1
|
Pasten MC, Carballo J, Díaz AR, Mizzotti C, Cucinotta M, Colombo L, Echenique VC, Mendes MA. New insights into Eragrostis curvula's sexual and apomictic reproductive development. FRONTIERS IN PLANT SCIENCE 2025; 16:1530855. [PMID: 40376162 PMCID: PMC12078246 DOI: 10.3389/fpls.2025.1530855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/07/2025] [Indexed: 05/18/2025]
Abstract
Apomixis, defined as asexual propagation by seeds, is considered of great importance for agriculture as it allows the fixation of desired traits and its propagation through generations. Eragrostis curvula (Schrad.) Ness, is a perennial grass that comprises a polymorphic complex including sexual and diplosporous apomictic cytotypes, where all apomicts are polyploids. In this study we present the first detailed description of female and male gametophyte development in E. curvula through confocal laser microscopy, contrasting three genotypes: the fully apomictic Tanganyika, the facultative apomictic Don Walter, and the sexual OTA-S. Moreover, we have studied the localized expression of a gene known as SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7), that was found to be differentially expressed in contrasting genotypes of E. curvula. This gene had been previously linked with flower development and abiotic stresses in several species, thus, in situ hybridizations were carried out in the model plant Arabidopsis thaliana, as well as in sexual and apomictic E. curvula genotypes. Our microscopy analysis has led to the identification of specific morphological characteristics for each genotype, mainly depicting a larger ovule in the sexual genotype's reproductive development after the meiosis stage. These results reveal potentially important features, which could be used for a simple identification of genotypes. Moreover, differential expression of the gene SPL7 was detected, specifically determining an overexpression of the gene in the sexual genotype. These results demonstrated that it could be an interesting candidate to understand the mechanisms behind apomictic development.
Collapse
Affiliation(s)
- María Cielo Pasten
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (UNS - CONICET), Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - José Carballo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (UNS - CONICET), Bahía Blanca, Argentina
| | - Alejandra Raquel Díaz
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (UNS - CONICET), Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Chiara Mizzotti
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Milan, Italy
| | - Mara Cucinotta
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Milan, Italy
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Milan, Italy
| | - Viviana Carmen Echenique
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (UNS - CONICET), Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | | |
Collapse
|
2
|
Zheng L, Zhang W, Wei L, Li M, Liu L. Functional Characterization of MaSPL8 Reveals Its Different Roles in Biotic and Abiotic Stress Responses in Mulberry. PLANTS (BASEL, SWITZERLAND) 2025; 14:950. [PMID: 40265865 PMCID: PMC11944325 DOI: 10.3390/plants14060950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
The Squamosa promoter-binding protein-like (SPL) family proteins plays pivotal roles in plant development and stress adaptation. In this study, we functionally characterized MaSPL8 in mulberry (Morus alba) and investigated its regulatory roles in biotic and abiotic stress responses. MaSPL8 encodes a 364-amino acid protein with a conserved SBP domain and lacks miR156/157 binding sites. Phylogenetic analysis confirmed its orthology to Arabidopsis AtSPL8, albeit with functional divergence. Downregulation of MaSPL8 via virus-induced gene silencing (VIGS) resulted in more susceptibility to Ciboria shiraiana infection, but significantly enhanced resistance to drought and salt stress, as evidenced by reduced oxidative damage, elevated proline accumulation, and increased antioxidant enzyme activities. Transcriptomic profiling of MaSPL8-silenced plants revealed enrichment of differentially expressed genes (DEGs) in brassinosteroid biosynthesis, jasmonic acid metabolism, and oxidative stress responses, suggesting hormone signaling interplay. Furthermore, bioinformatic predictions identified miR5658 and miR4221 as potential post-transcriptional regulators of MaSPL8. This study highlights MaSPL8 as a negative regulator of abiotic stress tolerance and positive regulator of biotic (C. shiraiana) stress tolerance in mulberry and provides insights into its integration with phytohormone pathways. Our findings underscore the evolutionary plasticity of SPL8 genes and propose MaSPL8 as a target for enhancing mulberry's resilience in challenging environments.
Collapse
Affiliation(s)
- Longyan Zheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Wenhao Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Liuqing Wei
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Mengqi Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Li Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
3
|
Wang S, Hu W, Zhang X, Liu Y, Liu F. Identification and Characterization of SQUAMOSA Promoter Binding Protein-like Transcription Factor Family Members in Zanthoxylum bungeanum and Their Expression Profiles in Response to Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2025; 14:520. [PMID: 40006777 PMCID: PMC11859874 DOI: 10.3390/plants14040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Plant-specific transcription factors known as SQUAMOSA promoter binding protein-like (SPL) genes are essential for development, growth, and abiotic stress responses. While the SPL gene family has been extensively studied in various plant species, a systematic characterization in Zanthoxylum bungeanum (Zb) is lacking. This study used transcriptomic and bioinformatics data to conduct a thorough genomic identification and expression investigation of the ZbSPL gene family. Eight subfamilies including 73 ZbSPL members were identified, most of which are predicted to be localized in the nucleus. Ka/Ks ratio analysis indicates that most ZbSPL genes have undergone purifying selection. According to evolutionary research, segmental duplication is a major factor in the amplification of the ZbSPL gene family. Gene structures, conserved motifs, and domains were found to be highly conserved among paralogs. Cis-element research revealed that ZbSPLs may be implicated in hormone and abiotic stress responses. Codon usage pattern analysis showed that the ZbSPL gene family was more inclined to A/T base endings; the higher the A/T content, the stronger the preference of the codons; and the use pattern was mainly affected by natural selection. Additionally, 36 ZbSPLs were found to be potential targets of miR156. RNA-seq demonstrated that SPL genes in Zb are differentially expressed in response to distinct abiotic stressors. Two ZbSPL genes (ZbSPL10 and ZbSPL17) were implicated in the response to salt stress, while four ZbSPL genes (ZbSPL06, ZbSPL43, ZbSPL60, and ZbSPL61) showed response to drought stress, based on a qRT-PCR investigation of the ZbSPL genes under various abiotic stress conditions. This study will help us gain a deeper understanding of the functions of ZbSPLs and lay a genetic foundation for future breeding of high-quality, highly abiotic resistant varieties of Z. bungeanum.
Collapse
Affiliation(s)
- Shengshu Wang
- College of Forestry, Northwest A&F University, Yangling 712100, China; (S.W.); (X.Z.)
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332900, China;
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332900, China;
| | - Xueli Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, China; (S.W.); (X.Z.)
| | - Yulin Liu
- College of Forestry, Northwest A&F University, Yangling 712100, China; (S.W.); (X.Z.)
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332900, China;
| |
Collapse
|
4
|
Kumari A, Sopory SK, Joshi R. Unraveling the intricate tapestry of bamboo transcription factors in abiotic stress signaling and resilience with special reference to moso bamboo family. Biochim Biophys Acta Gen Subj 2025; 1869:130755. [PMID: 39740732 DOI: 10.1016/j.bbagen.2024.130755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
The abiotic stress tolerance mechanism in plants is regulated by multiple physiological, biochemical, and molecular processes; hence, omics approaches to underpin these mechanisms are essential. It is clear that transcription factors (TFs) are one of the fundamental molecular switches that play a crucial role in modulating, regulating, and orchestrating plants in response to various climatic vagaries. Several reports are available now, focusing on understanding the roles of TFs, including those in Poaceae family in regulating different biological processes and stress responses. However, research on bamboo TFs' regulatory role in providing abiotic stress tolerance is limited. Hence the present review offers innovative insights into unraveling the molecular regulation of known family of TFs in different species of bamboo which have been identified as regulators of transcript abundance in numerous genes responsive to various abiotic stresses. Additionally, this review highlights recent discoveries concerning bamboo TFs, encompassing their classification, promoter analysis and functional dynamics in response to different abiotic stresses. Attempt has also been made to delve into the molecular interplay and cross-talk among these TFs during abiotic stresses, thus proposing potential strategies for enhancing the intricate regulatory networks involved in the adaptive responses of bamboo species.
Collapse
Affiliation(s)
- Anita Kumari
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rohit Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
5
|
Liu X, Sun W, Liu H, Wang L, Manzoor MA, Wang J, Jiu S, Zhang C. PavSPLs are key regulators of growth, development, and stress response in sweet cherry. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112279. [PMID: 39401543 DOI: 10.1016/j.plantsci.2024.112279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes are plant-specific transcription factors essential for plant growth, development, and stress responses. Their roles in sweet cherry are not well understood. In this study, we identified and isolated 16 SPL genes from the sweet cherry genome, categorizing them into 5 subfamilies, with 12 PavSPLs predicted as miR156 targets. Promoter regions of PavSPLs contain cis-elements associated with light, stress, and phytohormone responses, indicating their role in biological processes and abiotic stress responses. Seasonal expression analysis showed that PavSPL regulates sweet cherry recovery after dormancy. Gibberellin (GA) treatment reduced PavSPL expression, indicating its role in GA-mediated processes. PavSPL14 overexpression in Arabidopsis thaliana resulted in earlier flowering and increased plant height and growth. Yeast two-hybrid assays showed an interaction between PavSPL14 and DELLA protein PavDWARF8, suggesting PavSPL14 and PavDWARF8 co-regulate growth and development. These findings lay the groundwork for further research on PavSPL function in sweet cherry.
Collapse
Affiliation(s)
- Xunju Liu
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Wanxia Sun
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Haobo Liu
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Li Wang
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Muhammad Aamir Manzoor
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Jiyuan Wang
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Songtao Jiu
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Caixi Zhang
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| |
Collapse
|
6
|
Kong D, Xu M, Liu S, Liu T, Liu B, Wang X, Dong Z, Ma X, Zhao J, Lei X. Genome-Wide Identification and Expression Profiling of the SPL Transcription Factor Family in Response to Abiotic Stress in Centipedegrass. PLANTS (BASEL, SWITZERLAND) 2024; 14:62. [PMID: 39795323 PMCID: PMC11723030 DOI: 10.3390/plants14010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
SQUAMOSA promoter-binding protein-like (SPL) transcription factors play a critical role in the regulation of gene expression and are indispensable in orchestrating plant growth and development while also improving resistance to environmental stressors. Although it has been identified across a wide array of plant species, there have been no comprehensive studies on the SPL gene family in centipedegrass [Eremochloa ophiuroides (Munro) Hack.], which is an important warm-season perennial C4 turfgrass. In this study, 19 potential EoSPL genes in centipedegrass were identified and assigned the names EoSPL1-EoSPL19. Gene structure and motif analysis demonstrated that there was relative consistency among the branches of the phylogenetic tree. Five pairs of segmental duplication events were detected within centipedegrass. Ten EoSPL genes were predicted to be targeted by miR156. Additionally, the EoSPL genes were found to be predominantly expressed in leaves and demonstrated diverse responses to abiotic stress (salt, drought, glufosinate ammonium, aluminum, and cold). This study offers a comprehensive insight into the SPL gene family in centipedegrass, creating a foundation for elucidating the functions of EoSPL genes and investigating their involvement in abiotic stress responses.
