hensel G, Kumlehn J, Heckmann S. Barley stripe mosaic virus-mediated somatic and heritable gene editing in barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1201446. [PMID: 37404527 PMCID: PMC10315673 DOI: 10.3389/fpls.2023.1201446] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023]
Abstract
Genome editing strategies in barley (Hordeum vulgare L.) typically rely on Agrobacterium-mediated genetic transformation for the delivery of required genetic reagents involving tissue culture techniques. These approaches are genotype-dependent, time-consuming, and labor-intensive, which hampers rapid genome editing in barley. More recently, plant RNA viruses have been engineered to transiently express short guide RNAs facilitating CRISPR/Cas9-based targeted genome editing in plants that constitutively express Cas9. Here, we explored virus-induced genome editing (VIGE) based on barley stripe mosaic virus (BSMV) in Cas9-transgenic barley. Somatic and heritable editing in the ALBOSTRIANS gene (CMF7) resulting in albino/variegated chloroplast-defective barley mutants is shown. In addition, somatic editing in meiosis-related candidate genes in barley encoding ASY1 (an axis-localized HORMA domain protein), MUS81 (a DNA structure-selective endonuclease), and ZYP1 (a transverse filament protein of the synaptonemal complex) was achieved. Hence, the presented VIGE approach using BSMV enables rapid somatic and also heritable targeted gene editing in barley.
Collapse
|
11
|
Gerasimova SV, Kolosovskaya EV, Vikhorev AV, Korotkova AM, Hertig CW, Genaev MA, Domrachev DV, Morozov SV, Chernyak EI, Shmakov NA, Vasiliev GV, Kochetov AV, Kumlehn J, Khlestkina EK. WAX INDUCER 1 Regulates β-Diketone Biosynthesis by Mediating Expression of the Cer-cqu Gene Cluster in Barley. Int J Mol Sci 2023; 24:ijms24076762. [PMID: 37047735 PMCID: PMC10095013 DOI: 10.3390/ijms24076762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Plant surface properties are crucial determinants of resilience to abiotic and biotic stresses. The outer layer of the plant cuticle consists of chemically diverse epicuticular waxes. The WAX INDUCER1/SHINE subfamily of APETALA2/ETHYLENE RESPONSIVE FACTORS regulates cuticle properties in plants. In this study, four barley genes homologous to the Arabidopsis thaliana AtWIN1 gene were mutated using RNA-guided Cas9 endonuclease. Mutations in one of them, the HvWIN1 gene, caused a recessive glossy sheath phenotype associated with β-diketone deficiency. A complementation test for win1 knockout (KO) and cer-x mutants showed that Cer-X and WIN1 are allelic variants of the same genomic locus. A comparison of the transcriptome from leaf sheaths of win1 KO and wild-type plants revealed a specific and strong downregulation of a large gene cluster residing at the previously known Cer-cqu locus. Our findings allowed us to postulate that the WIN1 transcription factor in barley is a master mediator of the β-diketone biosynthesis pathway acting through developmental stage- and organ-specific transactivation of the Cer-cqu gene cluster.
Collapse
Affiliation(s)
- Sophia V Gerasimova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | | | - Alexander V Vikhorev
- Vavilov Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
| | - Anna M Korotkova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Christian W Hertig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Mikhail A Genaev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Dmitry V Domrachev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Sergey V Morozov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena I Chernyak
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Nikolay A Shmakov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Gennady V Vasiliev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alex V Kochetov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Elena K Khlestkina
- Vavilov Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
| |
Collapse
|
12
|
Khoudi H. SHINE clade of ERF transcription factors: A significant player in abiotic and biotic stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:77-88. [PMID: 36603451 DOI: 10.1016/j.plaphy.2022.12.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
SHINE (SHN) clade transcription factors (TFs) represents a subfamily of APETALA2/ethylene-responsive factor (AP2/ERF) proteins. The latter, is characterized by its responsiveness to the phytohormone ethylene and the presence of AP2 DNA-binding domain. They are involved in many biological processes and in responses to different environmental constraints. SHN TFs were among the first identified regulators of cuticle formation. Cuticle plays crucial role in plant tolerance to drought, salinity and high temperature as well as in defense against pathogens. In addition, SHN were shown to be involved in the regulation of stomatal development which influences resistance to drought and diseases. Interestingly, recent studies have also shown that SHN TFs are involved in mediating the beneficial effects of arbuscular mycorrhizal fungi (AMF) as well as disease resistance conferred by nanoparticles. To fulfill their roles, SHN TFs are controlled upstream by other TFs and they control, in their turn, different downstream genes. In this review, we highlight the role of SHN TFs in different abiotic and biotic stresses through their involvement in cuticle biosynthesis, stomatal development and molecular regulation of biochemical and physiological traits. In addition, we discuss the regulation of SHN TFs by plant hormones and their influence on hormone biosynthesis and signaling pathways. Knowledge of this complex regulation can be put into contribution to increase multiple abiotic stress tolerances through transgenesis, gene editing and classical breeding.
