1
|
Wang Y, Ding K, Li H, Kuang Y, Liang Z. Biography of Vitis genomics: recent advances and prospective. HORTICULTURE RESEARCH 2024; 11:uhae128. [PMID: 38966864 PMCID: PMC11220177 DOI: 10.1093/hr/uhae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/25/2024] [Indexed: 07/06/2024]
Abstract
The grape genome is the basis for grape studies and breeding, and is also important for grape industries. In the last two decades, more than 44 grape genomes have been sequenced. Based on these genomes, researchers have made substantial progress in understanding the mechanism of biotic and abiotic resistance, berry quality formation, and breeding strategies. In addition, this work has provided essential data for future pangenome analyses. Apart from de novo assembled genomes, more than six whole-genome sequencing projects have provided datasets comprising almost 5000 accessions. Based on these datasets, researchers have explored the domestication and origins of the grape and clarified the gene flow that occurred during its dispersed history. Moreover, genome-wide association studies and other methods have been used to identify more than 900 genes related to resistance, quality, and developmental phases of grape. These findings have benefited grape studies and provide some basis for smart genomic selection breeding. Moreover, the grape genome has played a great role in grape studies and the grape industry, and the importance of genomics will increase sharply in the future.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Plant Diversity and Specialty Crops and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Kangyi Ding
- State Key Laboratory of Plant Diversity and Specialty Crops and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huayang Li
- State Key Laboratory of Plant Diversity and Specialty Crops and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangfu Kuang
- State Key Laboratory of Plant Diversity and Specialty Crops and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Specialty Crops and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
2
|
Chedid E, Avia K, Dumas V, Ley L, Reibel N, Butterlin G, Soma M, Lopez-Lozano R, Baret F, Merdinoglu D, Duchêne É. LiDAR Is Effective in Characterizing Vine Growth and Detecting Associated Genetic Loci. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0116. [PMID: 38026470 PMCID: PMC10655830 DOI: 10.34133/plantphenomics.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
The strong societal demand to reduce pesticide use and adaptation to climate change challenges the capacities of phenotyping new varieties in the vineyard. High-throughput phenotyping is a way to obtain meaningful and reliable information on hundreds of genotypes in a limited period. We evaluated traits related to growth in 209 genotypes from an interspecific grapevine biparental cross, between IJ119, a local genitor, and Divona, both in summer and in winter, using several methods: fresh pruning wood weight, exposed leaf area calculated from digital images, leaf chlorophyll concentration, and LiDAR-derived apparent volumes. Using high-density genetic information obtained by the genotyping by sequencing technology (GBS), we detected 6 regions of the grapevine genome [quantitative trait loci (QTL)] associated with the variations of the traits in the progeny. The detection of statistically significant QTLs, as well as correlations (R2) with traditional methods above 0.46, shows that LiDAR technology is effective in characterizing the growth features of the grapevine. Heritabilities calculated with LiDAR-derived total canopy and pruning wood volumes were high, above 0.66, and stable between growing seasons. These variables provided genetic models explaining up to 47% of the phenotypic variance, which were better than models obtained with the exposed leaf area estimated from images and the destructive pruning weight measurements. Our results highlight the relevance of LiDAR-derived traits for characterizing genetically induced differences in grapevine growth and open new perspectives for high-throughput phenotyping of grapevines in the vineyard.