Collapse
Affiliation(s)
- Dandan Kong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Maotao Xu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyu Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianqi Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Boyang Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyun Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhixiao Dong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiong Lei
- Sichuan Academy of Grassland Science, Chengdu 611731, China
| |
Collapse
|
7
|
He A, Zhou H, Ma C, Bai Q, Yang H, Yao X, Wu W, Xue G, Ruan J. Genome-wide identification and expression analysis of the SPL gene family and its response to abiotic stress in barley (Hordeum vulgare L.). BMC Genomics 2024; 25:846. [PMID: 39251952 PMCID: PMC11384689 DOI: 10.1186/s12864-024-10773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 09/04/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Squamosa promoter-binding protein-like (SPL) is a plant-specific transcription factor that is widely involved in the regulation of plant growth and development, including flower and grain development, stress responses, and secondary metabolite synthesis. However, this gene family has not been comprehensively evaluated in barley, the most adaptable cereal crop with a high nutritional value. RESULTS In this study, a total of 15 HvSPL genes were identified based on the Hordeum vulgare genome. These genes were named HvSPL1 to HvSPL15 based on the chromosomal distribution of the HvSPL genes and were divided into seven groups (I, II, III, V, VI, VII, and VIII) based on the phylogenetic tree analysis. Chromosomal localization revealed one pair of tandem duplicated genes and one pair of segmental duplicated genes. The HvSPL genes exhibited the highest collinearity with the monocotyledonous plant, Zea mays (27 pairs), followed by Oryza sativa (18 pairs), Sorghum bicolor (16 pairs), and Arabidopsis thaliana (3 pairs), and the fewest homologous genes with Solanum lycopersicum (1 pair). The distribution of the HvSPL genes in the evolutionary tree was relatively scattered, and HvSPL proteins tended to cluster with SPL proteins from Z. mays and O. sativa, indicating a close relationship between HvSPL and SPL proteins from monocotyledonous plants. Finally, the spatial and temporal expression patterns of the 14 HvSPL genes from different subfamilies were determined using quantitative real-time polymerase chain reaction (qRT-PCR). Based on the results, the HvSPL gene family exhibited tissue-specific expression and played a regulatory role in grain development and abiotic stress. HvSPL genes are highly expressed in various tissues during seed development. The expression levels of HvSPL genes under the six abiotic stress conditions indicated that many genes responded to stress, especially HvSPL8, which exhibited high expression under multiple stress conditions, thereby warranting further attention. CONCLUSION In this study, 15 SPL gene family members were identified in the genome of Hordeum vulgare, and the phylogenetic relationships, gene structure, replication events, gene expression, and potential roles of these genes in millet development were studied. Our findings lay the foundation for exploring the HvSPL genes and performing molecular breeding of barley.
Collapse
Affiliation(s)
- Ailing He
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Hui Zhou
- Sichuan Province Seed Station, Chengdu, 610041, Sichuan, People's Republic of China
| | - Chao Ma
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Qing Bai
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Haizhu Yang
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Xin Yao
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Weijiao Wu
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Guoxing Xue
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
8
|
Dong F, Song J, Zhang H, Zhang J, Chen Y, Zhou X, Li Y, Ge S, Liu Y. TaSPL6B, a member of the Squamosa promoter binding protein-like family, regulates shoot branching and florescence in Arabidopsis thaliana. BMC PLANT BIOLOGY 2024; 24:708. [PMID: 39054432 PMCID: PMC11271066 DOI: 10.1186/s12870-024-05429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Squamosa promoter-binding protein-like (SPL) proteins are essential to plant growth and development as plant-specific transcription factors. However, the functions of SPL proteins in wheat need to be further explored. RESULTS We cloned and characterized TaSPL6B of wheat in this study. Analysis of physicochemical properties revealed that it contained 961 amino acids and had a molecular weight of 105 kDa. Full-length TaSPL6B transcription activity was not validated in yeast and subcellular localization analysis revealed that TaSPL6B was distributed in the nucleus. Ectopic expression of TaSPL6B in Arabidopsis led to increasing number of branches and early flowering. TaSPL6B was highly transcribed in internodes of transgenic Arabidopsis. The expression of AtSMXL6/AtSMXL7/AtSMXL8 (homologous genes of TaD53) was markedly increased, whereas the expression of AtSPL2 (homologous genes of TaSPL3) and AtBRC1 (homologous genes of TaTB1) was markedly reduced in the internodes of transgenic Arabidopsis. Besides, TaSPL6B, TaSPL3 and TaD53 interacted with one another, as demonstrated by yeast two-hybrid and bimolecular fluorescence complementation assays. Therefore, we speculated that TaSPL6B brought together TaD53 and TaSPL3 and enhanced the inhibition effect of TaD53 on TaSPL3 through integrating light and strigolactone signaling pathways, followed by suppression of TaTB1, a key repressor of tillering. CONCLUSIONS As a whole, our findings contribute to a better understanding of how SPL genes work in wheat and will be useful for further research into how TaSPL6B affects yield-related traits in wheat.
Collapse
Affiliation(s)
- Feiyan Dong
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/ Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co- construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Jinghan Song
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huadong Zhang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/ Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co- construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Jiarun Zhang
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yangfan Chen
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyi Zhou
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co- construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Yaqian Li
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/ Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China
| | - Shijie Ge
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/ Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China
| | - Yike Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/ Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China.
| |
Collapse
|
9
|
Wang M, Cheng J, Wu J, Chen J, Liu D, Wang C, Ma S, Guo W, Li G, Di D, Zhang Y, Han D, Kronzucker HJ, Xia G, Shi W. Variation in TaSPL6-D confers salinity tolerance in bread wheat by activating TaHKT1;5-D while preserving yield-related traits. Nat Genet 2024; 56:1257-1269. [PMID: 38802564 DOI: 10.1038/s41588-024-01762-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/19/2024] [Indexed: 05/29/2024]
Abstract
Na+ exclusion from above-ground tissues via the Na+-selective transporter HKT1;5 is a major salt-tolerance mechanism in crops. Using the expression genome-wide association study and yeast-one-hybrid screening, we identified TaSPL6-D, a transcriptional suppressor of TaHKT1;5-D in bread wheat. SPL6 also targeted HKT1;5 in rice and Brachypodium. A 47-bp insertion in the first exon of TaSPL6-D resulted in a truncated peptide, TaSPL6-DIn, disrupting TaHKT1;5-D repression exhibited by TaSPL6-DDel. Overexpressing TaSPL6-DDel, but not TaSPL6-DIn, led to inhibited TaHKT1;5-D expression and increased salt sensitivity. Knockout of TaSPL6-DDel in two wheat genotypes enhanced salinity tolerance, which was attenuated by a further TaHKT1;5-D knockdown. Spike development was preserved in Taspl6-dd mutants but not in Taspl6-aabbdd mutants. TaSPL6-DIn was mainly present in landraces, and molecular-assisted introduction of TaSPL6-DIn from a landrace into a leading wheat cultivar successfully improved yield on saline soils. The SPL6-HKT1;5 module offers a target for the molecular breeding of salt-tolerant crops.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China.
- University of Chinese Academy of Sciences, Beijing, P. R. China.
| | - Jie Cheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, P. R. China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, P. R. China
| | - Jiefei Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Dan Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, P. R. China
| | - Chenyang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, P. R. China
| | - Shengwei Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P. R. China
- Hainan Yazhou Bay Seed Laboratory, Sanya, P. R. China
| | - Weiwei Guo
- Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops, College of Agronomy, Qingdao Agricultural University, Qingdao, P. R. China
| | - Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
| | - Yumei Zhang
- Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops, College of Agronomy, Qingdao Agricultural University, Qingdao, P. R. China
| | - Dejun Han
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, P. R. China
| | - Herbert J Kronzucker
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, P. R. China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, P. R. China
| |
Collapse
|
10
|
Li L, Xu JB, Zhu ZW, Ma R, Wu XZ, Geng YK. Genome-wide identification and expression analysis of the SPL transcription factor family and its response to abiotic stress in Pisum sativum L. BMC Genomics 2024; 25:539. [PMID: 38822248 PMCID: PMC11140923 DOI: 10.1186/s12864-024-10262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/27/2024] [Indexed: 06/02/2024] Open
Abstract
Squamous promoter binding protein-like (SPL) genes encode plant-specific transcription factors (TFs) that play essential roles in modulating plant growth, development, and stress response. Pea (Pisum sativum L.) is a coarse grain crop of great importance in food production, biodiversity conservation and molecular genetic research, providing genetic information and nutritional resources for improving agricultural production and promoting human health. However, only limited researches on the structure and functions of SPL genes exist in pea (PsSPLs). In this study, we identified 22 PsSPLs and conducted a genome-wide analysis of their physical characteristics, chromosome distribution, gene structure, phylogenetic evolution and gene expression patterns. As a result, the PsSPLs were unevenly distributed on the seven chromosomes of pea and harbored the SBP domain, which is composed of approximately 76 amino acid residues. The phylogenetic analysis revealed that the PsSPLs clustered into eight subfamilies and showed high homology with SPL genes in soybean. Further analysis showed the presence of segmental duplications in the PsSPLs. The expression patterns of 22 PsSPLs at different tissues, developmental stages and under various stimulus conditions were evaluated by qRT-PCR method. It was found that the expression patterns of PsSPLs from the same subfamily were similar in different tissues, the transcripts of most PsSPLs reached the maximum peak value at 14 days after anthesis in the pod. Abiotic stresses can cause significantly up-regulated PsSPL19 expression with spatiotemporal specificity, in addition, four plant hormones can cause the up-regulated expression of most PsSPLs including PsSPL19 in a time-dependent manner. Therefore, PsSPL19 could be a key candidate gene for signal transduction during pea growth and development, pod formation, abiotic stress and plant hormone response. Our findings should provide insights for the elucidating of development regulation mechanism and breeding for resistance to abiotic stress pea.
Collapse
Affiliation(s)
- Long Li
- Minzu University of China, 100010, Beijing, P.R. China
- College of Agronomy, Hebei Agricultural University, 071001, Baoding, P.R. China
| | - Jian Bo Xu
- School of Food and Biological engineering, Zhengzhou University of Light Industry, 450002, Zhengzhou, P.R. China
| | - Zhi Wen Zhu
- School of Food and Biological engineering, Zhengzhou University of Light Industry, 450002, Zhengzhou, P.R. China
| | - Rui Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100, Yangling, Shaanxi, P.R. China
| | - Xiao Zong Wu
- School of Food and Biological engineering, Zhengzhou University of Light Industry, 450002, Zhengzhou, P.R. China.
- Zhengzhou University of Light Industry, 450002, Zhengzhou, P.R. China.
| | - Yu Ke Geng
- Minzu University of China, 100010, Beijing, P.R. China.
| |
Collapse
|
11
|
Sun X, Zhang L, Xu W, Zheng J, Yan M, Zhao M, Wang X, Yin Y. A Comprehensive Analysis of the Peanut SQUAMOSA Promoter Binding Protein-like Gene Family and How AhSPL5 Enhances Salt Tolerance in Transgenic Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1057. [PMID: 38674467 PMCID: PMC11055087 DOI: 10.3390/plants13081057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
SPL (SQUAMOSA promoter binding protein-like), as one family of plant transcription factors, plays an important function in plant growth and development and in response to environmental stresses. Despite SPL gene families having been identified in various plant species, the understanding of this gene family in peanuts remains insufficient. In this study, thirty-eight genes (AhSPL1-AhSPL38) were identified and classified into seven groups based on a phylogenetic analysis. In addition, a thorough analysis indicated that the AhSPL genes experienced segmental duplications. The analysis of the gene structure and protein motif patterns revealed similarities in the structure of exons and introns, as well as the organization of the motifs within the same group, thereby providing additional support to the conclusions drawn from the phylogenetic analysis. The analysis of the regulatory elements and RNA-seq data suggested that the AhSPL genes might be widely involved in peanut growth and development, as well as in response to environmental stresses. Furthermore, the expression of some AhSPL genes, including AhSPL5, AhSPL16, AhSPL25, and AhSPL36, were induced by drought and salt stresses. Notably, the expression of the AhSPL genes might potentially be regulated by regulatory factors with distinct functionalities, such as transcription factors ERF, WRKY, MYB, and Dof, and microRNAs, like ahy-miR156. Notably, the overexpression of AhSPL5 can enhance salt tolerance in transgenic Arabidopsis by enhancing its ROS-scavenging capability and positively regulating the expression of stress-responsive genes. These results provide insight into the evolutionary origin of plant SPL genes and how they enhance plant tolerance to salt stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xinyu Wang
- Yantai Academy of Agricultural Sciences, Yantai 265500, China; (X.S.); (L.Z.); (W.X.); (J.Z.); (M.Y.); (M.Z.)