Collapse
Affiliation(s)
- Habib Khoudi
- Laboratory of Plant Biotechnology and Improvement, Center of Biotechnology of Sfax (CBS), University of Sfax, Route Sidi Mansour Km 6, B.P'1177', 3018, Sfax, Tunisia.
| |
Collapse
|
13
|
Hoffie RE, Perovic D, Habekuß A, Ordon F, Kumlehn J. Novel resistance to the Bymovirus BaMMV established by targeted mutagenesis of the PDIL5-1 susceptibility gene in barley. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:331-341. [PMID: 36221782 PMCID: PMC9884012 DOI: 10.1111/pbi.13948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The Potyviridae are the largest family of plant-pathogenic viruses. Members of this family are the soil-borne bymoviruses barley yellow mosaic virus (BaYMV) and barley mild mosaic virus (BaMMV), which, upon infection of young winter barley seedlings in autumn, can cause yield losses as high as 50%. Resistance breeding plays a major role in coping with these pathogens. However, some viral strains have overcome the most widely used resistance. Thus, there is a need for novel sources of resistance. In ancient landraces and wild relatives of cultivated barley, alleles of the susceptibility factor PROTEIN DISULFIDE ISOMERASE LIKE 5-1 (PDIL5-1) were identified to confer resistance to all known strains of BaYMV and BaMMV. Although the gene is highly conserved throughout all eukaryotes, barley is thus far the only species for which PDIL5-1-based virus resistance has been reported. Whereas introgression by crossing to the European winter barley breeding pool is tedious, time-consuming and additionally associated with unwanted linkage drag, the present study exemplifies an approach to targeted mutagenesis of two barley cultivars employing CRISPR-associated endonuclease technology to induce site-directed mutations similar to those described for PDIL5-1 alleles that render certain landraces resistant. Homozygous primary mutants were produced in winter barley, and transgene-free homozygous M2 mutants were produced in spring barley. A variety of mutants carrying novel PDIL5-1 alleles were mechanically inoculated with BaMMV, by which all frameshift mutations and certain in-frame mutations were demonstrated to confer resistance to this virus. Under greenhouse conditions, virus-resistant mutants showed no adverse effects in terms of growth and yield.
Collapse
Affiliation(s)
- Robert Eric Hoffie
- Plant Reproductive BiologyLeibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)SeelandGermany
| | - Dragan Perovic
- Institute for Resistance Research and Stress ToleranceJulius Kuehn Institute (JKI)Federal Research Centre for Cultivated PlantsQuedlinburgGermany
| | - Antje Habekuß
- Institute for Resistance Research and Stress ToleranceJulius Kuehn Institute (JKI)Federal Research Centre for Cultivated PlantsQuedlinburgGermany
| | - Frank Ordon
- Institute for Resistance Research and Stress ToleranceJulius Kuehn Institute (JKI)Federal Research Centre for Cultivated PlantsQuedlinburgGermany
| | - Jochen Kumlehn
- Plant Reproductive BiologyLeibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)SeelandGermany
| |
Collapse
|
14
|
Kuluev BR, Mikhailova EV, Kuluev AR, Galimova AA, Zaikina EA, Khlestkina EK. Genome Editing in Species of the Tribe Triticeae with the CRISPR/Cas System. Mol Biol 2022. [DOI: 10.1134/s0026893322060127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Shcherban AB. Plant genome modification: from induced mutagenesis to genome editing. Vavilovskii Zhurnal Genet Selektsii 2022; 26:684-696. [DOI: 10.18699/vjgb-22-83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- A. B. Shcherban
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Kurchatov Genomic Center of ICG SB RAS
| |
Collapse
|
16
|
Lukina K, Kovaleva O, Loskutov I. Naked barley: taxonomy, breeding, and prospects of utilization. Vavilovskii Zhurnal Genet Selektsii 2022; 26:524-536. [PMCID: PMC9556312 DOI: 10.18699/vjgb-22-64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/19/2022] Open
Abstract
