1
|
Li W, Liu M, Wang R, He L, Zhou S, Zhao B, Mao Y, Wu Q, Wang D, Ji X, Yang J, Xie X, Liu Y, Wu S, Chen J, Yang L. The F-box protein SlSAP1 and SlSAP2 redundantly control leaf and fruit size by modulating the stability of SlKIX8 and SlKIX9 in tomato. THE NEW PHYTOLOGIST 2025. [PMID: 40298065 DOI: 10.1111/nph.70159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/21/2025] [Indexed: 04/30/2025]
Abstract
Tomato fruit size is a crucial trait in domestication, determined by cell division and cell expansion. Despite the identification of several quantitative trait loci associated with fruit size in tomatoes, the underlying molecular mechanisms that govern cell division and expansion to control fruit size remain unclear. CRISPR/Cas9 gene editing was used to generate single and double loss-of-function mutants of the tomato STERILE APETALA1 (c) and SlSAP2. The results demonstrate that the two SlSAP genes function redundantly in regulating leaf and fruit size by positively regulating cell proliferation and expansion, with SlSAP1 having the predominant effect. Consistently, overexpression of either SlSAP1 or SlSAP2 leads to enlarged fruits due to an increase in both cell layers and cell size in the pericarp. Biochemical evidence suggests that both SlSAP1 and SlSAP2 can form an SCF complex and physically interact with SlKIX8 and SlKIX9, which are crucial negative regulators of fruit size. Further results reveal that SlSAP1 and SlSAP2 target them for degradation. This study uncovers that the ubiquitination pathway plays an important role in the determination of tomato fruit size, and offers new genetic loci for improving fruit yield and biomass by manipulating pericarp thickness.
Collapse
Affiliation(s)
- Wenju Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- School of Agriculture, Yunnan University, Kunming, 650504, China
| | - Mingli Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- School of Agriculture, Yunnan University, Kunming, 650504, China
| | - Renyin Wang
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liangliang He
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Shaoli Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Baolin Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yawen Mao
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Qing Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Dongfa Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Xiaomin Ji
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Xiaoting Xie
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Shuang Wu
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianghua Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Liling Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
2
|
Liu F, Sun X, Sheng O, Dou T, Yang Q, Hu C, Gao H, He W, Deng G, Dong T, Li C, Liu S, Yi G, Bi F. Genome-wide analysis of the trihelix gene family reveals that MaGT21 modulates fruit ripening by regulating the expression of MaACO1 in Musa acuminata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109089. [PMID: 39265241 DOI: 10.1016/j.plaphy.2024.109089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
The trihelix transcription factor (GT) gene family members play vital roles in plant growth and development, responses to abiotic or biotic stress, and fruit ripening. However, its role in banana fruit ripening remains unclear. Here, 59 MaGT gene members were identified in banana and clustered into five subfamilies, namely GT1, GT2, GTγ, SIP1, and SH4. This classification is completely supported by their gene structures and conserved motif analysis. Transcriptome data analysis indicated that MaGT14, MaGT21, and MaGT27 demonstrated significant differential expression during fruit ripening. Quantitative real-time PCR analysis revealed that these three genes were highly induced by ethylene treatment, responded to cold and heat stress, and had a high expression abundance in ripe fruit. Subcellular localization demonstrated that MaGT21 and MaGT27 functioned as nuclear proteins, while MaGT14 functioned as a nuclear and cell membrane protein. Further investigation indicated MaGT21 could positively stimulate the transcription of the key ethylene biosynthesis gene MaACO1 by directly targeting the GT motif in the promoter. MaGT21 transient overexpression in banana fruit upregulated MaACO1 and accelerated fruit ripening. Our findings provide comprehensive and valuable information for further functional studies of MaGT genes in banana, help to understand the roles of MaGTs during banana fruit ripening.