| | - Yan Yin
- Yantai Academy of Agricultural Sciences, Yantai 265500, China; (X.S.); (L.Z.); (W.X.); (J.Z.); (M.Y.); (M.Z.)
| |
Collapse
|
12
|
Wang Y, Yang X, Hu Y, Liu X, Shareng T, Cao G, Xing Y, Yang Y, Li Y, Huang W, Wang Z, Bai G, Ji Y, Wang Y. Transcriptome-Based Identification of the SaR2R3-MYB Gene Family in Sophora alopecuroides and Function Analysis of SaR2R3-MYB15 in Salt Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:586. [PMID: 38475433 DOI: 10.3390/plants13050586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
As one of the most prominent gene families, R2R3-MYB transcription factors significantly regulate biochemical and physiological processes under salt stress. However, in Sophora alopecuroides, a perennial herb known for its exceptional saline alkali resistance, the comprehensive identification and characterization of SaR2R3-MYB genes and their potential functions in response to salt stress have yet to be determined. We investigated the expression profiles and biological functions of SaR2R3-MYB transcription factors in response to salt stress, utilizing a transcriptome-wide mining method. Our analysis identified 28 SaR2R3-MYB transcription factors, all sharing a highly conserved R2R3 domain, which were further divided into 28 subgroups through phylogenetic analysis. Some SaR2R3-MYB transcription factors showed induction under salt stress, with SaR2R3-MYB15 emerging as a potential regulator based on analysis of the protein-protein interaction network. Validation revealed the transcriptional activity and nuclear localization of SaR2R3-MYB15. Remarkably, overexpression of SaR2R3-MYB15 in transgenic plants could increase the activity of antioxidant enzymes and the accumulation of proline but decrease the content of malondialdehyde (MDA), compared with wild-type plants. Moreover, several salt stress-related genes showed higher expression levels in transgenic plants, implying their potential to enhance salt tolerance. Our findings shed light on the role of SaR2R3-MYB genes in salt tolerance in S. alopecuroides.
Collapse
Affiliation(s)
- Yuan Wang
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Inner Mongolia Engineering Laboratory of Economic Forest Sterile Virus-Free Cultivation, Hohhot 010021, China
| | - Xiaoming Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yongning Hu
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| | - Xinqian Liu
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| | - Tuya Shareng
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
- Inner Mongolia Ordos Forest Ecosystem Research Station, Ordos 016100, China
| | - Gongxiang Cao
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
- Inner Mongolia Ordos Forest Ecosystem Research Station, Ordos 016100, China
| | - Yukun Xing
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
- Inner Mongolia Ordos Forest Ecosystem Research Station, Ordos 016100, China
| | - Yuewen Yang
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
- Inner Mongolia Ordos Forest Ecosystem Research Station, Ordos 016100, China
| | - Yinxiang Li
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| | - Weili Huang
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
- Inner Mongolia Engineering Laboratory of Economic Forest Sterile Virus-Free Cultivation, Hohhot 010021, China
| | - Zhibo Wang
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| | - Gaowa Bai
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| | - Yuanyuan Ji
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| | - Yuzhi Wang
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| |
Collapse
|
13
|
Wu JW, Zhao ZY, Hu RC, Huang YF. Genome-wide identification, stress- and hormone-responsive expression characteristics, and regulatory pattern analysis of Scutellaria baicalensis SbSPLs. PLANT MOLECULAR BIOLOGY 2024; 114:20. [PMID: 38363403 PMCID: PMC10873456 DOI: 10.1007/s11103-023-01410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/11/2023] [Indexed: 02/17/2024]
Abstract
SQUAMOSA PROMOTER BINDING PROTEIN-LIKEs (SPLs) encode plant-specific transcription factors that regulate plant growth and development, stress response, and metabolite accumulation. However, there is limited information on Scutellaria baicalensis SPLs. In this study, 14 SbSPLs were identified and divided into 8 groups based on phylogenetic relationships. SbSPLs in the same group had similar structures. Abscisic acid-responsive (ABRE) and MYB binding site (MBS) cis-acting elements were found in the promoters of 8 and 6 SbSPLs. Segmental duplications and transposable duplications were the main causes of SbSPL expansion. Expression analysis based on transcriptional profiling showed that SbSPL1, SbSPL10, and SbSPL13 were highly expressed in roots, stems, and flowers, respectively. Expression analysis based on quantitative real-time polymerase chain reaction (RT‒qPCR) showed that most SbSPLs responded to low temperature, drought, abscisic acid (ABA) and salicylic acid (SA), among which the expression levels of SbSPL7/9/10/12 were significantly upregulated in response to abiotic stress. These results indicate that SbSPLs are involved in the growth, development and stress response of S. baicalensis. In addition, 8 Sba-miR156/157 s were identified, and SbSPL1-5 was a potential target of Sba-miR156/157 s. The results of target gene prediction and coexpression analysis together indicated that SbSPLs may be involved in the regulation of L-phenylalanine (L-Phe), lignin and jasmonic acid (JA) biosynthesis. In summary, the identification and characterization of the SbSPL gene family lays the foundation for functional research and provides a reference for improved breeding of S. baicalensis stress resistance and quality traits.
Collapse
Affiliation(s)
- Jia-Wen Wu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150000, China
| | - Zi-Yi Zhao
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Ren-Chuan Hu
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Yun-Feng Huang
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China.
| |
Collapse
|
14
|
Zhang Y, Hu Q, Zhai X, Tu Z, Wang J, Wang M, Li H. Genome-wide investigation of SQUAMOSA promoter binding protein-like genes in Liriodendron and functional characterization of LcSPL2. AOB PLANTS 2024; 16:plae008. [PMID: 38435968 PMCID: PMC10908533 DOI: 10.1093/aobpla/plae008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
The plant-specific SQUAMOSA promoter-binding protein-like (SPL) transcription factors play a pivotal role in various developmental processes, including leaf morphogenesis and vegetative to reproductive phase transition. Liriodendron chinense and Liriodendron tulipifera are widely used in landscaping due to their tulip-like flowers and peculiar leaves. However, the SPL gene family in Liriodendron has not been identified and systematically characterized. We systematically identified and characterized the SPL family members in Liriodendron, including phylogeny, gene structure and syntenic analyses. Subsequently, we quantified the expression patterns of LcSPLs across various tissue sites through transcription-quantitative polymerase chain reaction (RT-qPCR) assays and identified the target gene, LcSPL2. Finally, we characterized the functions of LcSPL2 via ectopic transformation. Altogether, 17 LcSPL and 18 LtSPL genes were genome-widely identified in L. chinense and L. tulipifera, respectively. All the 35 SPLs were grouped into 9 clades. Both species had three SPL gene pairs arising from segmental duplication events, and the LcSPLs displayed high collinearity with the L. tulipifera genome. RT-qPCR assays showed that SPL genes were differentially expressed in different tissues, especially. Because LcSPL2 is highly expressed in pistils and leaves, it was selected to describe the SPL gene family of L. chinense by ectopic expression. We showed that overexpression of LcSPL2 in Arabidopsis thaliana resulted in earlier flowering and fewer rosette leaves. Moreover, we observed that overexpression of LcSPL2 in A. thaliana up-regulated the expression levels of four genes related to flower development. This study identified SPL genes in Liriodendron and characterized the function of LcSPL2 in advancing flower development.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Qinghua Hu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyu Zhai
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonghua Tu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jing Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Minxin Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Huogen Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
15
|
Xue G, Wu W, Fan Y, Ma C, Xiong R, Bai Q, Yao X, Weng W, Cheng J, Ruan J. Genome-wide identification, evolution, and role of SPL gene family in beet (Beta vulgaris L.) under cold stress. BMC Genomics 2024; 25:101. [PMID: 38262939 PMCID: PMC10804631 DOI: 10.1186/s12864-024-09995-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND SPL transcription factors play vital roles in regulating plant growth, development, and abiotic stress responses. Sugar beet (Beta vulgaris L.), one of the world's main sugar-producing crops, is a major source of edible and industrial sugars for humans. Although the SPL gene family has been extensively identified in other species, no reports on the SPL gene family in sugar beet are available. RESULTS Eight BvSPL genes were identified at the whole-genome level and were renamed based on their positions on the chromosome. The gene structure, SBP domain sequences, and phylogenetic relationship with Arabidopsis were analyzed for the sugar beet SPL gene family. The eight BvSPL genes were divided into six groups (II, IV, V, VI, VII, and VIII). Of the BvSPL genes, no tandem duplication events were found, but one pair of segmental duplications was present. Multiple cis-regulatory elements related to growth and development were identified in the 2000-bp region upstream of the BvSPL gene start codon (ATG). Using quantitative real-time polymerase chain reaction (qRT-PCR), the expression profiles of the eight BvSPL genes were examined under eight types of abiotic stress and during the maturation stage. BvSPL transcription factors played a vital role in abiotic stress, with BvSPL3 and BvSPL6 being particularly noteworthy. CONCLUSION Eight sugar beet SPL genes were identified at the whole-genome level. Phylogenetic trees, gene structures, gene duplication events, and expression profiles were investigated. The qRT-PCR analysis indicated that BvSPLs play a substantial role in the growth and development of sugar beet, potentially participating in the regulation of root expansion and sugar accumulation.
Collapse
Affiliation(s)
- Guoxing Xue
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Weijiao Wu
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Yue Fan
- College of Food Science and Engineering, Xinjiang Institute of Technology, 843199, Aksu, People's Republic of China
| | - Chao Ma
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Ruiqi Xiong
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Qing Bai
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Xin Yao
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Wenfeng Weng
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China.
| |
Collapse
|
16
|
Alisha A, Szweykowska-Kulinska Z, Sierocka I. Comparative analysis of SPL transcription factors from streptophyte algae and embryophytes reveals evolutionary trajectories of SPL family in streptophytes. Sci Rep 2024; 14:1611. [PMID: 38238367 PMCID: PMC10796333 DOI: 10.1038/s41598-024-51626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) genes encode plant-specific transcription factors which are important regulators of diverse plant developmental processes. We took advantage of available genome sequences of streptophyte algae representatives to investigate the relationships of SPL genes between freshwater green algae and land plants. Our analysis showed that streptophyte algae, hornwort and liverwort genomes encode from one to four SPL genes which is the smallest set, in comparison to other land plants studied to date. Based on the phylogenetic analysis, four major SPL phylogenetic groups were distinguished with Group 3 and 4 being sister to Group 1 and 2. Comparative motif analysis revealed conserved protein motifs within each phylogenetic group and unique bryophyte-specific motifs within Group 1 which suggests lineage-specific protein speciation processes. Moreover, the gene structure analysis also indicated the specificity of each by identifying differences in exon-intron structures between the phylogenetic groups, suggesting their evolutionary divergence. Since current understanding of SPL genes mostly arises from seed plants, the presented comparative and phylogenetic analyzes from freshwater green algae and land plants provide new insights on the evolutionary trajectories of the SPL gene family in different classes of streptophytes.
Collapse
Affiliation(s)
- Alisha Alisha
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Izabela Sierocka
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
17
|
Puccio G, Ingraffia R, Giambalvo D, Frenda AS, Harkess A, Sunseri F, Mercati F. Exploring the genetic landscape of nitrogen uptake in durum wheat: genome-wide characterization and expression profiling of NPF and NRT2 gene families. FRONTIERS IN PLANT SCIENCE 2023; 14:1302337. [PMID: 38023895 PMCID: PMC10665861 DOI: 10.3389/fpls.2023.1302337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Nitrate uptake by plants primarily relies on two gene families: Nitrate transporter 1/peptide transporter (NPF) and Nitrate transporter 2 (NRT2). Here, we extensively characterized the NPF and NRT2 families in the durum wheat genome, revealing 211 NPF and 20 NRT2 genes. The two families share many Cis Regulatory Elements (CREs) and Transcription Factor binding sites, highlighting a partially overlapping regulatory system and suggesting a coordinated response for nitrate transport and utilization. Analyzing RNA-seq data from 9 tissues and 20 cultivars, we explored expression profiles and co-expression relationships of both gene families. We observed a strong correlation between nucleotide variation and gene expression within the NRT2 gene family, implicating a shared selection mechanism operating on both coding and regulatory regions. Furthermore, NPF genes showed highly tissue-specific expression profiles, while NRT2s were mainly divided in two co-expression modules, one expressed in roots (NAR2/NRT3 dependent) and the other induced in anthers and/ovaries during maturation. Our evidences confirmed that the majority of these genes were retained after small-scale duplication events, suggesting a neo- or sub-functionalization of many NPFs and NRT2s. Altogether, these findings indicate that the expansion of these gene families in durum wheat could provide valuable genetic variability useful to identify NUE-related and candidate genes for future breeding programs in the context of low-impact and sustainable agriculture.