This review surveys the current state of taxonomy, origin, and utilization prospects for naked barley. The cultivated barley Hordeum vulgare L. incorporates the covered and naked barley groups. Naked barleys are divided into six-row naked barley (convar. сoeleste (L.) A. Trof.) and two-row naked barley (convar. nudum (L.) A. Trof.). The groups include botanical varieties differing in the structural features of spikes, awns, floret and spikelet glumes, and the color of kernels. The centers of morphogenesis for naked barley are scrutinized employing archeological and paleoethnobotanical data, and the diversity of its forms. Hypotheses on the centers of its origin are discussed using DNA marker data. The main areas of its cultivation are shown, along with possible reasons for such a predominating or exclusive distribution of naked barley in highland areas. Inheritance of nakedness and mechanisms of its manifestation are considered in the context of new data in genetics. The biochemical composition of barley grain in protein, some essential and nonessential amino acids, β-glucans, vitamins, and antioxidants is described. Naked barley is shown to be a valuable source of unique combinations of soluble and insoluble dietary fibers and polysaccharides. The parameters limiting wider distribution of naked barley over the world are emphasized, and breeding efforts that could mitigate them are proposed. Pathogen-resistant naked barley accessions are identified to serve as promising sources for increasing grain yield and quality. Main stages and trends of naked barley breeding are considered and the importance of the VIR global germplasm collection as the richest repository of genetic material for the development of breeding is shown.
Collapse
Affiliation(s)
- K.A. Lukina
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - O.N. Kovaleva
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - I.G. Loskutov
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| |
Collapse
|
17
|
Seedling Biometry of nud Knockout and win1 Knockout Barley Lines under Ionizing Radiation. PLANTS 2022; 11:plants11192474. [PMID: 36235340 PMCID: PMC9571651 DOI: 10.3390/plants11192474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022]
Abstract
The genes NUD and WIN1 play a regulatory role in cuticle organization in barley. A knockout (KO) of each gene may alter plant mechanisms of adaptation to adverse environmental conditions. A putative pleiotropic effect of NUD or WIN1 gene mutations in barley can be assessed in a series of experiments in the presence or absence of a provoking factor. Ionizing radiation is widely used in research as a provoking factor for quantifying adaptive potential of living organisms. Our aim was to evaluate initial stages of growth and development of barley lines with a KO of NUD or WIN1 under radiation stress. Air-dried barley grains with different KOs and wild-type control (WT) were exposed to γ-radiation at 50, 100, or 200 Gy at a dose rate of 0.74 R/min. Approximately 30 physiological parameters were evaluated, combined into groups: (1) viability, (2) radiosensitivity, and (3) mutability of barley seed progeny. Seed germination, seedling survival, and shoot length were similar among all barley lines. Naked nud KO lines showed lower weights of seeds, roots, and seedlings and shorter root length as compared to win1 KO lines. The shoot-to-root length ratio of nud KO lines’ seedlings exceeded that of win1 KO and WT lines. In terms of the number of seedlings with leaves, all the KO lines were more sensitive to pre-sowing γ-irradiation. Meanwhile, the radioresistance of nud KO lines (50% growth reduction dose [RD50] = 318–356 Gy) and WT plants (RD50 = 414 Gy) judging by seedling weight was higher than that of win1 KO lines (RD50 = 201–300 Gy). Resistance of nud KO lines to radiation was also demonstrated by means of root length (RD50 = 202–254 Gy) and the shoot-to-root length ratio. WT seedlings had the fewest morphological anomalies. In nud KO lines, mainly alterations of root shape were found, whereas in win1 KO lines, changes in the color and shape of leaves were noted. Thus, seedlings of nud KO lines are characterized mainly by changes in the root system (root length, root number, and root anomalies). For win1 KO lines, other parameters are sensitive (shoot length and alterations of leaf shape and color). These data may indicate a pleiotropic effect of genes NUD and WIN1 in barley.