Collapse
Affiliation(s)
- Fan Liu
- College of Life Sciences, South China Agricultural University, Guangzhou, China; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Xueli Sun
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Ou Sheng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Tongxin Dou
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Qiaosong Yang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Chunhua Hu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Huijun Gao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Weidi He
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Guiming Deng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Tao Dong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Chunyu Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Siwen Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China.
| | - Fangcheng Bi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China.
| |
Collapse
|
3
|
Zhao XR, Zhao DT, Zhang LY, Chang JH, Cui JH. Combining transcriptome and metabolome analysis to understand the response of sorghum to Melanaphis sacchari. BMC PLANT BIOLOGY 2024; 24:529. [PMID: 38862926 PMCID: PMC11165916 DOI: 10.1186/s12870-024-05229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND The sorghum aphid Melanaphis sacchari (Zehntner) (Homoptera: Aphididae) is an important insect in the late growth phase of sorghum (Sorghum bicolor L.). However, the mechanisms of sorghum response to aphid infestation are unclear. RESULTS In this paper, the mechanisms of aphid resistance in different types of sorghum varieties were revealed by studying the epidermal cell structure and performing a transcriptome and metabolome association analysis of aphid-resistant and aphid-susceptible varieties. The epidermal cell results showed that the resistance of sorghum to aphids was positively correlated with epidermal cell regularity and negatively correlated with the intercellular space and leaf thickness. Transcriptome and metabolomic analyses showed that differentially expressed genes in the resistant variety HN16 and susceptible variety BTX623 were mainly enriched in the flavonoid biosynthesis pathway and differentially expressed metabolites were mainly related to isoflavonoid biosynthesis and flavonoid biosynthesis. The q-PCR results of key genes were consistent with the transcriptome expression results. Meanwhile, the metabolome test results showed that after aphidinfestation, naringenin and genistein were significantly upregulated in the aphid-resistant variety HN16 and aphid-susceptible variety BTX623 while luteolin was only significantly upregulated in BTX623. These results show that naringenin, genistein, and luteolin play important roles in plant resistance to aphid infestation. The results of exogenous spraying tests showed that a 1‰ concentration of naringenin and genistein is optimal for improving sorghum resistance to aphid feeding. CONCLUSIONS In summary, the physical properties of the sorghum leaf structure related to aphid resistance were studied to provide a reference for the breeding of aphid-resistant varieties. The flavonoid biosynthesis pathway plays an important role in the response of sorghum aphids and represents an important basis for the biological control of these pests. The results of the spraying experiment provide insights for developing anti-aphid substances in the future.
Collapse
Affiliation(s)
- Xin-Rui Zhao
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Baoding, 071000, China
| | - Dong-Ting Zhao
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Baoding, 071000, China
| | - Ling-Yu Zhang
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Baoding, 071000, China
| | - Jin-Hua Chang
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China.
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Baoding, 071000, China.
| | - Jiang-Hui Cui
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China.
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Baoding, 071000, China.
| |
Collapse
|
4
|
Baranov D, Dolgov S, Timerbaev V. New Advances in the Study of Regulation of Tomato Flowering-Related Genes Using Biotechnological Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:359. [PMID: 38337892 PMCID: PMC10856997 DOI: 10.3390/plants13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
The tomato is a convenient object for studying reproductive processes, which has become a classic. Such complex processes as flowering and fruit setting require an understanding of the fundamental principles of molecular interaction, the structures of genes and proteins, the construction of signaling pathways for transcription regulation, including the synchronous actions of cis-regulatory elements (promoter and enhancer), trans-regulatory elements (transcription factors and regulatory RNAs), and transposable elements and epigenetic regulators (DNA methylation and acetylation, chromatin structure). Here, we discuss the current state of research on tomatoes (2017-2023) devoted to studying the function of genes that regulate flowering and signal regulation systems using genome-editing technologies, RNA interference gene silencing, and gene overexpression, including heterologous expression. Although the central candidate genes for these regulatory components have been identified, a complete picture of their relationship has yet to be formed. Therefore, this review summarizes the latest achievements related to studying the processes of flowering and fruit set. This work attempts to display the gene interaction scheme to better understand the events under consideration.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Sergey Dolgov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
5
|
Lang Z, Xu Z, Li L, He Y, Zhao Y, Zhang C, Hong G, Zhang X. Comprehensive Genomic Analysis of Trihelix Family in Tea Plant ( Camellia sinensis) and Their Putative Roles in Osmotic Stress. PLANTS (BASEL, SWITZERLAND) 2023; 13:70. [PMID: 38202377 PMCID: PMC10780335 DOI: 10.3390/plants13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
In plants, Trihelix transcription factors are responsible for regulating growth, development, and reaction to various abiotic stresses. However, their functions in tea plants are not yet fully understood. This study identified a total of 40 complete Trihelix genes in the tea plant genome, which are classified into five clades: GT-1 (5 genes), GT-2 (8 genes), GTγ (2 genes), SH4 (7 genes), and SIP1 (18 genes). The same subfamily exhibits similar gene structures and functional domains. Chromosomal mapping analysis revealed that chromosome 2 has the most significant number of trihelix family members. Promoter analysis identified cis-acting elements in C. sinensis trihelix (CsTH), indicating their potential to respond to various phytohormones and stresses. The expression analysis of eight representative CsTH genes from four subfamilies showed that all CsTHs were expressed in more tissues, and three CsTHs were significantly induced under ABA, NaCl, and drought stress. This suggests that CsTHs plays an essential role in tea plant growth, development, and response to osmotic stress. Furthermore, yeast strains have preliminarily proven that CsTH28, CsTH36, and CsTH39 can confer salt and drought tolerance. Our study provides insights into the phylogenetic relationships and functions of the trihelix transcription factors in tea plants. It also presents new candidate genes for stress-tolerance breeding.