Collapse
Affiliation(s)
- Guglielmo Puccio
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
| | - Rosolino Ingraffia
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Dario Giambalvo
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Alfonso S. Frenda
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Francesco Sunseri
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
- Department Agraria , University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Francesco Mercati
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
| |
Collapse
|
18
|
Chen H, Zhang X, Xu S, Song C, Mao H. TaSPL17s act redundantly with TaSPL14s to control spike development and their elite haplotypes may improve wheat grain yield. FRONTIERS IN PLANT SCIENCE 2023; 14:1229827. [PMID: 37745997 PMCID: PMC10514913 DOI: 10.3389/fpls.2023.1229827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023]
Abstract
Wheat is a staple crop for the world's population, and there is constant pressure to improve grain yield, which is largely determined by plant architecture. SQUAMOSA promotor-binding protein-like (SPL) genes have been widely studied in rice, including their effects on plant architecture, grain development, and grain yield. However, the function of SPL homologous genes in wheat has not been well investigated. In this study, TaSPL14s and TaSPL17s, wheat's closest orthologous of OsSPL14, were functionally investigated using gene-editing assays, revealing that these genes redundantly influence plant height, tiller number, spike length, and thousand-grain weight (TGW). Bract outgrowth was frequently observed in the hexa-mutant, occasionally in the quintuple mutant but never in the wild type. Transcriptome analysis revealed that the expression of many spike development-associated genes was altered in taspl14taspl17 hexa-mutants compared to that in the wild type. In addition, we analyzed the sequence polymorphisms of TaSPL14s and TaSPL17s among wheat germplasm and found superior haplotypes of TaSPL17-A and TaSPL17-D with significantly higher TGW, which had been positively selected during wheat breeding. Accordingly, dCAPS and KASP markers were developed for TaSPL17-A and TaSPL17-D, respectively, providing a novel insight for molecular marker-assisted breeding in wheat. Overall, our results highlight the role of TaSPLs in regulating plant architecture and their potential application for wheat grain yield improvement through molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
Zhou L, Yarra R. Genome-Wide Analysis of SPL/miR156 Module and Its Expression Analysis in Vegetative and Reproductive Organs of Oil Palm ( Elaeis guineensis). Int J Mol Sci 2023; 24:13658. [PMID: 37686464 PMCID: PMC10488160 DOI: 10.3390/ijms241713658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/25/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
The SPL (SQUAMOSA-promoter binding protein-like) gene family is one of the largest plant transcription factors and is known to be involved in the regulation of plant growth, development, and stress responses. The genome-wide analysis of SPL gene members in a diverse range of crops has been elucidated. However, none of the genome-wide studies on the SPL gene family have been carried out for oil palm, an important oil-yielding plant. In this research, a total of 24 EgSPL genes were identified via a genome-wide approach. Phylogenetic analysis revealed that most of the EgSPLs are closely related to the Arabidopsis and rice SPL gene members. EgSPL genes were mapped onto the only nine chromosomes of the oil palm genome. Motif analysis revealed conservation of the SBP domain and the occurrence of 1-10 motifs in EgSPL gene members. Gene duplication analysis demonstrated the tandem duplication of SPL members in the oil palm genome. Heatmap analysis indicated the significant expression of SPL genes in shoot and flower organs of oil palm plants. Among the identified EgSPL genes, a total 14 EgSPLs were shown to be targets of miR156. Real-time PCR analysis of 14 SPL genes showed that most of the EgSPL genes were more highly expressed in female and male inflorescences of oil palm plants than in vegetative tissues. Altogether, the present study revealed the significant role of EgSPL genes in inflorescence development.
Collapse
Affiliation(s)
- Lixia Zhou
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Rajesh Yarra
- Department of Plant and Agroecosytem Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA;
| |
Collapse
|
20
|
Liu Y, Chen J, Yin C, Wang Z, Wu H, Shen K, Zhang Z, Kang L, Xu S, Bi A, Zhao X, Xu D, He Z, Zhang X, Hao C, Wu J, Gong Y, Yu X, Sun Z, Ye B, Liu D, Zhang L, Shen L, Hao Y, Ma Y, Lu F, Guo Z. A high-resolution genotype-phenotype map identifies the TaSPL17 controlling grain number and size in wheat. Genome Biol 2023; 24:196. [PMID: 37641093 PMCID: PMC10463835 DOI: 10.1186/s13059-023-03044-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Large-scale genotype-phenotype association studies of crop germplasm are important for identifying alleles associated with favorable traits. The limited number of single-nucleotide polymorphisms (SNPs) in most wheat genome-wide association studies (GWASs) restricts their power to detect marker-trait associations. Additionally, only a few genes regulating grain number per spikelet have been reported due to sensitivity of this trait to variable environments. RESULTS We perform a large-scale GWAS using approximately 40 million filtered SNPs for 27 spike morphology traits. We detect 132,086 significant marker-trait associations and the associated SNP markers are located within 590 associated peaks. We detect additional and stronger peaks by dividing spike morphology into sub-traits relative to GWAS results of spike morphology traits. We propose that the genetic dissection of spike morphology is a powerful strategy to detect signals for grain yield traits in wheat. The GWAS results reveal that TaSPL17 positively controls grain size and number by regulating spikelet and floret meristem development, which in turn leads to enhanced grain yield per plant. The haplotypes at TaSPL17 indicate geographical differentiation, domestication effects, and breeding selection. CONCLUSION Our study provides valuable resources for genetic improvement of spike morphology and a fast-forward genetic solution for candidate gene detection and cloning in wheat.
Collapse
Affiliation(s)
- Yangyang Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Changbin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Ziying Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kuocheng Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiliang Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Lipeng Kang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Song Xu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Aoyue Bi
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Xuebo Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Daxing Xu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, Beijing, 100081, China
| | - Xueyong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Chenyang Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yan Gong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xuchang Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiwen Sun
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Botao Ye
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Danni Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Liping Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Youzhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Fei Lu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Zifeng Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
21
|
Zhang D, Liu J, Zhang Y, Wang H, Wei S, Zhang X, Zhang D, Ma H, Ding Q, Ma L. Morphophysiological, proteomic and metabolomic analyses reveal cadmium tolerance mechanism in common wheat (Triticum aestivum L.). JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130499. [PMID: 36455318 DOI: 10.1016/j.jhazmat.2022.130499] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Soil cadmium (Cd) contamination can reduce wheat yield and quality, thus threatening food security and human health. Herein, morphological physiology, Cd accumulation and distribution, proteomic and metabolomic analyses were performed (using wheat cultivars 'Luomai23' (LM, Cd-sensitive) and 'Zhongyu10' (ZY, Cd-tolerant) at the seedling stage with sand culture) to reveal Cd tolerance mechanism. Cd inhibited wheat growth, caused oxidative stress, hindered carbon and nitrogen metabolism, and altered the quantity and composition of root exudates. The root Cd concentration was lower in ZY than in LM by about 35% under 15 μM Cd treatments. ZY reduced Cd uptake through root exudation of amino acids and alkaloids. ZY also reduced Cd accumulation through specific up-regulation (twice) of major facilitator superfamily (MFS) proteins. Furthermore, ZY enhanced Cd cell wall fixation and vacuolar compartmentalization by increasing pectin contents, hemicellulose1 contents, and adenosine triphosphate binding cassette subfamily C member 1 (ABCC1) transporter expression, thus reducing the Cd organelle fraction of ZY by about 12% and 44% in root and shoot, respectively, compared with LM. Additionally, ZY had enhanced resilience to Cd due to increased antioxidant capacity, plasma membrane stability, nitrogen metabolism, and endoplasmic reticulum homeostasis, indicating that the increased Cd tolerance could be because of multi-level coordination. These findings provide a reference for exploring the molecular mechanism of Cd tolerance and accumulation, providing a basis for safe utilization of Cd-contaminated soil by breeding Cd-tolerant and low Cd-accumulating wheat varieties.
Collapse
Affiliation(s)
- Dazhong Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Jiajia Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yuanbo Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Hairong Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Shuwei Wei
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Xu Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Ding Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Haosen Ma
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Qin Ding
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Lingjian Ma
- College of Agronomy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
22
|
Liu M, Wang C, Xu Q, Pan Y, Jiang B, Zhang L, Zhang Y, Tian Z, Lu J, Ma C, Chang C, Zhang H. Genome-wide identification of the CPK gene family in wheat (Triticum aestivum L.) and characterization of TaCPK40 associated with seed dormancy and germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:608-623. [PMID: 36780723 DOI: 10.1016/j.plaphy.2023.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Calcium-dependent protein kinases (CPKs), important sensors of calcium signals, play an essential role in plant growth, development, and stress responses. Although the CPK gene family has been characterized in many plants, the functions of the CPK gene family in wheat, including their relationship to seed dormancy and germination, remain unclear. In this study, we identified 84 TaCPK genes in wheat (TaCPK1-84). According to their phylogenetic relationship, they were divided into four groups (I-IV). TaCPK genes in the same group were found to have similar gene structures and motifs. Chromosomal localization indicated that TaCPK genes were unevenly distributed across 21 wheat chromosomes. TaCPK gene expansion occurred through segmental duplication events and underwent strong negative selection. A large number of cis-regulatory elements related to light response, phytohormone response, and abiotic stress response were identified in the upstream promoter sequences of TaCPK genes. TaCPK gene expression was found to be tissue- and growth-stage-diverse. Analysis of the expression patterns of several wheat varieties with contrasting seed dormancy and germination phenotypes resulted in the identification of 11 candidate genes (TaCPK38/-40/-43/-47/-50/-60/-67/-70/-75/-78/-80) which are likely associated with seed dormancy and germination. The ectopic expression of TaCPK40 in Arabidopsis promoted seed germination and reduced abscisic acid (ABA) sensitivity during germination, indicating that TaCPK40 negatively regulates seed dormancy and positively regulates seed germination. These findings advance our understanding of the multifaceted functions of CPK genes in seed dormancy and germination, and provide potential candidate genes for controlling wheat seed dormancy and germination.
Collapse
Affiliation(s)
- Mingli Liu
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Chenchen Wang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Qing Xu
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yonghao Pan
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Bingli Jiang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Litian Zhang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yue Zhang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Zhuangbo Tian
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Jie Lu
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Chuanxi Ma
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Cheng Chang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| | - Haiping Zhang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
23
|
Comparison of Tomato Transcriptomic Profiles Reveals Overlapping Patterns in Abiotic and Biotic Stress Responses. Int J Mol Sci 2023; 24:ijms24044061. [PMID: 36835470 PMCID: PMC9961515 DOI: 10.3390/ijms24044061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Until a few years ago, many studies focused on the transcriptomic response to single stresses. However, tomato cultivations are often constrained by a wide range of biotic and abiotic stress that can occur singularly or in combination, and several genes can be involved in the defensive mechanism response. Therefore, we analyzed and compared the transcriptomic responses of resistant and susceptible genotypes to seven biotic stresses (Cladosporium fulvum, Phytophthora infestans, Pseudomonas syringae, Ralstonia solanacearum, Sclerotinia sclerotiorum, Tomato spotted wilt virus (TSWV) and Tuta absoluta) and five abiotic stresses (drought, salinity, low temperatures, and oxidative stress) to identify genes involved in response to multiple stressors. With this approach, we found genes encoding for TFs, phytohormones, or participating in signaling and cell wall metabolic processes, participating in defense against various biotic and abiotic stress. Moreover, a total of 1474 DEGs were commonly found between biotic and abiotic stress. Among these, 67 DEGs were involved in response to at least four different stresses. In particular, we found RLKs, MAPKs, Fasciclin-like arabinogalactans (FLAs), glycosyltransferases, genes involved in the auxin, ET, and JA pathways, MYBs, bZIPs, WRKYs and ERFs genes. Detected genes responsive to multiple stress might be further investigated with biotechnological approaches to effectively improve plant tolerance in the field.