Collapse
Affiliation(s)
- Elsa Chedid
- INRAE,
University of Strasbourg, UMR SVQV, 28, rue de Herrlisheim, 68000 Colmar, France
| | - Komlan Avia
- INRAE,
University of Strasbourg, UMR SVQV, 28, rue de Herrlisheim, 68000 Colmar, France
| | - Vincent Dumas
- INRAE,
University of Strasbourg, UMR SVQV, 28, rue de Herrlisheim, 68000 Colmar, France
| | - Lionel Ley
- INRAE, UEAV, 28, rue de Herrlisheim, 68000 Colmar, France
| | - Nicolas Reibel
- INRAE, UEAV, 28, rue de Herrlisheim, 68000 Colmar, France
| | - Gisèle Butterlin
- INRAE,
University of Strasbourg, UMR SVQV, 28, rue de Herrlisheim, 68000 Colmar, France
| | - Maxime Soma
- INRAE, Aix-Marseille Université, UMR RECOVER, 3275 Route de Cézanne, 13182 Aix-en-Provence, France
| | - Raul Lopez-Lozano
- INRAE,
Avignon Université, UMR EMMAH, UMT CAPTE, 228, route de l’aérodrome, 84914 Avignon, France
| | - Frédéric Baret
- INRAE,
Avignon Université, UMR EMMAH, UMT CAPTE, 228, route de l’aérodrome, 84914 Avignon, France
| | - Didier Merdinoglu
- INRAE,
University of Strasbourg, UMR SVQV, 28, rue de Herrlisheim, 68000 Colmar, France
| | - Éric Duchêne
- INRAE,
University of Strasbourg, UMR SVQV, 28, rue de Herrlisheim, 68000 Colmar, France
| |
Collapse
|
3
|
Zhang Y, Liu C, Liu X, Wang Z, Wang Y, Zhong GY, Li S, Dai Z, Liang Z, Fan P. Basic leucine zipper gene VvbZIP61 is expressed at a quantitative trait locus for high monoterpene content in grape berries. HORTICULTURE RESEARCH 2023; 10:uhad151. [PMID: 37701455 PMCID: PMC10493639 DOI: 10.1093/hr/uhad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/26/2023] [Indexed: 09/14/2023]
Abstract
The widely appreciated muscat flavor of grapes and wine is mainly attributable to the monoterpenes that accumulate in ripe grape berries. To identify quantitative trait loci (QTL) for grape berry monoterpene content, an F1 mapping population was constructed by a cross between two grapevine genotypes, one with neutral aroma berries (cv. 'Beifeng') and the other with a pronounced muscat aroma (elite Vitis vinifera line '3-34'). A high-density genetic linkage map spanning 1563.7 cM was constructed using 3332 SNP markers that were assigned to 19 linkage groups. Monoterpenes were extracted from the berry of the F1 progeny, then identified and quantified by gas chromatography-mass spectrometry. Twelve stable QTLs associated with the amounts of 11 monoterpenes in berries were thus identified. In parallel, the levels of RNA in berries from 34 diverse cultivars were estimated by RNA sequencing and compared to the monoterpene content of the berries. The expression of five genes mapping to stable QTLs correlated well with the monoterpene content of berries. These genes, including the basic leucine zipper VvbZIP61 gene on chromosome 12, are therefore considered as potentially being involved in monoterpene metabolism. Overexpression of VvbZIP61 in Vitis amurensis callus through Agrobacterium-mediated transformation significantly increased the accumulation of several monoterpenes in the callus, including nerol, linalool, geranial, geraniol, β-myrcene, and D-limonene. It is hypothesized that VvbZIP61 expression acts to increase muscat flavor in grapes. These results advance our understanding of the genetic control of monoterpene biosynthesis in grapes and provide important information for the marker-assisted selection of aroma compounds in grape breeding.
