1
|
Ding H, Wang C, Cai Y, Yu K, Zhao H, Wang F, Shi X, Cheng J, Sun H, Wu Y, Qin R, Liu C, Zhao C, Sun X, Cui F. Characterization of a wheat stable QTL for spike length and its genetic effects on yield-related traits. BMC PLANT BIOLOGY 2024; 24:292. [PMID: 38632554 PMCID: PMC11022484 DOI: 10.1186/s12870-024-04963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
Spike length (SL) is one of the most important agronomic traits affecting yield potential and stability in wheat. In this study, a major stable quantitative trait locus (QTL) for SL, i.e., qSl-2B, was detected in multiple environments in a recombinant inbred line (RIL) mapping population, KJ-RILs, derived from a cross between Kenong 9204 (KN9204) and Jing 411 (J411). The qSl-2B QTL was mapped to the 60.06-73.06 Mb region on chromosome 2B and could be identified in multiple mapping populations. An InDel molecular marker in the target region was developed based on a sequence analysis of the two parents. To further clarify the breeding use potential of qSl-2B, we analyzed its genetic effects and breeding selection effect using both the KJ-RIL population and a natural mapping population, which consisted of 316 breeding varieties/advanced lines. The results showed that the qSl-2B alleles from KN9204 showed inconsistent genetic effects on SL in the two mapping populations. Moreover, in the KJ-RILs population, the additive effects analysis of qSl-2B showed that additive effect was higher when both qSl-2D and qSl-5A harbor negative alleles under LN and HN. In China, a moderate selection utilization rate for qSl-2B was found in the Huanghuai winter wheat area and the selective utilization rate for qSl-2B continues to increase. The above findings provided a foundation for the genetic improvement of wheat SL in the future via molecular breeding strategies.
Collapse
Affiliation(s)
- Hongke Ding
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Chenyang Wang
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Yibiao Cai
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Kai Yu
- Yantai Agricultural Technology Extension Center, Yantai, 264001, China
| | - Haibo Zhao
- Yantai Agricultural Technology Extension Center, Yantai, 264001, China
| | - Faxiang Wang
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Xinyao Shi
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Jiajia Cheng
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Han Sun
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Yongzhen Wu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Ran Qin
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Chunhua Zhao
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China.
| | - Xiaohui Sun
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, 265500, China.
| | - Fa Cui
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
2
|
Li Z, Luo Q, Deng Y, Du K, Li X, Ren T. Identification and Validation of a Stable Major-Effect Quantitative Trait Locus for Kernel Number per Spike on Chromosome 2D in Wheat ( Triticum aestivum L.). Int J Mol Sci 2023; 24:14289. [PMID: 37762591 PMCID: PMC10531874 DOI: 10.3390/ijms241814289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
A recombinant inbred line population including 371 lines was developed by a high kernel number per spike (KNPS) genotype T1208 and a low KNPS genotype Chuannong18 (CN18). A genetic linkage map consisting of 11,583 markers was constructed by the Wheat55K SNP Array. The quantitative trait loci (QTLs) related to KNPS were detected in three years. Eight, twenty-seven, and four QTLs were identified using the ICIM-BIP, ICIM-MET, and ICIM-EPI methods, respectively. One QTL, QKnps.sau-2D.1, which was mapped on chromosome 2D, can explain 18.10% of the phenotypic variation (PVE) on average and be considered a major and stable QTL for KNPS. This QTL was located in a 0.89 Mb interval on chromosome 2D and flanked by the markers AX-109283238 and AX-111606890. Moreover, KASP-AX-111462389, a Kompetitive Allele-Specific PCR (KASP) marker which closely linked to QKnps.sau-2D.1, was designed. The genetic effect of QKnps.sau-2D.1 on KNPS was successfully confirmed in two RIL populations. The results also showed that the significant increase of KNPS and 1000-kernel weight (TKW) was caused by QKnps.sau-2D.1 overcoming the disadvantage due to the decrease of spike number (SN) and finally lead to a significant increase of grain yield. In addition, within the interval in which QKnps.sau-2D.1 is located in Chinese Spring reference genomes, only fifteen genes were found, and two genes that might associate with KNPS were identified. QKnps.sau-2D.1 may provide a new resource for the high-yield breeding of wheat in the future.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China;
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (Y.D.); (K.D.); (X.L.)
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, China
| | - Qinyi Luo
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (Y.D.); (K.D.); (X.L.)
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, China
| | - Yawen Deng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (Y.D.); (K.D.); (X.L.)
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, China
| | - Ke Du
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (Y.D.); (K.D.); (X.L.)
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, China
| | - Xinli Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (Y.D.); (K.D.); (X.L.)
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, China
| | - Tianheng Ren
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China;
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (Y.D.); (K.D.); (X.L.)
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, China
| |
Collapse
|
3
|
Wang M, Lu J, Liu R, Li Y, Ao D, Wu Y, Zhang L. Identification and validation of a major quantitative trait locus for spike length and compactness in the wheat ( Triticum aestivum L.) line Chuanyu12D7. FRONTIERS IN PLANT SCIENCE 2023; 14:1186183. [PMID: 37469784 PMCID: PMC10353862 DOI: 10.3389/fpls.2023.1186183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023]
Abstract
Spike length (SL) and spike compactness (SC) are crucial traits related to wheat (Triticum aestivum L.) yield potential. In this study, a backcrossed inbred lines (BILs) population segregating for SL/SC was developed by using a commercial variety chuanyu25 as recurrent parent and a backbone parent Chuanyu12D7. Bulked segregant analysis (BSA) combined with the Wheat 660K SNP array was performed to conduct quantitative trait locus (QTL) mapping. A major and stable SL/SC QTL (designated as QSl/Sc.cib-2D.1) was identified on chromosome 2DS, explaining 45.63-59.72% of the phenotypic variation. QSl/Sc.cib-2D.1 was mapped to a 102.29-Kb interval by flanking SNPs AX-110276364 and AX-111593853 using a BC4F2:3 population. Since QSl/Sc.cib-2D.1 is linked to the Rht8 gene, their additive effects on plant type and spike type were analysed. Remarkably, the superior allele of QSl/Sc.cib-2D.1 combined with Rht8 can increase SL and TGW, and decrese SC without any apparent trade-offs in other yield-related traits. In addition, the closely linked kompetitive allele-specific PCR (KASP) markers of this locus were developed for marker-assisted selection (MAS) breeding. Four genes within the physical interval were considered as potential candidates based on expression patterns as well as orthologous gene functions. These results laid the foundation for map-based cloning of the gene(s) underlying QSl/Sc.cib-2D.1 and its potential application in wheat ideotype breeding.
Collapse
Affiliation(s)
- Mingxiu Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rong Liu
- Department of Agriculture, Forestry and Food Engineering of Yibin University, Yibin, China
| | - Yunfang Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Donghui Ao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yu Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Lei Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|