Collapse
|
18
|
Hisano H, Hoffie RE, Abe F, Munemori H, Matsuura T, Endo M, Mikami M, Nakamura S, Kumlehn J, Sato K. Regulation of germination by targeted mutagenesis of grain dormancy genes in barley. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:37-46. [PMID: 34459083 PMCID: PMC8710902 DOI: 10.1111/pbi.13692] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
High humidity during harvest season often causes pre-harvest sprouting in barley (Hordeum vulgare). Prolonged grain dormancy prevents pre-harvest sprouting; however, extended dormancy can interfere with malt production and uniform germination upon sowing. In this study, we used Cas9-induced targeted mutagenesis to create single and double mutants in QTL FOR SEED DORMANCY 1 (Qsd1) and Qsd2 in the same genetic background. We performed germination assays in independent qsd1 and qsd2 single mutants, as well as in two double mutants, which revealed a strong repression of germination in the mutants. These results demonstrated that normal early grain germination requires both Qsd1 and Qsd2 function. However, germination of qsd1 was promoted by treatment with 3% hydrogen peroxide, supporting the notion that the mutants exhibit delayed germination. Likewise, exposure to cold temperatures largely alleviated the block of germination in the single and double mutants. Notably, qsd1 mutants partially suppress the long dormancy phenotype of qsd2, while qsd2 mutant grains failed to germinate in the light, but not in the dark. Consistent with the delay in germination, abscisic acid accumulated in all mutants relative to the wild type, but abscisic acid levels cannot maintain long-term dormancy and only delay germination. Elucidation of mutant allele interactions, such as those shown in this study, are important for fine-tuning traits that will lead to the design of grain dormancy through combinations of mutant alleles. Thus, these mutants will provide the necessary germplasm to study grain dormancy and germination in barley.
Collapse
Affiliation(s)
- Hiroshi Hisano
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| | - Robert E. Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt SeelandGermany
| | | | - Hiromi Munemori
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| | - Takakazu Matsuura
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| | - Masaki Endo
- Institute of Agrobiological SciencesNAROTsukubaJapan
| | | | | | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt SeelandGermany
| | - Kazuhiro Sato
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| |
Collapse
|
19
|
Kiryushkin AS, Ilina EL, Guseva ED, Pawlowski K, Demchenko KN. Hairy CRISPR: Genome Editing in Plants Using Hairy Root Transformation. PLANTS (BASEL, SWITZERLAND) 2021; 11:51. [PMID: 35009056 PMCID: PMC8747350 DOI: 10.3390/plants11010051] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 05/27/2023]
Abstract
CRISPR/Cas-mediated genome editing is a powerful tool of plant functional genomics. Hairy root transformation is a rapid and convenient approach for obtaining transgenic roots. When combined, these techniques represent a fast and effective means of studying gene function. In this review, we outline the current state of the art reached by the combination of these approaches over seven years. Additionally, we discuss the origins of different Agrobacterium rhizogenes strains that are widely used for hairy root transformation; the components of CRISPR/Cas vectors, such as the promoters that drive Cas or gRNA expression, the types of Cas nuclease, and selectable and screenable markers; and the application of CRISPR/Cas genome editing in hairy roots. The modification of the already known vector pKSE401 with the addition of the rice translational enhancer OsMac3 and the gene encoding the fluorescent protein DsRed1 is also described.