Collapse
|
24
|
Lv T, Liu Q, Xiao H, Fan T, Zhou Y, Wang J, Tian CE. Genome-wide identification and analysis of the IQM gene family in soybean. FRONTIERS IN PLANT SCIENCE 2023; 13:1093589. [PMID: 36684725 PMCID: PMC9853202 DOI: 10.3389/fpls.2022.1093589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/13/2022] [Indexed: 05/27/2023]
Abstract
IQM, a plant-specific calmodulin-binding protein, plays multiple roles in plant growth and development. Although a comprehensive analysis has been carried out on the IQM family genes in Arabidopsis and rice, the number and functions of IQM genes in other species have not been explored. In this study, we identified 15 members of the soybean (Glycine max) IQM gene family using BLASTP tools. These members were distributed on 12 soybean chromosomes and constitute six pairs caused by fragment duplication events. According to phylogeny, the 15 genes were divided into three subfamilies (I, II, and III), and members of the same subfamily had similar gene and protein structures. Yeast two-hybrid experiments revealed that the IQ motif is critical for the binding of GmIQM proteins to GmCaM, and its function is conserved in soybean, Arabidopsis, and rice. Based on real-time PCR, the soybean IQM genes were strongly induced by PEG and NaCl, suggesting their important biological functions in abiotic stress responses. Overall, this genome-wide analysis of the soybean IQM gene family lays a solid theoretical foundation for further research on the functions of GmIQM genes and could serve as a reference for the improvement and breeding of soybean stress resistance traits.
Collapse
Affiliation(s)
- Tianxiao Lv
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Qiongrui Liu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Hong Xiao
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Tian Fan
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Yuping Zhou
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Jinxing Wang
- Suihua Branch Institute, Heilongjiang Academy of Agricultural Sciences, Suihua, Heilongjiang, China
| | - Chang-en Tian
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| |
Collapse
|
25
|
Wang Y, Ruan Q, Zhu X, Wang B, Wei B, Wei X. Identification of Alfalfa SPL gene family and expression analysis under biotic and abiotic stresses. Sci Rep 2023; 13:84. [PMID: 36596810 PMCID: PMC9810616 DOI: 10.1038/s41598-022-26911-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
The SQUAMOSA promoter binding-like protein (SPL) is a specific transcription factor that affects plant growth and development. The SPL gene family has been explored in various plants, but information about these genes in alfalfa is limited. This study, based on the whole genome data of alfalfa SPL, the fundamental physicochemical properties, phylogenetic evolution, gene structure, cis-acting elements, and gene expression of members of the MsSPL gene family were analyzed by bioinformatics methods. We identified 82 SPL sequences in the alfalfa, which were annotated into 23 genes, including 7 (30.43%) genes with four alleles, 10 (43.47%) with three, 3 (13.04%) with two, 3 (13.04%) with one allele. These SPL genes were divided into six groups, that are constructed from A. thaliana, M. truncatula and alfalfa. Chromosomal localization of the identified SPL genes showed arbitary distribution. The subcellular localization predictions showed that all MsSPL proteins were located in the nucleus. A total of 71 pairs of duplicated genes were identified, and segmental duplication mainly contributed to the expansion of the MsSPL gene family. Analysis of the Ka/Ks ratios indicated that paralogs of the MsSPL gene family principally underwent purifying selection. Protein-protein interaction analysis of MsSPL proteins were performed to predict their roles in potential regulatory networks. Twelve cis-acting elements including phytohormone and stress elements were detected in the regions of MsSPL genes. We further analyzed that the MsSPLs had apparent responses to abiotic stresses such as drought and salt and the biotic stress of methyl jasmonate. These results provide comprehensive information on the MsSPL gene family in alfalfa and lay a solid foundation for elucidating the biological functions of MsSPLs. This study also provides valuable on the regulation mechanism and function of MsSPLs in response to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Yizhen Wang
- grid.411734.40000 0004 1798 5176College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China ,grid.411734.40000 0004 1798 5176Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 China
| | - Qian Ruan
- grid.411734.40000 0004 1798 5176College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China ,grid.411734.40000 0004 1798 5176Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 China
| | - Xiaolin Zhu
- grid.411734.40000 0004 1798 5176College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China ,grid.411734.40000 0004 1798 5176Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 China ,grid.411734.40000 0004 1798 5176College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 China
| | - Baoqiang Wang
- grid.411734.40000 0004 1798 5176College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China ,grid.411734.40000 0004 1798 5176Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 China
| | - Bochuang Wei
- grid.411734.40000 0004 1798 5176College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China ,grid.411734.40000 0004 1798 5176Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 China
| | - Xiaohong Wei
- grid.411734.40000 0004 1798 5176College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China ,grid.411734.40000 0004 1798 5176Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 China ,grid.411734.40000 0004 1798 5176College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|
26
|
Cao L, Li T, Geng S, Zhang Y, Pan Y, Zhang X, Wang F, Hao C. TaSPL14-7A is a conserved regulator controlling plant architecture and yield traits in common wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1178624. [PMID: 37089636 PMCID: PMC10113487 DOI: 10.3389/fpls.2023.1178624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Plant architecture is a crucial influencing factor of wheat yield and adaptation. In this study, we cloned and characterized TaSPL14, a homologous gene of the rice ideal plant architecture gene OsSPL14 in wheat. TaSPL14 homoeologs (TaSPL14-7A, TaSPL14-7B and TaSPL14-7D) exhibited similar expression patterns, and they were all preferentially expressed in stems at the elongation stage and in young spikes. Moreover, the expression level of TaSPL14-7A was higher than that of TaSPL14-7B and TaSPL14-7D. Overexpression of TaSPL14-7A in wheat resulted in significant changes in plant architecture and yield traits, including decreased tiller number and increased kernel size and weight. Three TaSPL14-7A haplotypes were identified in Chinese wheat core collection, and haplotype-based association analysis showed that TaSPL14-7A-Hap1/2 were significantly correlated with fewer tillers, larger kernels and higher kernel weights in modern cultivars. The haplotype effect resulted from a difference in TaSPL14-7A expression levels among genotypes, with TaSPL14-7A-Hap1/2 leading to higher expression levels than TaSPL14-7A-Hap3. As favorable haplotypes, TaSPL14-7A-Hap1/2 underwent positive selection during global wheat breeding over the last century. Together, the findings of our study provide insight into the function and genetic effects of TaSPL14 and provide a useful molecular marker for wheat breeding.
Collapse
Affiliation(s)
- Lina Cao
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Tian Li, ; Fang Wang, ; Chenyang Hao,
| | - Shuaifeng Geng
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yinhui Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxue Pan
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fang Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Tian Li, ; Fang Wang, ; Chenyang Hao,
| | - Chenyang Hao
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Tian Li, ; Fang Wang, ; Chenyang Hao,
| |
Collapse
|
27
|
Zhou J, Song T, Zhou H, Zhang M, Li N, Xiang J, Zhang X. Genome-wide identification, characterization, evolution, and expression pattern analyses of the typical thioredoxin gene family in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1020584. [PMID: 36618641 PMCID: PMC9813791 DOI: 10.3389/fpls.2022.1020584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Typical thioredoxin (TRX) plays an important role in maintaining redox balance in plants. However, the typical TRX genes in wheat still need to be comprehensively and deeply studied. In this research, a total of 48 typical TaTRX genes belonging to eight subtypes were identified via a genome-wide search in wheat, and the gene structures, protein conserved motifs, and protein 3D structures of the same subtype were very similar. Evolutionary analysis showed that there are two pairs of tandem duplication genes and 14 clusters of segmental duplication genes in typical TaTRX family members; TaTRX15, TaTRX36, and TaTRX42 had positive selection compared with the orthologs of their ancestral species; rice and maize have 11 and 13 orthologous typical TRXs with wheat, respectively. Gene Ontology (GO) analysis indicated that typical TaTRXs were involved in maintaining redox homeostasis in wheat cells. Estimation of ROS content, determination of antioxidant enzyme activity, and gene expression analysis in a line overexpressing one typical TaTRX confirmed that TRX plays an important role in maintaining redox balance in wheat. A predictive analysis of cis-acting elements in the promoter region showed that typical TaTRXs were extensively involved in various hormone metabolism and response processes to stress. The results predicted using public databases or verified using RT-qPCR show that typical TaTRXs were able to respond to biotic and abiotic stresses, and their expression in wheat was spatiotemporal. A total of 16 wheat proteins belonging to four different families interacting with typical TaTRXs were predicted. The above comprehensive analysis of typical TaTRX genes can enrich our understanding of this gene family in wheat and provide valuable insights for further gene function research.
Collapse
Affiliation(s)
- Jianfei Zhou
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Tianqi Song
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongwei Zhou
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingfei Zhang
- Academy of Agricultural Sciences/Key Laboratory of Agro-Ecological Protection & Exploitation and Utilization of Animal and Plant Resources, ChiFeng University, Chifeng, Inner Mongolia, China
| | - Nan Li
- Academy of Agricultural Sciences/Key Laboratory of Agro-Ecological Protection & Exploitation and Utilization of Animal and Plant Resources, ChiFeng University, Chifeng, Inner Mongolia, China
| | - Jishan Xiang
- Academy of Agricultural Sciences/Key Laboratory of Agro-Ecological Protection & Exploitation and Utilization of Animal and Plant Resources, ChiFeng University, Chifeng, Inner Mongolia, China
| | - Xiaoke Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
28
|
Ren Y, Ma R, Fan Y, Zhao B, Cheng P, Fan Y, Wang B. Genome-wide identification and expression analysis of the SPL transcription factor family and its response to abiotic stress in Quinoa (Chenopodium quinoa). BMC Genomics 2022; 23:773. [PMID: 36434504 PMCID: PMC9701020 DOI: 10.1186/s12864-022-08977-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/29/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Squamous promoter binding protein-like (SPL) proteins are a class of transcription factors that play essential roles in plant growth and development, signal transduction, and responses to biotic and abiotic stresses. The rapid development of whole genome sequencing has enabled the identification and characterization of SPL gene families in many plant species, but to date this has not been performed in quinoa (Chenopodium quinoa). RESULTS This study identified 23 SPL genes in quinoa, which were unevenly distributed on 18 quinoa chromosomes. Quinoa SPL genes were then classified into eight subfamilies based on homology to Arabidopsis thaliana SPL genes. We selected three dicotyledonous and monocotyledonous representative species, each associated with C. quinoa, for comparative sympatric mapping to better understand the evolution of the developmental mechanisms of the CqSPL family. Furthermore, we also used 15 representative genes from eight subfamilies to characterize CqSPLs gene expression in different tissues and at different fruit developmental stages under six different abiotic stress conditions. CONCLUSIONS This study, the first to identify and characterize SPL genes in quinoa, reported that CqSPL genes, especially CqSPL1, play a critical role in quinoa development and in its response to various abiotic stresses.