Collapse
Affiliation(s)
- Yuyu Zhang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuixia Liu
- Centre for Special Economic Plant Studies, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, Guangxi, China
| | - Xianju Liu
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zemin Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Gan-yuan Zhong
- Grape Genetics Research Unit, USDA-ARS, Geneva 14456, USA
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Singh L, Dhillon GS, Kaur S, Dhaliwal SK, Kaur A, Malik P, Kumar A, Gill RK, Kaur S. Genome-wide Association Study for Yield and Yield-Related Traits in Diverse Blackgram Panel (Vigna mungo L. Hepper) Reveals Novel Putative Alleles for Future Breeding Programs. Front Genet 2022; 13:849016. [PMID: 35899191 PMCID: PMC9310006 DOI: 10.3389/fgene.2022.849016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Blackgram (Vigna mungo L. Hepper) is an important tropical and sub-tropical short-duration legume that is rich in dietary protein and micronutrients. Producing high-yielding blackgram varieties is hampered by insufficient genetic variability, absence of suitable ideotypes, low harvest index and susceptibility to biotic-abiotic stresses. Seed yield, a complex trait resulting from the expression and interaction of multiple genes, necessitates the evaluation of diverse germplasm for the identification of novel yield contributing traits. Henceforth, a panel of 100 blackgram genotypes was evaluated at two locations (Ludhiana and Gurdaspur) across two seasons (Spring 2019 and Spring 2020) for 14 different yield related traits. A wide range of variability, high broad-sense heritability and a high correlation of grain yield were observed for 12 out of 14 traits studied among all environments. Investigation of population structure in the panel using a set of 4,623 filtered SNPs led to identification of four sub-populations based on ad-hoc delta K and Cross entropy value. Using Farm CPU model and Mixed Linear Model algorithms, a total of 49 significant SNP associations representing 42 QTLs were identified. Allelic effects were found to be statistically significant at 37 out of 42 QTLs and 50 known candidate genes were identified in 24 of QTLs.
Collapse
Affiliation(s)
- Lovejit Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | | | - Sarabjit Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Sandeep Kaur Dhaliwal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Amandeep Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Palvi Malik
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Ashok Kumar
- Regional Research Station, Punjab Agricultural University, Gurdaspur, India
| | - Ranjit Kaur Gill
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- *Correspondence: Satinder Kaur,
| |
Collapse
|
5
|
Reyes-Herrera PH, Muñoz-Baena L, Velásquez-Zapata V, Patiño L, Delgado-Paz OA, Díaz-Diez CA, Navas-Arboleda AA, Cortés AJ. Inheritance of Rootstock Effects in Avocado ( Persea americana Mill.) cv. Hass. FRONTIERS IN PLANT SCIENCE 2020; 11:555071. [PMID: 33424874 PMCID: PMC7785968 DOI: 10.3389/fpls.2020.555071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/17/2020] [Indexed: 05/16/2023]
Abstract
Grafting is typically utilized to merge adapted seedling rootstocks with highly productive clonal scions. This process implies the interaction of multiple genomes to produce a unique tree phenotype. However, the interconnection of both genotypes obscures individual contributions to phenotypic variation (rootstock-mediated heritability), hampering tree breeding. Therefore, our goal was to quantify the inheritance of seedling rootstock effects on scion traits using avocado (Persea americana Mill.) cv. Hass as a model fruit tree. We characterized 240 diverse rootstocks from 8 avocado cv. Hass orchards with similar management in three regions of the province of Antioquia, northwest Andes of Colombia, using 13 microsatellite markers simple sequence repeats (SSRs). Parallel to this, we recorded 20 phenotypic traits (including morphological, biomass/reproductive, and fruit yield and quality traits) in the scions for 3 years (2015-2017). Relatedness among rootstocks was inferred through the genetic markers and inputted in a "genetic prediction" model to calculate narrow-sense heritabilities (h 2) on scion traits. We used three different randomization tests to highlight traits with consistently significant heritability estimates. This strategy allowed us to capture five traits with significant heritability values that ranged from 0.33 to 0.45 and model fits (r) that oscillated between 0.58 and 0.73 across orchards. The results showed significance in the rootstock effects for four complex harvest and quality traits (i.e., total number of fruits, number of fruits with exportation quality, and number of fruits discarded because of low weight or thrips damage), whereas the only morphological trait that had a significant heritability value was overall trunk height (an emergent property of the rootstock-scion interaction). These findings suggest the inheritance of rootstock effects, beyond root phenotype, on a surprisingly wide spectrum of scion traits in "Hass" avocado. They also reinforce the utility of polymorphic SSRs for relatedness reconstruction and genetic prediction of complex traits. This research is, up to date, the most cohesive evidence of narrow-sense inheritance of rootstock effects in a tropical fruit tree crop. Ultimately, our work highlights the importance of considering the rootstock-scion interaction to broaden the genetic basis of fruit tree breeding programs while enhancing our understanding of the consequences of grafting.