Collapse
Affiliation(s)
- Alexey S. Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Elena L. Ilina
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Elizaveta D. Guseva
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| |
Collapse
|
20
|
Hoffie RE, Otto I, Perovic D, Budhagatapalli N, Habekuß A, Ordon F, Kumlehn J. Targeted Knockout of Eukaryotic Translation Initiation Factor 4E Confers Bymovirus Resistance in Winter Barley. Front Genome Ed 2021; 3:784233. [PMID: 34913048 PMCID: PMC8667817 DOI: 10.3389/fgeed.2021.784233] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/04/2021] [Indexed: 12/03/2022] Open
Abstract
The Eukaryotic Translation Initiation Factor 4E (EIF4E) is a well-known susceptibility factor for potyvirus infections in many plant species. The barley yellow mosaic virus disease, caused by the bymoviruses Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV), can lead to yield losses of up to 50% in winter barley. In autumn, the roots of young barley plants are infected by the soil-borne plasmodiophoraceous parasite Polymyxa graminis L. that serves as viral vector. Upon viral establishment and systemic spreading into the upper parts of the plants, yellow mosaics occur as first symptoms on leaves. In the further course of plant development, the disease entails leaf necrosis and increased susceptibility to frost damage. Thanks to the rym4 and rym5 allelic variants of the HvEIF4E gene, more than two thirds of current European winter barley cultivars are resistant to BaYMV and BaMMV. However, several strains of BaYMV and BaMMV have already overcome rym4- and rym5-mediated resistance. Accordingly, new resistance-conferring alleles are needed for barley breeding. Therefore, we performed targeted mutagenesis of the EIF4E gene by Cas9 endonuclease in BaMMV/BaYMV-susceptible winter barley cv. “Igri”. Small insertions were generated, resulting in a shift of the translational reading frame, thereby causing the loss-of-function of EIF4E. The mutations occurred in the homozygous state already in the primary mutants. Their progeny proved invariably homozygous and fully resistant to mechanical inoculation with BaMMV. EIF4E knockout plants showed normal growth habit and produced grains, yet exhibited a yield penalty.
Collapse
Affiliation(s)
- Robert Eric Hoffie
- Plant Reproductive Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ingrid Otto
- Plant Reproductive Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn Institute (JKI), Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Nagaveni Budhagatapalli
- Plant Reproductive Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Antje Habekuß
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn Institute (JKI), Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn Institute (JKI), Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Jochen Kumlehn
- Plant Reproductive Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
21
|
|
22
|
Hisano H, Abe F, Hoffie RE, Kumlehn J. Targeted genome modifications in cereal crops. BREEDING SCIENCE 2021; 71:405-416. [PMID: 34912167 PMCID: PMC8661484 DOI: 10.1270/jsbbs.21019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/13/2021] [Indexed: 05/15/2023]
Abstract
The recent advent of customizable endonucleases has led to remarkable advances in genetic engineering, as these molecular scissors allow for the targeted introduction of mutations or even precisely predefined genetic modifications into virtually any genomic target site of choice. Thanks to its unprecedented precision, efficiency, and functional versatility, this technology, commonly referred to as genome editing, has become an effective force not only in basic research devoted to the elucidation of gene function, but also for knowledge-based improvement of crop traits. Among the different platforms currently available for site-directed genome modifications, RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) endonucleases have proven to be the most powerful. This review provides an application-oriented overview of the development of customizable endonucleases, current approaches to cereal crop breeding, and future opportunities in this field.
Collapse
Affiliation(s)
- Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Fumitaka Abe
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518, Japan
| | - Robert E. Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Stadt Seeland/OT Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Stadt Seeland/OT Gatersleben, Germany
| |
Collapse
|
23
|
Generation of Doubled Haploid Barley by Interspecific Pollination with Hordeum bulbosum. Methods Mol Biol 2021; 2287:215-226. [PMID: 34270032 DOI: 10.1007/978-1-0716-1315-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The generation of doubled haploid barley plants by means of the so-called "Bulbosum" method has been practiced for meanwhile five decades. It rests upon the pollination of barley by its wild relative Hordeum bulbosum. This can result in the formation of hybrid embryos whose further development is typically associated with the loss of the pollinator's chromosomes. In recent years, this principle has, however, only rarely been used owing to the availability of efficient methods of anther and microspore culture. On the other hand, immature pollen-derived embryogenesis is to some extent prone to segregation bias in the resultant populations of haploids, which is due to its genotype dependency. Therefore, the principle of uniparental genome elimination has more recently regained increasing interest within the plant research and breeding community. The development of the present protocol relied on the use of the spring-type barley cultivar Golden Promise. The protocol is the result of a series of comparative experiments, which have addressed various methodological facets. The most influential ones included the method of emasculation, the temperature at flowering and early embryo development, the method, point in time and concentration of auxin administration for the stimulation of caryopsis development, the developmental stage at embryo dissection, as well as the nutrient medium used for embryo rescue. The present protocol allows the production of haploid barley plants at an efficiency of ca. 25% of the pollinated florets.