Collapse
Affiliation(s)
- Yanyan Ren
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Rui Ma
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Yue Fan
- College of Food Science and Engineering, Xinjiang Institute of Technology, 843100 Aksu, P.R. China
| | - Bingjie Zhao
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Peng Cheng
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Yu Fan
- grid.411292.d0000 0004 1798 8975School of Food and Biological Engineering, Chengdu University, Longquanyi District, 610106 Chengdu, P.R. China
| | - Baotong Wang
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| |
Collapse
|
29
|
Genome-Wide Identification and Analysis of FKBP Gene Family in Wheat ( Triticum asetivum). Int J Mol Sci 2022; 23:ijms232314501. [PMID: 36498828 PMCID: PMC9739119 DOI: 10.3390/ijms232314501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
FK506-binding protein (FKBP) genes have been found to play vital roles in plant development and abiotic stress responses. However, limited information is available about this gene family in wheat (Triticum aestivum L.). In this study, a total of 64 FKBP genes were identified in wheat via a genome-wide analysis involving a homologous search of the latest wheat genome data, which was unevenly distributed in 21 chromosomes, encoded 152 to 649 amino acids with molecular weights ranging from 16 kDa to 72 kDa, and was localized in the chloroplast, cytoplasm, nucleus, mitochondria, peroxisome and endoplasmic reticulum. Based on sequence alignment and phylogenetic analysis, 64 TaFKBPs were divided into four different groups or subfamilies, providing evidence of an evolutionary relationship with Aegilops tauschii, Brachypodium distachyon, Triticum dicoccoides, Arabidopsis thaliana and Oryza sativa. Hormone-related, abiotic stress-related and development-related cis-elements were preferentially presented in promoters of TaFKBPs. The expression levels of TaFKBP genes were investigated using transcriptome data from the WheatExp database, which exhibited tissue-specific expression patterns. Moreover, TaFKBPs responded to drought and heat stress, and nine of them were randomly selected for validation by qRT-PCR. Yeast cells expressing TaFKBP19-2B-2 or TaFKBP18-6B showed increased influence on drought stress, indicating their negative roles in drought tolerance. Collectively, our results provide valuable information about the FKBP gene family in wheat and contribute to further characterization of FKBPs during plant development and abiotic stress responses, especially in drought stress.
Collapse
|
30
|
Lu Y, Ha M, Li X, Wang J, Mo R, Zhang A. Distribution, expression of hexaploid wheat Fes1s and functional characterization of two TaFes1As in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1037989. [PMID: 36325559 PMCID: PMC9621618 DOI: 10.3389/fpls.2022.1037989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Hexaploid wheat is a major food crop and is sensitive to heat stress. It is necessary to discover genes related to thermotolerance in wheat. Fes1s is a class of nucleotide exchange factor of heat shock protein 70s, proven to be participated in heat response in human, yeast, and Arabidopsis. However, little is known about Fes1s in hexaploid wheat. In this study, we identified nine Fes1s in hexaploid wheat (TaFes1s) and found that they present as three triads. A phylogenetic relationship analysis revealed that these Fes1s grouped into Fes1A, Fes1B and Fes1C subclades, and Fes1As and Fes1Bs were divergent in monocots, but possibly not in dicots. The sequences, gene structures and protein motifs of TaFes1s homoeologues within a triad were highly conserved. Through cis-elements analysis including heat shock elements, and miRNA targets prediction, we found that regulation of three TaFes1s homoeologues may be different, while the expression patterns of three homoeologues were similar. The expression levels of TaFes1As were higher than those of TaFes1Bs and TaFes1Cs, and based on these expressions, TaFes1As were chosen for functional characterization. Intriguingly, neither TaFes1A-5A nor TaFes1A-5D could not rescue the thermotolerance defect of Arabidopsis fes1a mutants at seedling stage, but in the transgenic plants seed germination was accelerated under normal and heat stress condition. The functional characterization indicated that roles of Fes1As would be different in Arabidopsis and hexaploid wheat, and function retention of TaFes1As may occur during wheat evolution. In conclusion, our study comprehensively characterized the distribution and expression of Fes1s in hexaploid wheat and found that two TaFes1As could accelerate seed germination under normal and heat stress condition.
Collapse
Affiliation(s)
- Yunze Lu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Mingran Ha
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Xinming Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Junzhe Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Ruirui Mo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Aihua Zhang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
31
|
Li Y, Qin P, Sun A, Xiao W, Chen F, He Y, Yu K, Li Y, Zhang M, Guo X. Genome-wide identification, new classification, expression analysis and screening of drought & heat resistance related candidates in the RING zinc finger gene family of bread wheat (Triticum aestivum L.). BMC Genomics 2022; 23:696. [PMID: 36207690 PMCID: PMC9547421 DOI: 10.1186/s12864-022-08905-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/23/2022] [Indexed: 11/12/2022] Open
Abstract
Background RING (Really Interesting New Gene) zinc finger (RING-zf) proteins belong to an important subclass of zinc fingers superfamily, which play versatile roles during various developmental stages and in abiotic stress responses. Based on the conserved cysteine and histidine residues, the RING-zf domains are classified into RING-HC (C3HC4), RING-H2 (C3H2C3), RING-v, RING-D, RING-S/T, RING-G, and RING-C2. However, little is known about the function of the RING-zfs of wheat. Results In this study, 129 (93.5%) of 138 members were found in nucleus, indicating TaRING-zf were primarily engaged in the degradation of transcription factors and other nuclear-localized proteins. 138 TaRING-zf domains can be divided into four canonical or modified types (RING-H2, RING-HC, RING-D, and RING-M). The RING-M was newly identified in T. aestivum, and might represent the intermediate other states between RING-zf domain and other modified domains. The consensus sequence of the RING-M domain can be described as M-X2-R-X14-Cys-X1-H-X2-Cys-X2-Cys-X10-Cys-X2-Cys. Further interspecies collinearity analyses showed that TaRING-zfs were more closely related to the genes in Poaceae. According to the public transcriptome data, most of the TaRING-zfs were expressed at different 15 stages of plant growth, development, and some of them exhibited specific responses to drought/heat stress. Moreover, 4 RING-HC (TraesCS2A02G526800.1, TraesCS4A02G290600.1, TraesCS4B02G023600.1 and TraesCS4D02G021200.1) and 2 RING-H2 (TraesCS3A02G288900.1 and TraesCS4A02G174600.1) were significantly expressed at different development stages and under drought stress. These findings provide valuable reference data for further study of their physiological functions in wheat varieties. Conclusions Taken together, the characterization and classifications of the TaRING-zf family were extensively studied and some new features about it were revealed. This study could provide some valuable targets for further studies on their functions in growth and development, and abiotic stress responses in wheat. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08905-x.
Collapse
Affiliation(s)
- Yongliang Li
- College of Biology, Hunan University, Changsha, 410082, China
| | - Pai Qin
- College of Biology, Hunan University, Changsha, 410082, China
| | - Aolong Sun
- College of Biology, Hunan University, Changsha, 410082, China
| | - Wenjun Xiao
- College of Biology, Hunan University, Changsha, 410082, China.
| | - Fenglin Chen
- College of Biology, Hunan University, Changsha, 410082, China
| | - Yang He
- College of Biology, Hunan University, Changsha, 410082, China
| | - Keyao Yu
- College of Biology, Hunan University, Changsha, 410082, China
| | - You Li
- College of Biology, Hunan University, Changsha, 410082, China
| | - Meng Zhang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
32
|
Jain P, Singh A, Iquebal MA, Jaiswal S, Kumar S, Kumar D, Rai A. Genome-Wide Analysis and Evolutionary Perspective of the Cytokinin Dehydrogenase Gene Family in Wheat ( Triticum aestivum L.). Front Genet 2022; 13:931659. [PMID: 36061212 PMCID: PMC9437647 DOI: 10.3389/fgene.2022.931659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Cytokinin dehydrogenase (CKX; EC.1.5.99.12) regulates the level of cytokinin (CK) in plants and is involved in CK regulatory activities. In different plants, a small gene family encodes CKX proteins with varied numbers of members. These genes are expanded in the genome mainly due to segmental duplication events. Despite their biological importance, CKX genes in Triticum aestivum have yet to be studied in depth. A total of 11 CKX subfamilies were identified with similar gene structures, motifs, domains, cis-acting elements, and an average signal peptide of 25 amino acid length was found. Introns, ranging from one to four, were present in the coding regions at a similar interval in major CKX genes. Putative cis-elements such as abscisic acid, auxin, salicylic acid, and low-temperature-, drought-, and light-responsive cis-regulatory elements were found in the promoter region of majority CKX genes. Variation in the expression pattern of CKX genes were identified across different tissues in Triticum. Phylogenetic analysis shows that the same subfamily of CKX clustered into a similar clade that reflects their evolutionary relationship. We performed a genome-wide identification of CKX family members in the Triticum aestivum genome to get their chromosomal location, gene structure, cis-element, phylogeny, synteny, and tissue- and stage-specific expression along with gene ontology. This study has also elaborately described the tissue- and stage-specific expression and is the resource for further analysis of CKX in the regulation of biotic and abiotic stress resistance, growth, and development in Triticum and other cereals to endeavor for higher production and proper management.
Collapse
Affiliation(s)
- Priyanka Jain
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ankita Singh
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India,*Correspondence: Sarika Jaiswal,
| | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India,Department of Biotechnology, School of Interdisciplinary and Allied Sciences (SIAS), Central University of Haryana, Haryana, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
33
|
Zhao H, Cao H, Zhang M, Deng S, Li T, Xing S. Genome-Wide Identification and Characterization of SPL Family Genes in Chenopodium quinoa. Genes (Basel) 2022; 13:genes13081455. [PMID: 36011366 PMCID: PMC9408038 DOI: 10.3390/genes13081455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes encode a large family of plant-specific transcription factors that play important roles in plant growth, development, and stress responses. However, there is little information available on SPL genes in Chenopodiaceae. Here, 23 SPL genes were identified and characterized in the highly nutritious crop Chenopodium quinoa. Chromosome localization analysis indicated that the 23 CqSPL genes were unevenly distributed on 12 of 18 chromosomes. Two zinc finger-like structures and a nuclear location signal were present in the SBP domains of all CqSPLs, with the exception of CqSPL21/22. Phylogenetic analysis revealed that these genes were classified into eight groups (group I–VIII). The exon–intron structure and motif composition of the genes in each group were similar. Of the 23 CqSPLs, 13 were potential targets of miR156/7. In addition, 5 putative miR156-encoding loci and 13 putative miR157-encoding loci were predicted in the quinoa genome, and they were unevenly distributed on chromosome 1–4. The expression of several Cqu-MIR156/7 loci was confirmed by reverse transcription polymerase chain reaction in seedlings. Many putative cis-elements associated with light, stress, and phytohormone responses were identified in the promoter regions of CqSPLs, suggesting that CqSPL genes are likely involved in the regulation of key developmental processes and stress responses. Expression analysis revealed highly diverse expression patterns of CqSPLs among tissues. Many CqSPLs were highly expressed in leaves, flowers, and seeds, and their expression levels were low in the roots, suggesting that CqSPLs play distinct roles in the development and growth of quinoa. The expression of 13 of 23 CqSPL genes responded to salt treatment (11 up-regulated and 2 down-regulated). A total of 22 of 23 CqSPL genes responded to drought stress (21 up-regulated and 1 down-regulated). Moreover, the expression of 14 CqSPL genes was significantly altered following cadmium treatment (3 up-regulated and 11 down-regulated). CqSPL genes are thus involved in quinoa responses to salt/drought and cadmium stresses. These findings provide new insights that will aid future studies of the biological functions of CqSPLs in C. quinoa.