Collapse
Affiliation(s)
- Zhuoliang Lang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| | - Zelong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| | - Chi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| | - Gaojie Hong
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| |
Collapse
|
6
|
Li F, Chen G, Xie Q, Zhou S, Hu Z. Down-regulation of SlGT-26 gene confers dwarf plants and enhances drought and salt stress resistance in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108053. [PMID: 37769452 DOI: 10.1016/j.plaphy.2023.108053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/05/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023]
Abstract
Plant architecture, an important agronomic trait closely associated with yield, is governed by a highly intricate molecular network. Despite extensive research, many mysteries surrounding this regulation remain unresolved. Trihelix transcription factor family plays a crucial role in the development of plant morphology and abiotic stresses. Here, we identified a novel trihelix transcription factor named SlGT-26, and its down-regulation led to significant alterations in plant architecture, including dwarfing, reduced internode length, smaller leaves, and shorter petioles. The dwarf phenotype of SlGT-26 silenced transgenic plants could be recovered after spraying exogenous GA3, and the GA3 content were decreased in the RNAi plants. Additionally, the expression levels of gibberellin-related genes were affected in the RNAi lines. These results indicate that the dwarf of SlGT-26-RNAi plants may be a kind of GA3-sensitive dwarf. SlGT-26 was response to drought and salt stress treatments. SlGT-26-RNAi transgenic plants demonstrated significantly enhanced drought resistance and salt tolerance in comparison to their wild-type tomato counterparts. SlGT-26-RNAi transgenic plants grew better, had higher relative water content and lower MDA and H2O2 contents. The expression of multiple stress-related genes was also up-regulated. In summary, we have discovered a novel gene, SlGT-26, which plays a crucial role in regulating plant architecture and in respond to drought and salt stress.
Collapse
Affiliation(s)
- Fenfen Li
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, 400030, China.
| | - Guoping Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, 400030, China.
| | - Qiaoli Xie
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, 400030, China.
| | - Shengen Zhou
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, 400030, China.
| | - Zongli Hu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
7
|
Hu J, Liu T, Huo H, Liu S, Liu M, Liu C, Zhao M, Wang K, Wang Y, Zhang M. Genome-wide characterization, evolutionary analysis, and expression pattern analysis of the trihelix transcription factor family and gene expression analysis under MeJA treatment in Panax ginseng. BMC PLANT BIOLOGY 2023; 23:376. [PMID: 37525122 PMCID: PMC10392005 DOI: 10.1186/s12870-023-04390-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Panax ginseng is a well-known medicinal plant with several pharmacological uses in China. The trihelix family transcription factors, also known as GT factors, can be involved in the regulation of growth and developmental processes in plants. There have been no in-depth reports or systematic studies about the trihelix transcription factor in ginseng. In this study, the structure, chromosomal localization, gene duplication, phylogeny, functional differentiation, expression patterns and coexpression interactions of trihelix transcripts were analysed using bioinformatics methods based on the ginseng transcriptome database. Thirty-two trihelix transcription factor genes were identified in ginseng, and these genes were alternatively spliced to obtain 218 transcripts. These transcripts were unevenly distributed on different chromosomes of ginseng, and phylogenetic analysis classified the PgGT transcripts into five subgroups. Gene Ontology (GO) analysis classified PgGT transcripts into eight functional subclasses, indicating that they are functionally diverse. The expression pattern analysis of 218 PgGT transcripts revealed that their expression was tissue-specific and spatiotemporally-specific in 14 different tissues of 4-year-old ginseng, 4 different ages of ginseng roots, and 42 farmers' cultivars of 4-year-old ginseng roots. Despite the differences in the expression patterns of these transcripts, coexpression network analysis revealed that these transcripts could be expressed synergistically in ginseng. In addition, two randomly selected PgGT transcripts in each of the five different subfamilies were subjected to methyl jasmonate treatment at different times, and PgGT was able to respond to the regulation of methy1 jasmonate. These results provide a theoretical basis and gene resources for an in-depth study of the function of trihelix genes in other plants.