Collapse
Affiliation(s)
- Paula H. Reyes-Herrera
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)—CI Tibaitatá, Mosquera, Colombia
| | - Laura Muñoz-Baena
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Valeria Velásquez-Zapata
- Department of Plant Pathology and Microbiology, Interdepartmental Bioinformatics and Computational Biology, Iowa State University, Ames, IA, United States
| | - Laura Patiño
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)—CI La Selva, Rionegro, Colombia
| | - Oscar A. Delgado-Paz
- Facultad de Ingenierías, Universidad Católica de Oriente—UCO, Rionegro, Antioquia
| | - Cipriano A. Díaz-Diez
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)—CI La Selva, Rionegro, Colombia
| | | | - Andrés J. Cortés
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)—CI La Selva, Rionegro, Colombia
| |
Collapse
|
6
|
Pouzoulet J, Rolshausen PE, Charbois R, Chen J, Guillaumie S, Ollat N, Gambetta GA, Delmas CEL. Behind the curtain of the compartmentalization process: Exploring how xylem vessel diameter impacts vascular pathogen resistance. PLANT, CELL & ENVIRONMENT 2020; 43:2782-2796. [PMID: 32681569 DOI: 10.1111/pce.13848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 05/07/2023]
Abstract
A key determinant of plant resistance to vascular infections lies in the ability of the host to successfully compartmentalize invaders at the xylem level. Growing evidence supports that the structural properties of the vascular system impact host vulnerability towards vascular pathogens. The aim of this study was to provide further insight into the impact of xylem vessel diameter on compartmentalization efficiency and thus vascular pathogen movement, using the interaction between Vitis and Phaeomoniella chlamydospora as a model system. We showed experimentally that an increased number of xylem vessels above 100 μm of diameter resulted in a higher mean infection level of host tissue. This benchmark was validated within and across Vitis genotypes. Although the ability of genotypes to restore vascular cambium integrity upon infection was highly variable, this trait did not correlate with their ability to impede pathogen movement at the xylem level. The distribution of infection severity of cuttings across the range of genotype's susceptibility suggests that a risk-based mechanism is involved. We used this experimental data to calibrate a mechanistic stochastic model of the pathogen spread and we provide evidence that the efficiency of the compartmentalization process within a given xylem vessel is a function of its diameter.
Collapse
Affiliation(s)
- Jérôme Pouzoulet
- EGFV, INRAE, Bordeaux-Sciences Agro, Université Bordeaux, ISVV, Villenave d'Ornon, France
| | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, California, USA
| | - Rémi Charbois
- EGFV, INRAE, Bordeaux-Sciences Agro, Université Bordeaux, ISVV, Villenave d'Ornon, France
| | - Jinliang Chen
- EGFV, INRAE, Bordeaux-Sciences Agro, Université Bordeaux, ISVV, Villenave d'Ornon, France
| | - Sabine Guillaumie
- EGFV, INRAE, Bordeaux-Sciences Agro, Université Bordeaux, ISVV, Villenave d'Ornon, France
| | - Nathalie Ollat
- EGFV, INRAE, Bordeaux-Sciences Agro, Université Bordeaux, ISVV, Villenave d'Ornon, France
| | - Gregory A Gambetta
- EGFV, INRAE, Bordeaux-Sciences Agro, Université Bordeaux, ISVV, Villenave d'Ornon, France
| | - Chloé E L Delmas
- SAVE, INRAE, Bordeaux-Sciences Agro, ISVV, Villenave d'Ornon, France
| |
Collapse
|