Collapse
Affiliation(s)
- Hongmei Zhao
- College of Biological Sciences and Technology, Jinzhong University, Jinzhong 030600, Shanxi, China
| | - Huaqi Cao
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Mian Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Sufang Deng
- College of Biological Sciences and Technology, Jinzhong University, Jinzhong 030600, Shanxi, China
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Tingting Li
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Shuping Xing
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China
- Correspondence: ; Tel.: +86-186-0346-2517
| |
Collapse
|
34
|
Lai D, Fan Y, Xue G, He A, Yang H, He C, Li Y, Ruan J, Yan J, Cheng J. Genome-wide identification and characterization of the SPL gene family and its expression in the various developmental stages and stress conditions in foxtail millet (Setaria italica). BMC Genomics 2022; 23:389. [PMID: 35596144 PMCID: PMC9122484 DOI: 10.1186/s12864-022-08633-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Among the major transcription factors, SPL plays a crucial role in plant growth, development, and stress response. Foxtail millet (Setaria italica), as a C4 crop, is rich in nutrients and is beneficial to human health. However, research on the foxtail millet SPL (SQUAMOSA PROMOTER BINDING-LIKE) gene family is limited. RESULTS: In this study, a total of 18 SPL genes were identified for the comprehensive analysis of the whole genome of foxtail millet. These SiSPL genes were divided into seven subfamilies (I, II, III, V, VI, VII, and VIII) according to the classification of the Arabidopsis thaliana SPL gene family. Structural analysis of the SiSPL genes showed that the number of introns in subfamilies I and II were much larger than others, and the promoter regions of SiSPL genes were rich in different cis-acting elements. Among the 18 SiSPL genes, nine genes had putative binding sites with foxtail millet miR156. No tandem duplication events were found between the SiSPL genes, but four pairs of segmental duplications were detected. The SiSPL genes expression were detected in different tissues, which was generally highly expressed in seeds development process, especially SiSPL6 and SiSPL16, which deserve further study. The results of the expression levels of SiSPL genes under eight types of abiotic stresses showed that many stress responsive genes, especially SiSPL9, SiSPL10, and SiSPL16, were highly expressed under multiple stresses, which deserves further attention. CONCLUSIONS In this research, 18 SPL genes were identified in foxtail millet, and their phylogenetic relationships, gene structural features, duplication events, gene expression and potential roles in foxtail millet development were studied. The findings provide a new perspective for the mining of the excellent SiSPL gene and the molecular breeding of foxtail millet.
Collapse
Affiliation(s)
- Dili Lai
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou Province, People's Republic of China
- School of Food and Biological Engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, People's Republic of China
| | - Yue Fan
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, 843100, People's Republic of China
| | - Guoxing Xue
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou Province, People's Republic of China
| | - Ailing He
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou Province, People's Republic of China
| | - Hao Yang
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou Province, People's Republic of China
| | - Chunlin He
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, People's Republic of China
| | - Yijing Li
- Henan Cancer Hospital, Zhengzhou, 450001, People's Republic of China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou Province, People's Republic of China
| | - Jun Yan
- School of Food and Biological Engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, People's Republic of China.
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou Province, People's Republic of China.
| |
Collapse
|
35
|
Genome-Wide Identification, Characterization, and Expression Profiling Analysis of SPL Gene Family during the Inflorescence Development in Trifolium repens. Genes (Basel) 2022; 13:genes13050900. [PMID: 35627286 PMCID: PMC9140761 DOI: 10.3390/genes13050900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/05/2023] Open
Abstract
Trifolium repens is the most widely cultivated perennial legume forage in temperate region around the world. It has rich nutritional value and good palatability, seasonal complementarity with grasses, and can improve the feed intake and digestibility of livestock. However, flowering time and inflorescence development directly affects the quality and yield of T. repens, as well as seed production. The Squa promoter binding protein-like (SPL) gene family is a plant specific transcription factor family, which has been proved to play a critical role in regulating plant formation time and development of flowers. In this study, a total of 37 TrSPL genes were identified from the whole genome of T. repens and were divided into nine clades based on phylogenetic tree. Seventeen TrSPL genes have potential target sites for miR156. The conserved motif of squamosa promoter binding protein (SBP) contains two zinc finger structures and one NLS structure. Gene structure analysis showed that all TrSPL genes contained SBP domain, while ankyrin repeat region was just distributed in part of genes. 37 TrSPL genes were relatively dispersedly distributed on 16 chromosomes, and 5 pairs of segmental repeat genes were found, which indicated that segmental duplication was the main way of gene expansion. Furthermore, the gene expression profiling showed that TrSPL11, TrSPL13, TrSPL22, and TrSPL26 were highly expressed only in the early stage of inflorescence development, while TrSPL1 and TrSPL6 are highly expressed only in the mature inflorescence. Significantly, the expression of TrSPL4 and TrSPL12 increased gradually with the development of inflorescences. The results of this study will provide valuable clues for candidate gene selection and elucidating the molecular mechanism of T. repens flowering regulation.
Collapse
|
36
|
Identification of the Wheat (Triticum aestivum) IQD Gene Family and an Expression Analysis of Candidate Genes Associated with Seed Dormancy and Germination. Int J Mol Sci 2022; 23:ijms23084093. [PMID: 35456910 PMCID: PMC9025732 DOI: 10.3390/ijms23084093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
The IQ67 Domain (IQD) gene family plays important roles in plant developmental processes and stress responses. Although IQDs have been characterized in model plants, little is known about their functions in wheat (Triticum aestivum), especially their roles in the regulation of seed dormancy and germination. Here, we identified 73 members of the IQD gene family from the wheat genome and phylogenetically separated them into six major groups. Gene structure and conserved domain analyses suggested that most members of each group had similar structures. A chromosome positional analysis showed that TaIQDs were unevenly located on 18 wheat chromosomes. A synteny analysis indicated that segmental duplications played significant roles in TaIQD expansion, and that the IQD gene family underwent strong purifying selection during evolution. Furthermore, a large number of hormone, light, and abiotic stress response elements were discovered in the promoters of TaIQDs, implying their functional diversity. Microarray data for 50 TaIQDs showed different expression levels in 13 wheat tissues. Transcriptome data and a quantitative real-time PCR analysis of wheat varieties with contrasting seed dormancy and germination phenotypes further revealed that seven genes (TaIQD4/-28/-32/-58/-64/-69/-71) likely participated in seed dormancy and germination through the abscisic acid-signaling pathway. The study results provide valuable information for cloning and a functional investigation of candidate genes controlling wheat seed dormancy and germination; consequently, they increase our understanding of the complex regulatory networks affecting these two traits.
Collapse
|
37
|
Li L, Shi F, Wang G, Guan Y, Zhang Y, Chen M, Chang J, Yang G, He G, Wang Y, Li Y. Conservation and Divergence of SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE ( SPL) Gene Family between Wheat and Rice. Int J Mol Sci 2022; 23:2099. [PMID: 35216210 PMCID: PMC8874652 DOI: 10.3390/ijms23042099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022] Open
Abstract
The SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family affects plant architecture, panicle structure, and grain development, representing key genes for crop improvements. The objective of the present study is to utilize the well characterized SPLs' functions in rice to facilitate the functional genomics of TaSPL genes. To achieve these goals, we combined several approaches, including genome-wide analysis of TaSPLs, comparative genomic analysis, expression profiling, and functional study of TaSPL3 in rice. We established the orthologous relationships of 56 TaSPL genes with the corresponding OsSPLs, laying a foundation for the comparison of known SPL functions between wheat and rice. Some TaSPLs exhibited different spatial-temporal expression patterns when compared to their rice orthologs, thus implicating functional divergence. TaSPL2/6/8/10 were identified to respond to different abiotic stresses through the combination of RNA-seq and qPCR expression analysis. Additionally, ectopic expression of TaSPL3 in rice promotes heading dates, affects leaf and stem development, and leads to smaller panicles and decreased yields per panicle. In conclusion, our work provides useful information toward cataloging of the functions of TaSPLs, emphasized the conservation and divergence between TaSPLs and OsSPLs, and identified the important SPL genes for wheat improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.L.); (F.S.); (G.W.); (Y.G.); (Y.Z.); (M.C.); (J.C.); (G.Y.) ; (G.H.)
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.L.); (F.S.); (G.W.); (Y.G.); (Y.Z.); (M.C.); (J.C.); (G.Y.) ; (G.H.)
| |
Collapse
|
38
|
Liu Y, Aslam M, Yao LA, Zhang M, Wang L, Chen H, Huang Y, Qin Y, Niu X. Genomic analysis of SBP gene family in Saccharum spontaneum reveals their association with vegetative and reproductive development. BMC Genomics 2021; 22:767. [PMID: 34706643 PMCID: PMC8549313 DOI: 10.1186/s12864-021-08090-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/15/2021] [Indexed: 11/10/2022] Open
Abstract
Background SQUAMOSA promoter binding proteins (SBPs) genes encode a family of plant-specific transcription factors involved in various growth and development processes, including flower and fruit development, leaf initiation, phase transition, and embryonic development. The SBP gene family has been identified and characterized in many species, but no systematic analysis of the SBP gene family has been carried out in sugarcane. Results In the present study, a total of 50 sequences for 30 SBP genes were identified by the genome-wide analysis and designated SsSBP1 to SsSBP30 based on their chromosomal distribution. According to the phylogenetic tree, gene structure and motif features, the SsSBP genes were classified into eight groups (I to VIII). By synteny analysis, 27 homologous gene pairs existed in SsSBP genes, and 37 orthologous gene pairs between sugarcane and sorghum were found. Expression analysis in different tissues, including vegetative and reproductive organs, showed differential expression patterns of SsSBP genes, indicating their functional diversity in the various developmental processes. Additionally, 22 SsSBP genes were predicted as the potential targets of miR156. The differential expression pattern of miR156 exhibited a negative correlation of transcription levels between miR156 and the SsSBP gene in different tissues. Conclusions The sugarcane genome possesses 30 SsSBP genes, and they shared similar gene structures and motif features in their subfamily. Based on the transcriptional and qRT-PCR analysis, most SsSBP genes were found to regulate the leaf initial and female reproductive development. The present study comprehensively and systematically analyzed SBP genes in sugarcane and provided a foundation for further studies on the functional characteristics of SsSBP genes during different development processes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08090-3.
Collapse
Affiliation(s)
- Yanhui Liu
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China.,College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mohammad Aslam
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Li-Ang Yao
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Man Zhang
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lulu Wang
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Huihuang Chen
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youmei Huang
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan Qin
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China. .,College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xiaoping Niu
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
39
|
Li B, Zhao Y, Wang S, Zhang X, Wang Y, Shen Y, Yuan Z. Genome-wide identification, gene cloning, subcellular location and expression analysis of SPL gene family in P. granatum L. BMC PLANT BIOLOGY 2021; 21:400. [PMID: 34454435 PMCID: PMC8399725 DOI: 10.1186/s12870-021-03171-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUNDS Pomegranate is an excellent tree species with nutritional, medicinal, ornamental and ecological values. Studies have confirmed that SPL factors play an important role in floral transition and flower development. RESULTS Used bioinformatics methods, 15 SPL (SQUAMOSA promoter-binding protein-like) genes were identified and analyzed from the 'Taishanhong' pomegranate (P. granatum L.) genome. Phylogenetic analysis showed that PgSPLs were divided into six subfamilies (G1 ~ G6). PgSPL promoter sequences contained multiple cis-acting elements associated with abiotic stress or hormonal response. Based on the transcriptome data, expression profiles of different tissues and different developmental stages showed that PgSPL genes had distinct temporal and spatial expression characteristics. The expression analysis of miR156 in small RNA sequencing results showed that miR156 negatively regulated the expression of target genes. qRT-PCR analysis showed that the expression levels of PgSPL2, PgSPL3, PgSPL6, PgSPL11 and PgSPL14 in leaves were significantly higher than those in buds and stems (p < 0.05). The expression levels of PgSPL5, PgSPL12 and PgSPL13 in flower buds were significantly higher than that in leaves and stems (p < 0.05). The full-length of coding sequence of PgSPL5 and PgSPL13 were obtained by homologous cloning technology. The full length of PgSPL5 is 1020 bp, and PgSPL13 is 489 bp, which encodes 339 and 162 amino acids, respectively. Further investigation revealed that PgSPL5 and PgSPL13 proteins were located in the nucleus. Exogenous plant growth regulator induction experiments showed that PgSPL5 was up-regulated in leaves and stems. PgSPL13 was up-regulated in leaves and down-regulated in stems. When sprayed with 6-BA, IBA and PP333 respectively, PgSPL5 and PgSPL13 were up-regulated most significantly at P2 (bud vertical diameter was 5.1 ~ 12.0 mm) stage of bisexual and functional male flowers. CONCLUSIONS Our findings suggested that PgSPL2, PgSPL3, PgSPL6, PgSPL11 and PgSPL14 played roles in leaves development of pomegranate. PgSPL5, PgSPL12 and PgSPL13 played roles in pomegranate flower development. PgSPL5 and PgSPL13 were involved in the response process of different plant hormone signal transduction in pomegranate development. This study provided a robust basis for further functional analyses of SPL genes in pomegranate.