Collapse
Affiliation(s)
- Jian Hu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Tao Liu
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Huimin Huo
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Sizhang Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Mingming Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Chang Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China.
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China.
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China.
| |
Collapse
|
8
|
Huo Y, Yang H, Ding W, Huang T, Yuan Z, Zhu Z. Combined Transcriptome and Proteome Analysis Provides Insights into Petaloidy in Pomegranate. PLANTS (BASEL, SWITZERLAND) 2023; 12:2402. [PMID: 37446962 DOI: 10.3390/plants12132402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Petaloidy leads to a plump floral pattern and increases the landscape value of ornamental pomegranates; however, research on the mechanism of petaloidy in ornamental pomegranates is limited. In this study, we aimed to screen candidate genes related to petaloidy. We performed transcriptomic and proteomic sequencing of the stamens and petals of single-petal and double-petal flowers of ornamental pomegranates. Briefly, 24,567 genes and 5865 proteins were identified, of which 5721 genes were quantified at both transcriptional and translational levels. In the petal and stamen comparison groups, the association between differentially abundant proteins (DAPs) and differentially expressed genes (DEGs) was higher than that between all genes and all proteins, indicating that petaloidy impacts the correlation between genes and proteins. The enrichment results of transcriptome, proteome, and correlation analyses showed that cell wall metabolism, jasmonic acid signal transduction, redox balance, and transmembrane transport affected petaloidy. Nine hormone-related DEGs/DAPs were selected, among which ARF, ILR1, LAX2, and JAR1 may promote petal doubling. Sixteen transcription factor DEGs/DAPs were selected, among which EREBP, LOB, MEF2, MYB, C3H, and trihelix may promote petal doubling. Our results provide transcriptomic and proteomic data on the formation mechanism of petaloidy and a theoretical basis for breeding new ornamental pomegranate varieties.
Collapse
Affiliation(s)
- Yan Huo
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037, China
- Jinpu Research Institute, Nanjing Forestry University, Nanjing 210037, China
- Research Center for Digital Innovation Design, Nanjing Forestry University, Nanjing 210037, China
| | - Han Yang
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261053, China
| | - Wenjie Ding
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China
| | - Tao Huang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037, China
- Jinpu Research Institute, Nanjing Forestry University, Nanjing 210037, China
- Research Center for Digital Innovation Design, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaohe Yuan
- Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Zunling Zhu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037, China
- Jinpu Research Institute, Nanjing Forestry University, Nanjing 210037, China
- Research Center for Digital Innovation Design, Nanjing Forestry University, Nanjing 210037, China
- College of Art and Design, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Liu M, Liu T, Liu W, Wang Z, Kong L, Lu J, Zhang Z, Su X, Liu X, Ma W, Ren W. Genome-Wide Identification and Expression Profiling Analysis of the Trihelix Gene Family and response of PgGT1 under Abiotic Stresses in Platycodon grandiflorus. Gene 2023; 869:147398. [PMID: 36990256 DOI: 10.1016/j.gene.2023.147398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/25/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
The trihelix gene family plays an important role in plant growth and abiotic stress responses. Through the analysis of genomic and transcriptome data, 35 trihelix family members were identified for the first time in Platycodon grandiflorus; they were classified into five subfamilies: GT-1, GT-2, SH4, GTγ, and SIP1. The gene structure, conserved motifs and evolutionary relationships were analyzed. Prediction of physicochemical properties of the 35 trihelix proteins founded, the number of amino acid molecules is between 93 and 960, theoretical isoelectric point is between 4.24 and 9.94, molecular weight is between 9829.77 and 107435.38, 4 proteins among them were stable, and all GRAVY is negative. The full-length cDNA sequence of the PgGT1 gene of the GT-1 subfamily was cloned by PCR. It is a 1165 bp ORF encoding a 387 amino acid protein, with a molecular weight of 43.54 kDa. The predicted subcellular localization of the protein in the nucleus was experimentally verified. After being treated with NaCl, PEG6000, MeJA, ABA, IAA, SA, and ethephon, the expression of PgGT1 gene showed an up-regulated trend except for the roots treated with NaCl and ABA. This study laid a bioinformatics foundation for the research of trihelix gene family and the cultivation of excellent germplasm of P. grandiflorus.