Collapse
|
24
|
Michalski K, Hertig C, Mańkowski DR, Kumlehn J, Zimny J, Linkiewicz AM. Functional Validation of cas9/guideRNA Constructs for Site-Directed Mutagenesis of Triticale ABA8'OH1 loci. Int J Mol Sci 2021; 22:7038. [PMID: 34210100 PMCID: PMC8269138 DOI: 10.3390/ijms22137038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 12/02/2022] Open
Abstract
Cas endonuclease-mediated genome editing provides a long-awaited molecular biological approach to the modification of predefined genomic target sequences in living organisms. Although cas9/guide (g)RNA constructs are straightforward to assemble and can be customized to target virtually any site in the plant genome, the implementation of this technology can be cumbersome, especially in species like triticale that are difficult to transform, for which only limited genome information is available and/or which carry comparatively large genomes. To cope with these challenges, we have pre-validated cas9/gRNA constructs (1) by frameshift restitution of a reporter gene co-introduced by ballistic DNA transfer to barley epidermis cells, and (2) via transfection in triticale protoplasts followed by either a T7E1-based cleavage assay or by deep-sequencing of target-specific PCR amplicons. For exemplification, we addressed the triticale ABA 8'-hydroxylase 1 gene, one of the putative determinants of pre-harvest sprouting of grains. We further show that in-del induction frequency in triticalecan beincreased by TREX2 nuclease activity, which holds true for both well- and poorly performing gRNAs. The presented results constitute a sound basis for the targeted induction of heritable modifications in triticale genes.
Collapse
Affiliation(s)
- Krzysztof Michalski
- GMO Controlling Laboratory, Plant Biotechnology and Cytogenetics Department, Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland; (K.M.); (J.Z.)
| | - Christian Hertig
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany; (J.K.); (C.H.)
| | - Dariusz R. Mańkowski
- Laboratory of Seed Production and Plant Breeding Economics, Department of Seed Science and Technology, Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland;
| | - Jochen Kumlehn
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany; (J.K.); (C.H.)
| | - Janusz Zimny
- GMO Controlling Laboratory, Plant Biotechnology and Cytogenetics Department, Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland; (K.M.); (J.Z.)
| | - Anna M. Linkiewicz
- GMO Controlling Laboratory, Plant Biotechnology and Cytogenetics Department, Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland; (K.M.); (J.Z.)
- Institute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3 Street, 01-938 Warsaw, Poland
| |
Collapse
|
25
|
Loskutov IG, Khlestkina EK. Wheat, Barley, and Oat Breeding for Health Benefit Components in Grain. PLANTS (BASEL, SWITZERLAND) 2021; 10:E86. [PMID: 33401643 PMCID: PMC7823506 DOI: 10.3390/plants10010086] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 02/08/2023]
Abstract
Cereal grains provide half of the calories consumed by humans. In addition, they contain important compounds beneficial for health. During the last years, a broad spectrum of new cereal grain-derived products for dietary purposes emerged on the global food market. Special breeding programs aimed at cultivars utilizable for these new products have been launched for both the main sources of staple foods (such as rice, wheat, and maize) and other cereal crops (oat, barley, sorghum, millet, etc.). The breeding paradigm has been switched from traditional grain quality indicators (for example, high breadmaking quality and protein content for common wheat or content of protein, lysine, and starch for barley and oat) to more specialized ones (high content of bioactive compounds, vitamins, dietary fibers, and oils, etc.). To enrich cereal grain with functional components while growing plants in contrast to the post-harvesting improvement of staple foods with natural and synthetic additives, the new breeding programs need a source of genes for the improvement of the content of health benefit components in grain. The current review aims to consider current trends and achievements in wheat, barley, and oat breeding for health-benefiting components. The sources of these valuable genes are plant genetic resources deposited in genebanks: landraces, rare crop species, or even wild relatives of cultivated plants. Traditional plant breeding approaches supplemented with marker-assisted selection and genetic editing, as well as high-throughput chemotyping techniques, are exploited to speed up the breeding for the desired genotуpes. Biochemical and genetic bases for the enrichment of the grain of modern cereal crop cultivars with micronutrients, oils, phenolics, and other compounds are discussed, and certain cases of contributions to special health-improving diets are summarized. Correlations between the content of certain bioactive compounds and the resistance to diseases or tolerance to certain abiotic stressors suggest that breeding programs aimed at raising the levels of health-benefiting components in cereal grain might at the same time match the task of developing cultivars adapted to unfavorable environmental conditions.