Collapse
Affiliation(s)
- Bianbian Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yujie Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Sha Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Xinhui Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongwei Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yu Shen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhaohe Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
40
|
Li Y, Sun A, Wu Q, Zou X, Chen F, Cai R, Xie H, Zhang M, Guo X. Comprehensive genomic survey, structural classification and expression analysis of C 2H 2-type zinc finger factor in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2021; 21:380. [PMID: 34407757 PMCID: PMC8375173 DOI: 10.1186/s12870-021-03016-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/06/2021] [Indexed: 06/04/2023]
Abstract
BACKGROUND The C2H2-type zinc finger proteins (C2H2-ZFPs) are one of major classes of transcription factors that play important roles in plant growth, development and stress responses. Limit information about the C2H2-ZF genes hinders the molecular breeding in bread wheat (Triticum aestivum). RESULTS In this study, 457 C2H2-ZFP proteins (including 253 splice variants), which contain four types of conserved domain (named Q, M, Z, and D), could be further classified into ten subsets. They were identified to be distributed in 21 chromosomes in T. aestivum. Subset-specific motifs, like NPL-, SFP1-, DL- (EAR-like-motif), R-, PL-, L- and EK-, might make C2H2-ZFP diverse multifunction. Interestingly, NPL- and SFP1-box were firstly found to be located in C2H2-ZFP proteins. Synteny analyses showed that only 4 pairs of C2H2 family genes in T. aestivum, 65 genes in B. distachyon, 66 genes in A. tauschii, 68 genes in rice, 9 genes in Arabidopsis, were syntenic relationships respectively. It indicated that TaZFPs were closely related to genes in Poaceae. From the published transcriptome data, totally 198 of 204 TaC2H2-ZF genes have expression data. Among them, 25 TaC2H2-ZF genes were certificated to be significantly differentially expressed in 5 different organs and 15 different development stages by quantitative RT-PCR. The 18 TaC2H2-ZF genes were verified in response to heat, drought, and heat & drought stresses. According to expression pattern analysis, several TaZFPs, like Traes_5BL_D53A846BE.1, were not only highly expressed in L2DAAs, RTLS, RMS, but also endowed tolerance to drought and heat stresses, making them good candidates for molecular breeding. CONCLUSIONS This study systematically characterized the TaC2H2-ZFPs and their potential roles in T. aestivum. Our findings provide new insights into the C2H2-ZF genes in T. aestivum as well as a foundation for further studies on the roles of TaC2H2-ZF genes in T. aestivum molecular breeding.
Collapse
Affiliation(s)
- Yongliang Li
- College of Biology, Hunan University, Changsha, 410082, China
| | - Aolong Sun
- College of Biology, Hunan University, Changsha, 410082, China
| | - Qun Wu
- College of Biology, Hunan University, Changsha, 410082, China
| | - Xiaoxiao Zou
- College of Biology, Hunan University, Changsha, 410082, China
| | - Fenglin Chen
- College of Biology, Hunan University, Changsha, 410082, China
| | - Ruqiong Cai
- College of Biology, Hunan University, Changsha, 410082, China
| | - Hai Xie
- College of Biology, Hunan University, Changsha, 410082, China
| | - Meng Zhang
- College of Biology, Hunan University, Changsha, 410082, China.
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
41
|
Feng G, Han J, Yang Z, Liu Q, Shuai Y, Xu X, Nie G, Huang L, Liu W, Zhang X. Genome-wide identification, phylogenetic analysis, and expression analysis of the SPL gene family in orchardgrass (Dactylis glomerata L.). Genomics 2021; 113:2413-2425. [PMID: 34058273 DOI: 10.1016/j.ygeno.2021.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
SPL (SQUAMOSA promoter binding protein-like) is a plant-specific transcription factor family that contains the conserved SBP domain, which plays a vital role in the vegetative-to-reproductive phase transition, flowering development and regulation, tillering/branching, and stress responses. Although the SPL family has been identified and characterized in various plant species, limited information about it has been obtained in orchardgrass, which is a critical forage crop worldwide. In this study, 17 putative DgSPL genes were identified among seven chromosomes, and seven groups that share similar gene structures and conserved motifs were determined by phylogenetic analysis. Of these, eight genes have potential target sites for miR156. cis-Element and gene ontology annotation analysis indicated DgSPLs may be involved in regulating development and abiotic stress responses. The expression patterns of eight DgSPL genes at five developmental stages, in five tissues, and under three stress conditions were determined by RNA-seq and qRT-PCR. These assays indicated DgSPLs are involved in vegetative-to-reproductive phase transition, floral development, and stress responses. The transient expression analysis in tobacco and heterologous expression assays in yeast indicated that miR156-targeted DG1G01828.1 and DG0G01071.1 are nucleus-localized proteins, that may respond to drought, salt, and heat stress. Our study represents the first systematic analysis of the SPL family in orchardgrass. This research provides a comprehensive assessment of the DgSPL family, which lays the foundation for further examination of the role of miR156/DgSPL in regulating development and stress responses in forages grasses.
Collapse
Affiliation(s)
- Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jiating Han
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhongfu Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qiuxu Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yang Shuai
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiaoheng Xu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Wei Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
42
|
Li H, Luo Y, Ma B, Hu J, Lv Z, Wei W, Hao H, Yuan J, He N. Hierarchical Action of Mulberry miR156 in the Vegetative Phase Transition. Int J Mol Sci 2021; 22:ijms22115550. [PMID: 34074049 PMCID: PMC8197408 DOI: 10.3390/ijms22115550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 02/03/2023] Open
Abstract
The vegetative phase transition is a prerequisite for flowering in angiosperm plants. Mulberry miR156 has been confirmed to be a crucial factor in the vegetative phase transition in Arabidopsis thaliana. The over-expression of miR156 in transgenic Populus × canadensis dramatically prolongs the juvenile phase. Here, we find that the expression of mno-miR156 decreases with age in all tissues in mulberry, which led us to study the hierarchical action of miR156 in mulberry. Utilizing degradome sequencing and dual-luciferase reporter assays, nine MnSPLs were shown to be directly regulated by miR156. The results of yeast one-hybrid and dual-luciferase reporter assays also revealed that six MnSPLs could recognize the promoter sequences of mno-miR172 and activate its expression. Our results demonstrate that mno-miR156 performs its role by repressing MnSPL/mno-miR172 pathway expression in mulberry. This work uncovered a miR156/SPLs/miR172 regulation pathway in the development of mulberry and fills a gap in our knowledge about the molecular mechanism of vegetative phase transition in perennial woody plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ningjia He
- Correspondence: ; Tel.: +86-23-6825-0797; Fax: +86-23-6825-1128
| |
Collapse
|
43
|
Jiang X, Chen P, Zhang X, Liu Q, Li H. Comparative analysis of the SPL gene family in five Rosaceae species: Fragaria vesca, Malus domestica, Prunus persica, Rubus occidentalis, and Pyrus pyrifolia. Open Life Sci 2021; 16:160-171. [PMID: 33817308 PMCID: PMC7968543 DOI: 10.1515/biol-2021-0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022] Open
Abstract
SQUAMOSA promoter-binding protein-like (SPL) transcription factors are very important for the plant growth and development. Here 15 RoSPLs were identified in Rubus occidentalis. The conserved domains and motifs, phylogenetic relationships, posttranscriptional regulation, and physiological function of the 92 SPL family genes in Fragaria vesca, Malus domestica, Prunus persica, R. occidentalis, and Pyrus pyrifolia were analyzed. Sequence alignment and phylogenetic analysis showed the SPL proteins had sequence conservation, some FvSPLs could be lost or developed, and there was a closer relationship between M. domestica and P. pyrifolia, F. vesca and R. occidentalis, respectively. Genes with similar motifs clustering together in the same group had their functional redundancy. Based on the function of SPLs in Arabidopsis thaliana, these SPLs could be involved in vegetative transition from juvenile to adult, morphological change in the reproductive phase, anthocyanin biosynthesis, and defense stress. Forty-eight SPLs had complementary sequences of miR156, of which nine PrpSPLs in P. persica and eight RoSPLs in R. occidentalis as the potential targets of miR156 were reported for the first time, suggesting the conservative regulatory effects of miR156 and indicating the roles of miR156-SPL modules in plant growth, development, and defense response. It provides a basic understanding of SPLs in Rosaceae plants.
Collapse
Affiliation(s)
- Xuwen Jiang
- Dryland Technology Key Laboratory of Shandong Province, College of Agronomy, Qingdao Agricultural University, Changcheng Road No. 700, Chengyang District, Qingdao, 266109, Shandong, China
| | - Peng Chen
- Department of Entomology, College of plant protection, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China.,Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Gongye North Road No. 202, Jinan, 250100, China
| | - Xiaowen Zhang
- Dryland Technology Key Laboratory of Shandong Province, College of Agronomy, Qingdao Agricultural University, Changcheng Road No. 700, Chengyang District, Qingdao, 266109, Shandong, China
| | - Qizhi Liu
- Department of Entomology, College of plant protection, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Heqin Li
- Dryland Technology Key Laboratory of Shandong Province, College of Agronomy, Qingdao Agricultural University, Changcheng Road No. 700, Chengyang District, Qingdao, 266109, Shandong, China
| |
Collapse
|
44
|
Wang Z, Zhang R, Cheng Y, Lei P, Song W, Zheng W, Nie X. Genome-Wide Identification, Evolution, and Expression Analysis of LBD Transcription Factor Family in Bread Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:721253. [PMID: 34539714 PMCID: PMC8446603 DOI: 10.3389/fpls.2021.721253] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/09/2021] [Indexed: 05/04/2023]
Abstract
The lateral organ boundaries domain (LBD) genes, as the plant-specific transcription factor family, play a crucial role in controlling plant architecture and stress tolerance. Although it has been thoroughly characterized in many species, the LBD family was not well studied in wheat. Here, the wheat LBD family was systematically investigated through an in silico genome-wide search method. A total of 90 wheat LBD genes (TaLBDs) were identified, which were classified into class I containing seven subfamilies, and class II containing two subfamilies. Exon-intron structure, conserved protein motif, and cis-regulatory elements analysis showed that the members in the same subfamily shared similar gene structure organizations, supporting the classification. Furthermore, the expression patterns of these TaLBDs in different types of tissues and under diverse stresses were identified through public RNA-seq data analysis, and the regulation networks of TaLBDs involved were predicted. Finally, the expression levels of 12 TaLBDs were validated by quantitative PCR (qPCR) analysis and the homoeologous genes showed differential expression. Additionally, the genetic diversity of TaLBDs in the landrace population showed slightly higher than that of the genetically improved germplasm population while obvious asymmetry at the subgenome level. This study not only provided the potential targets for further functional analysis but also contributed to better understand the roles of LBD genes in regulating development and stress tolerance in wheat and beyond.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, China
| | - Ruoyu Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, China
| | - Yue Cheng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, China
| | - Pengzheng Lei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, China
| | - Weining Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, China
- Australia-China Joint Research Centre for Abiotic and Biotic Stress Management in Agriculture, Horticulture and Forestry, Yangling, China
| | - Weijun Zheng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, China
- *Correspondence: Weijun Zheng
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, China
- Xiaojun Nie
| |
Collapse
|