Collapse
|
10
|
Pi M, Zhong R, Hu S, Cai Z, Plunkert M, Zhang W, Liu Z, Kang C. A GT-1 and PKc domain-containing transcription regulator SIMPLE LEAF1 controls compound leaf development in woodland strawberry. THE NEW PHYTOLOGIST 2023; 237:1391-1404. [PMID: 36319612 DOI: 10.1111/nph.18589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Leaves are strikingly diverse in terms of shapes and complexity. The wild and cultivated strawberry plants mostly develop trifoliate compound leaves, yet the underlying genetic basis remains unclear in this important fruit crop in Rosaceae. Here, we identified two EMS mutants designated simple leaf1 (sl1-1 and sl1-2) and one natural simple-leafed mutant monophylla in Fragaria vesca. Their causative mutations all reside in SL1 (FvH4_7g28640) causing premature stop codon at different positions in sl1-1 and sl1-2 and an eight-nucleotide insertion (GTTCATCA) in monophylla. SL1 encodes a transcription regulator with the conserved DNA-binding domain GT-1 and the catalytic domain of protein kinases PKc. Expression of SL1pro::SL1 in sl1-1 completely restored compound leaf formation. The 35S::SL1 lines developed palmate-like leaves with four or five leaflets at a low penetrance. However, overexpressing the truncated SL1ΔPK caused no phenotypes, probably due to the disruption of homodimerization. SL1 is preferentially expressed at the tips of leaflets and serrations. Moreover, SL1 is closely associated with the auxin pathway and works synergistically with FveLFYa in leaf morphogenesis. Overall, our work uncovered a new type of transcription regulator that promotes compound leaf formation in the woodland strawberry and shed new lights on the diversity of leaf complexity control.
Collapse
Affiliation(s)
- Mengting Pi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ruhan Zhong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shaoqiang Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhuoying Cai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Madison Plunkert
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Weiyi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Chunying Kang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
11
|
Transcriptome Analysis and Screening of Genes Associated with Flower Size in Tomato ( Solanum lycopersicum). Int J Mol Sci 2022; 23:ijms232415624. [PMID: 36555271 PMCID: PMC9778759 DOI: 10.3390/ijms232415624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Flower development is not only an important way for tomato reproduction but also an important guarantee for tomato fruit production. Although more and more attention has been paid to the study of flower development, there are few studies on the molecular mechanism and gene expression level of tomato flower development. In this study, RNA-seq analysis was performed on two stages of tomato flower development using the Illumina sequencing platform. A total of 8536 DEGs were obtained by sequencing, including 3873 upregulated DEGs and 4663 down-regulated DEGs. These differentially expressed genes are related to plant hormone signaling, starch and sucrose metabolism. The pathways such as pentose, glucuronate interconversion, and Phenylpropanoid biosynthesis are closely related and mainly involved in plant cellular and metabolic processes. According to the enrichment analysis results of DEGs, active energy metabolism can be inferred during flower development, indicating that flower development requires a large amount of energy and material supply. In addition, some plant hormones, such as GA, may also have effects on flower development. Combined with previous studies, the expression levels of Solyc02g087860 and three of bZIPs were significantly increased in the full flowering stage compared with the flower bud stage, indicating that these genes may be closely related to flower development. These genes were previously reported in Arabidopsis but not in tomatoes. Our next work will conduct a detailed functional analysis of the identified bZIP family genes to characterize their association with tomato flower size. This study will provide new genetic resources for flower formation and provide a basis for tomato yield breeding.