Collapse
Affiliation(s)
- Igor G. Loskutov
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia;
| | | |
Collapse
|
26
|
Hoffie RE, Otto I, Hisano H, Kumlehn J. Site-Directed Mutagenesis in Barley Using RNA-Guided Cas Endonucleases During Microspore-Derived Generation of Doubled Haploids. Methods Mol Biol 2021; 2287:199-214. [PMID: 34270031 DOI: 10.1007/978-1-0716-1315-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
In plant research and breeding, haploid technology is employed upon crossing, induced mutagenesis or genetic engineering to generate populations of meiotic recombinants that are themselves genetically fixed. Thanks to the speed and efficiency in producing true-breeding lines, haploid technology has become a major driver of modern crop improvement. In the present study, we used embryogenic pollen cultures of winter barley ( Hordeum vulgare ) for Cas9 endonuclease-mediated targeted mutagenesis in haploid cells, which facilitates the generation of homozygous primary mutant plants. To this end, microspores were extracted from immature anthers, induced to undergo cell proliferation and embryogenic development in vitro, and were then inoculated with Agrobacterium for the delivery of T-DNAs comprising expression units for Cas9 endonuclease and target gene-specific guide RNAs (gRNAs). Amongst the regenerated plantlets, mutants were identified by PCR amplification of the target regions followed by sequencing of the amplicons. This approach also enabled us to discriminate between homozygous and heterozygous or chimeric mutants. The heritability of induced mutations and their homozygous state were experimentally confirmed by progeny analyses. The major advantage of the method lies in the preferential production of genetically fixed primary mutants, which facilitates immediate phenotypic analyses and, relying on that, a particularly efficient preselection of valuable lines for detailed investigations using their progenies.
Collapse
Affiliation(s)
- Robert Eric Hoffie
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ingrid Otto
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Jochen Kumlehn
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
| |
Collapse
|
27
|
Pathi KM, Rink P, Budhagatapalli N, Betz R, Saado I, Hiekel S, Becker M, Djamei A, Kumlehn J. Engineering Smut Resistance in Maize by Site-Directed Mutagenesis of LIPOXYGENASE 3. FRONTIERS IN PLANT SCIENCE 2020; 11:543895. [PMID: 33193477 PMCID: PMC7609844 DOI: 10.3389/fpls.2020.543895] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/22/2020] [Indexed: 05/23/2023]
Abstract
Biotic stresses caused by microbial pathogens impair crop yield and quality if not restricted by expensive and often ecologically problematic pesticides. For a sustainable agriculture of tomorrow, breeding or engineering of pathogen-resistant crop varieties is therefore a major cornerstone. Maize is one of the four most important cereal crops in the world. The biotrophic fungal pathogen Ustilago maydis causes galls on all aerial parts of the maize plant. Biotrophic pathogens like U. maydis co-evolved with their host plant and depend during their life cycle on successful manipulation of the host's cellular machinery. Therefore, removing or altering plant susceptibility genes is an effective and usually durable way to obtain resistance in plants. Transcriptional time course experiments in U. maydis-infected maize revealed numerous maize genes being upregulated upon establishment of biotrophy. Among these genes is the maize LIPOXYGENASE 3 (LOX3) previously shown to be a susceptibility factor for other fungal genera as well. Aiming to engineer durable resistance in maize against U. maydis and possibly other pathogens, we took a Cas endonuclease technology approach to generate loss of function mutations in LOX3. lox3 maize mutant plants react with an enhanced PAMP-triggered ROS burst implicating an enhanced defense response. Based on visual assessment of disease symptoms and quantification of relative fungal biomass, homozygous lox3 mutant plants exposed to U. maydis show significantly decreased susceptibility. U. maydis infection assays using a transposon mutant lox3 maize line further substantiated that LOX3 is a susceptibility factor for this important maize pathogen.
Collapse
Affiliation(s)
- Krishna Mohan Pathi
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Philipp Rink
- Biotrophy & Immunity, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nagaveni Budhagatapalli
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ruben Betz
- Biotrophy & Immunity, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Indira Saado
- Biotrophy & Immunity, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Stefan Hiekel
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Martin Becker
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Armin Djamei
- Biotrophy & Immunity, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Jochen Kumlehn
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|