Collapse
|
12
|
Liu X, Zhang L, Yang S. Analysis of Floral Organ Development and Sex Determination in Schisandra chinensis by Scanning Electron Microscopy and RNA-Sequencing. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081260. [PMID: 36013439 PMCID: PMC9410518 DOI: 10.3390/life12081260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022]
Abstract
S. chinensis is a typical monoecious plant, and the number and development of female flowers determines the yield of S. chinensis. Due to a lack of genetic information, the molecular mechanism of sex differentiation in S. chinensis remains unclear. In this study, the combination of scanning electron microscopy (SEM) and RNA sequencing (RNA-seq) was used to understand the way of sex differentiation of S. chinensis and to mine the related genes of sex determination. The result shows the development of male and female S. chinensis flowers was completed at the same time, the unisexual S. chinensis flowers did not undergo a transition stage between sexes, and sex may have been determined at an early stage in flower development. The results of the gene function analysis of the plant hormone signaling pathway and sucrose metabolism pathway suggest that auxin and JA could be the key hormones for sex differentiation in S. chinensis, and sucrose may promote pollen maturation at the later stage of male flower development. Two AGAMOUS (GAG) genes, 10 AGAMOUS-like MADS-box (AGLs) genes, and the MYB, NAC, WRKY, bHLH, and Trihelix transcription factor families may play important roles in sex determination in S. chinensis. Taken together, the present findings provide valuable genetic information on flower development and sex determination in S. chinensis.
Collapse
Affiliation(s)
- Xiuyan Liu
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun 130118, China
- School of Life Sciences, Tonghua Normal University, Tonghua 134000, China
| | - Lifan Zhang
- School of Life Sciences, Tonghua Normal University, Tonghua 134000, China
| | - Shihai Yang
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun 130118, China
- Correspondence:
| |
Collapse
|
13
|
Transcriptome Analysis to Identify Genes Related to Flowering Reversion in Tomato. Int J Mol Sci 2022; 23:ijms23168992. [PMID: 36012256 PMCID: PMC9409316 DOI: 10.3390/ijms23168992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Flowering reversion is a common phenomenon in plant development in which differentiated floral organs switch from reproductive growth to vegetative growth and ultimately form abnormal floral organs or vegetative organs. This greatly reduces tomato yield and quality. Research on this phenomenon has recently increased, but there is a lack of research at the molecular and gene expression levels. Here, transcriptomic analyses of the inflorescence meristem were performed in two kinds of materials at different developmental stages, and a total of 3223 differentially expressed genes (DEGs) were screened according to the different developmental stages and trajectories of the two materials. The analysis of database annotations showed that these DEGs were closely related to starch and sucrose metabolism, DNA replication and modification, plant hormone synthesis and signal transduction. It was further speculated that tomato flowering reversion may be related to various biological processes, such as cell signal transduction, energy metabolism and protein post-transcriptional regulation. Combined with the results of previous studies, our work showed that the gene expression levels of CLE9, FA, PUCHI, UF, CLV3, LOB30, SFT, S-WOX9 and SVP were significantly different in the two materials. Endogenous hormone analysis and exogenous hormone treatment revealed a variety of plant hormones involved in flowering reversion in tomato. Thus, tomato flowering reversion was studied comprehensively by transcriptome analysis for the first time, providing new insights for the study of flower development regulation in tomato and other plants.
Collapse
|
14
|
Pons C, Casals J, Palombieri S, Fontanet L, Riccini A, Rambla JL, Ruggiero A, Figás MDR, Plazas M, Koukounaras A, Picarella ME, Sulli M, Fisher J, Ziarsolo P, Blanca J, Cañizares J, Cammareri M, Vitiello A, Batelli G, Kanellis A, Brouwer M, Finkers R, Nikoloudis K, Soler S, Giuliano G, Grillo S, Grandillo S, Zamir D, Mazzucato A, Causse M, Díez MJ, Prohens J, Monforte AJ, Granell A. Atlas of phenotypic, genotypic and geographical diversity present in the European traditional tomato. HORTICULTURE RESEARCH 2022; 9:uhac112. [PMID: 35795386 PMCID: PMC9252105 DOI: 10.1093/hr/uhac112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The Mediterranean basin countries are considered secondary centres of tomato diversification. However, information on phenotypic and allelic variation of local tomato materials is still limited. Here we report on the evaluation of the largest traditional tomato collection, which includes 1499 accessions from Southern Europe. Analyses of 70 traits revealed a broad range of phenotypic variability with different distributions among countries, with the culinary end use within each country being the main driver of tomato diversification. Furthermore, eight main tomato types (phenoclusters) were defined by integrating phenotypic data, country of origin, and end use. Genome-wide association study (GWAS) meta-analyses identified associations in 211 loci, 159 of which were novel. The multidimensional integration of phenoclusters and the GWAS meta-analysis identified the molecular signatures for each traditional tomato type and indicated that signatures originated from differential combinations of loci, which in some cases converged in the same tomato phenotype. Our results provide a roadmap for studying and exploiting this untapped tomato diversity.
Collapse
Affiliation(s)
- Clara Pons
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Joan Casals
- Department of Agri-Food Engineering and Biotechnology/Miquel Agustí Foundation, Universitat Politècnica de Catalunya, Campus Baix Llobregat, Esteve Terrades 8, 08860 Castelldefels, Spain
| | - Samuela Palombieri
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Lilian Fontanet
- INRAE, UR1052, Génétique et Amélioration des Fruits et Légumes 67 Allé des Chênes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
- HM Clause, Portes-lès-Valence, France
| | - Alessandro Riccini
- Department of Agriculture and Forest Sciences (DAFNE), Università degli Studi della Tuscia, Viterbo,Italy
| | - Jose Luis Rambla
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Alessandra Ruggiero
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Maria del Rosario Figás
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Athanasios Koukounaras
- Aristotle University of Thessaloniki, School of Agriculture, Laboratory of Vegetable Crops, Thessaloniki, 54124 Greece
| | - Maurizio E Picarella
- Department of Agriculture and Forest Sciences (DAFNE), Università degli Studi della Tuscia, Viterbo,Italy
| | - Maria Sulli
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Josef Fisher
- Hebrew University of Jerusalem, Robert H Smith Inst Plant Sci & Genet Agr, Rehovot, Israel
| | - Peio Ziarsolo
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Jose Blanca
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Joaquin Cañizares
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Maria Cammareri
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Antonella Vitiello
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Giorgia Batelli
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Angelos Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Matthijs Brouwer
- Wageningen Univ & Res, Plant Breeding, POB 386, NL-6700 AJ Wageningen, Netherlands
| | - Richard Finkers
- Wageningen Univ & Res, Plant Breeding, POB 386, NL-6700 AJ Wageningen, Netherlands
| | | | - Salvador Soler
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Stephania Grillo
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Silvana Grandillo
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Dani Zamir
- Hebrew University of Jerusalem, Robert H Smith Inst Plant Sci & Genet Agr, Rehovot, Israel
| | - Andrea Mazzucato
- Department of Agriculture and Forest Sciences (DAFNE), Università degli Studi della Tuscia, Viterbo,Italy
| | - Mathilde Causse
- INRAE, UR1052, Génétique et Amélioration des Fruits et Légumes 67 Allé des Chênes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Maria José Díez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Antonio Jose Monforte
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| |
Collapse
|
15
|
Hawar A, Xiong S, Yang Z, Sun B. Histone Acetyltransferase SlGCN5 Regulates Shoot Meristem and Flower Development in Solanum lycopersicum. FRONTIERS IN PLANT SCIENCE 2022; 12:805879. [PMID: 35126431 PMCID: PMC8814577 DOI: 10.3389/fpls.2021.805879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/21/2021] [Indexed: 06/02/2023]
Abstract
The histone acetyltransferase (HAT) general control non-repressed protein 5 (GCN5) plays important roles in plant development via epigenetic regulation of its target genes. However, the role of GCN5 in tomato, especially in the regulation of tomato shoot meristem and flower development, has not been well-understood. In this study, we found that silencing of Solanum lycopersicum GCN5 (SlGCN5, Solyc10g045400.1.1) by virus-induced gene silencing (VIGS) and RNA interference (RNAi) resulted in the loss of shoot apical dominance, reduced shoot apical meristem (SAM) size, and dwarf and bushy plant phenotype. Besides, we occasionally observed extra carpelloid stamens and carpels fused with stamens at the late stages of flower development. Through gene expression analysis, we noticed that SlGCN5 could enhance SlWUS transcript levels in both SAM and floral meristem (FM). Similar to the known function of GCN5 in Arabidopsis, we demonstrated that SIGCN5 may form a HAT unit with S. lycopersicum alteration/deficiency in activation 2a (SlADA2a) and SlADA2b proteins in tomato. Therefore, our results provide insights in the SlGCN5-mediated regulation of SAM maintenance and floral development in tomato.
Collapse
|